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Abstract
Web frameworks and functional programming are a natural fit.
Numerous web frameworks leverage the concise, declarative nature
of functional programming languages to allow client and server
code to be written in a more direct, idiomatic manner.

Of particular interest are abstractions for web programming.
Formlets [5] are a compositional abstraction based on the notion
of applicative functors [15] for the creation of statically-typed web
forms. More recent abstractions [7] based on Formlets allowing
dynamic composition and customisable rendering functions rely
on reactive programming concepts. However, the underlying im-
plementations for the reactive segments of these abstractions have
been somewhat ad-hoc: we firstly consolidate the work on the reac-
tive Formlets and Piglets abstractions using the UI.Next [9] reactive
framework, simplifying and clarifying their implementations.

Secondly, we describe how reactive data models and lensed
reactive variables may be used to allow reactive web abstractions
such as Flowlets and Piglets to interact with external data sources.

1. Introduction
Web applications are ubiquitous. Traditionally, web applications
are written in multiple different languages: HTML and JavaScript
on the client side; languages such as Ruby or Python on the back-
end; and SQL for database access. Additionally, much web de-
velopment on both the client and server side is undertaken in
languages with dynamically-checked type systems, enabling rapid
development but losing type information between the client and
server, and making type-directed development more difficult.

Inspired in part by the Links [4] functional web language, Web-
Sharper1 is a web framework allowing client, server, and database
code to be written in the F# [24] functional programming lan-
guage. F# is a strongly, statically typed language from the ML fam-
ily, with built-in interoperability with the .NET framework. Web-
Sharper leverages language-level reflection in the form of quoted
expressions to compile F# code to JavaScript for use on the client
side, which can interact with F# code running on the server.

A key contribution of the Links team was the formlet [5]: a
compositional abstraction for constructing web forms based on the
idea of an applicative functor [15]. As an example, consider a small
form where we wish to collect the name and species of a pet, shown
in Listing 1. We use the F# reverse function application notation
x |> f = f x.

Listing 1. Pet Formlet
type Pet = { Name : string; Species : PetSpecies; }

let SpeciesOptions = [("Dog", Dog) ; ("Cat", Cat) ; ("Piglet",

Piglet)]

let PetFormlet =

1 http://www.websharper.com

Formlet.Yield (fun name species -> { Name = name; Species =

species})

⊗ (Controls.Input "" |> Enhance.WithTextLabel "Name")

⊗ (Controls.RadioButtonGroup (Some 0) SpeciesOptions

|> Enhance.WithTextLabel "Species")

Pet is an F# record containing fields for a pet’s name and
species. PetFormlet is a formlet of type Formlet<Pet>, where Controls.

Input and Controls.RadioButtonGroup are formlets representing
HTML input boxes and radio button groups respectively. The
Enhance.WithTextLabel function adds a text label to the form control.

The Yield function ‘lifts’ a value into a formlet with an empty
body, with type Yield : 'a -> Formlet<'a>. The ⊗ operator is the
applicative ‘apply’ function, with type ⊗: Formlet<'a -> 'b> ->

Formlet<'a> -> Formlet<'b>: given a function lifted into an applica-
tive environment—in this case, that of a formlet—and a value lifted
into the same environment, the ⊗ operator applies the argument to
the function, returning the result lifted into the same environment.
As a result, the pattern of creating a type-safe form is simple: lift a
function using the Yield operation, and use the ⊗ operator to stati-
cally combine sub-formlets.

As a result of their definition as applicative functors, formlets
are naturally compositional: smaller sub-formlets can be composed
in order to make larger formlets. Formlets are then ‘promoted’ to
forms by associating them with a handler, and embedding them into
a webpage, as shown in Listing 2.

Listing 2. A formlet with a handler function embedded in a page
Div [

PetFormlet.Run (fun s -> processResult s)

]

Figure 1. The Pet Formlet rendered with a table layout

Formlets are concise, compositional, and have well-defined seman-
tics. On the other hand, through our use of formlets in practice, we
identified two limitations: firstly applicative functors (or idioms)
only support static composition—they are oblivious [14]—so later
parts of a formlet may not depend on previous parts of a formlet.
Secondly, the layout of the formlet is conflated with the underlying
formlet data model: the visual structure of the form follows directly
from the structure of the model, so changing the order of two form
components would require a change to the underlying model.

In previous work, Bjornson et al. [2] extended formlets to han-
dle dynamic composition by implementing the monadic bind op-
eration >>=. The resulting abstraction, flowlets, allow dependency
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within forms. Continuing the example of pets, consider the case
where we wish to create a form for insuring a pet. We have three
types of pets: dogs, cats, and piglets, each of which have differ-
ent breeds. Additionally, should a dog be selected, we also wish to
know whether or not the dog has attended any training sessions.

We begin by defining the data model, defining the species of the
pet, the breeds for each, and a representation of the insurance infor-
mation for each type of pet (Listing 3). Throughout this example,
we elide the definitions for cats and piglets for brevity.

Listing 3. Data model for pet insurance flowlet
type PetSpecies = Dog | Cat | Piglet

type DogBreed = Husky | Boxer | Poodle

type CatBreed, PigletBreed = ...

type PetInsuranceInfo =

| DogInfo of DogBreed * bool | CatInfo of CatBreed

| PigletInfo of PigletBreed

type InsuredPet = { Name : string; Species : PetSpecies;

InsuranceInfo : PetInsuranceInfo}

With the data model defined, we may now begin to define the
flowlet. We begin by creating lists which we can use for selection
boxes: these have types List<string * 'T>, where the first item in
the pair is the text that is displayed in the list, and the second item
in the pair is the data type to which the selection corresponds. We
then define formlets for the insurance information of dogs, cats, and
piglets (Listing 4).

Listing 4. Sub-formlets for pet insurance information
let SpeciesOptions = [("Dog", Dog) ; ("Cat", Cat) ; ("Piglet",

Piglet)]

let DogBreedOptions = [("Husky", Husky) ; ("Boxer", Boxer) ; ("

Poodle", Poodle)]

let CatBreedOptions, PigletBreedOptions = ...

let DogInsuranceFlowlet =

Formlet.Yield (fun breed isTrained -> DogInfo (breed, isTrained))

<*> (Controls.Select 0 DogBreedOptions |> Enhance.WithTextLabel "

Breed")

<*> (Controls.Checkbox false |> Enhance.WithTextLabel "Has the

dog attended training sessions?")

let CatInsuranceFlowlet, PigletInsuranceFlowlet = ...

Finally, we may create the larger flowlet (Listing 5). We define
a function PetInsuranceFlowlet to define the insurance formlet to
display when given the name of a pet, and define the main flowlet,
PetFlowlet. We make use of F# computation expression syntax [18]
to make the syntax more readable. The let! construct can be
thought of as a monadic binding notation, allowing the result of the
species flowlet to be used as an argument to PetInsuranceFlowlet.

Listing 5. Pet Insurance Flowlet
let PetInsuranceFlowlet = function

| Dog -> DogInsuranceFlowlet

| Cat -> CatInsuranceFlowlet

| Piglet -> PigletInsuranceFlowlet

let PetFlowlet =

Formlet.Do {

let! name = Controls.Input "" |> Enhance.WithTextLabel "Name"

let! species =

Controls.RadioButtonGroup (Some 0) SpeciesOptions

|> Enhance.WithTextLabel "Species"

let! insuranceInfo = PetInsuranceFlowlet species

return {Name = name ; Species = species ; InsuranceInfo =

insuranceInfo}

}

One problem remains: the presentation of both formlets and
flowlets is intrinsically tied into the specification of the formlet or
flowlet itself. Even an update as simple as switching the order of
two fields requires the argument order of the underlying function
to be changed, and users have little control over how the form is
rendered.

Piglets [7] address these issues by separating the data layer from
the presentation layer: a Piglet (shown in Listing 6) consists of a
stream, representing the successive values returned by the Piglet,
and a view builder function, which is a rendering function provided
with the streams of the Piglet components. The key idea behind
Piglets lies in the definition of the ⊗ operator, which not only
performs standard applicative composition on streams, but also
composes the view builders into a new builder, passing arguments
from the previous builders into the new function.

Listing 6. Piglet Definition
type Piglet<'a, 'v> =

{ stream: Stream<'a>; viewBuilder: 'v }

val Yield : 'a -> Piglet<'a, (Stream<'a> -> 'b) -> 'b>

val ⊗ : Piglet<'a -> 'b, 'c -> 'd> -> Piglet<'a, 'd -> 'e> ->

Piglet<'b, 'c -> 'e>

As a concrete example, let us revisit our pet formlet example,
shown in Listing 1. We retain the same data model as before, but
may now specify a separate rendering function: in this case, we
render the function using the WebSharper HTML DSL.

Listing 7. Pet Piglet
let fido = { Name = "Fido" ; Species = Dog }

let PetPiglet (init: Pet) =

Piglet.Return (fun name species -> { Pet.Name = name; Pet.Species =

species})

⊗ Piglet.Yield init.Name

⊗ Piglet.Yield init.Species

let RenderPetPiglet name species =

Div [

Controls.Input name

Controls.RadioLabelled species [

(Dog, string Dog)

(Cat, string Cat)

(Piglet, string Piglet)

]

]

let PetForm =

PetPiglet fido |> Piglet.Render RenderPetPiglet

Listing 7 shows a Piglet implementing the same functionality
as the Formlet in Listing 1. Note that we define the Piglet with
respect to an initial value, as there must be an initial value to render.
The RenderPetPiglet function takes the streams for the name and
species, passing them to Piglet Controls functions, which render
the input box and radio buttons respectively.

The implementation of Flowlets and Piglets have one thing in
common: the use of reactive value streams, in which values are
pushed to a stream and retrieved in a publish-subscribe fashion. In
the case of flowlets, the monadic bind operation requires subscrip-
tion to the values of dynamic sub-formlets. In the case of Piglets,
rendering functions are provided with streams for each form ele-
ment to both display the current value in the model, and update the
model with new values.

1.1 Contributions
• We show how the dataflow layer and functional combinators

provided by UI.Next simplify the implementation of Formlets
and Piglets.
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• We introduce data binding via lensed UI.Next reactive variables,
and show how they can be used to associate a Formlet with a
reactive model.

2. Reactive Web Abstractions using UI.Next

2.1 The UI.Next Reactive Library
UI.Next [9] is a reactive library for WebSharper, based on the idea
of a dynamic dataflow graph. The library consists of two layers: a
dataflow layer, and a presentation layer.

The dataflow layer consists of two primitives: Vars, which are
observable mutable reference cells, and Views, which are projec-
tions of Vars in the dataflow graph, and can be manipulated using
standard functional combinators such as Map and Bind.

The dataflow is implemented using an extension of Concurrent
ML’s IVar [22] to propagate changes through the graph. This means
that the edges of the graph are not explicit links; instead, dependent
nodes can be thought of as attempting to retrieve a value from an
IVar indicating the obsoleteness of the current value. This is an
important feature, as it allows nodes that are swapped out by Bind

to be garbage-collected if they are not otherwise referenced.
The reactive DOM layer is a presentation layer for the dataflow

layer. It consists of a monoidally-composable type Doc, which rep-
resents a possibly-reactive, possibly-empty DOM subtree.

?? is a simple UI.Next program consisting of a text box and a
label, and the label updated with the contents of the text box, but
capitalised.

Listing 8. A simple UI.Next interactive program
let rvText = Var.Create ""

let textView = View.FromVar rvText

let inputField = Doc.Input [] rvText

let capitalisedText = View.Map (fun txt -> txt.ToUpper ()) textView

let label = textView capitalisedText

div [

inputField

label

]

The rvText variable is of type Var<string>: an observable muta-
ble reference cell containing values of type string. The inputField

is Doc representing an HTML input box, bidirectionally bound to
the rvText variable: should rvText change, the value in the text box
will change, and any changes made by the user will be reflected
by rvText. The textView variable is of type View<string>, and is a
projection of rvText, whereas capitalisedText is a View the toUpper

function mapped over the contents of textView.
The label variable is a Doc representing a DOM text node,

and finally div creates an Doc representing an HTML <div> tag
containing inputField and label.

The key to linking the dataflow and reactive DOM layers is the
EmbedView function, which has the type:

EmbedView : View<Doc> -> Doc

Consequently, EmbedView allows possibly-reactive DOM-segments
to be embedded in the remainder of the DOM tree: users may there-
fore define a data model of type View<'T> (where 'T is a polymor-
phic type variable), map a rendering function 'T -> View<Doc>, and
embed the result into the remainder of the tree.

2.2 Implementing Formlets using UI.Next

In this section and the next one, we detail work on using UI.Next as a
reactive basis for the implementation of web abstractions. In previ-
ous work [9], we have demonstrated how reactive web applications
can be implemented using UI.Next, including larger sites such as a

blogging platform2. Here, we aim to show that UI.Next is a suffi-
cient reactive foundation to replace the ad-hoc implementation of
streams in previous implementations of Formlets and Piglets.

The existing Formlets implementation
The existing WebSharper implementations of Formlets, called
WebSharper.Formlets, is based on a library called IntelliFactory.

Reactive
3. This library’s design is strongly inspired by Reactive

Extensions (Rx) [16], which is a much more imperative approach
to reactive programming. IntelliFactory.Reactive provides a type
HotStream<'a> which is conceptually similar to Rx’s hot observ-
ables. This type provides two imperative methods:

• Subscribe : IObserver<'a> -> IDisposable subscribes to future
values of the stream. IObserver is an interface whose members
are callbacks that will be called by the HotStream on new value,
error, and termination, respectively. IDisposable is an interface
with a member Dispose which, when called, unsubscribes the
observer from the stream.

• Trigger : 'a -> unit pushes a new value to the stream.

This library therefore requires explicit subscription to and un-
subscription from an observed stream. This makes the implementa-
tion of dynamic Formlet combinators such as Many and Bind tedious
and prone to memory leaks. It also makes it particularly ill-suited
to be inserted in an otherwise UI.Next-based application: whether a
Formlet is displayed or not can depend on a View, whose changes
therefore need to be manually propagated to the HotStreams.

Another inconvenient of WebSharper.Formlets is that its display
is managed with WebSharper.Html.Client, which is a fairly straight-
forward wrapper around the standard DOM API. This means that
dynamic Formlets need to imperatively remove and insert DOM
nodes based on the current value of a Stream. This also contributes
to making the code complex and difficult to reason about.

The new UI.Next-based implementation
The new UI.Next-based implementation of Formlets, called UI.Next.

Formlets, alleviates the issues caused by using IntelliFactory.

Reactive. Views can be composed much more simply than HotStreams.
There is no need to worry about the lifetime of a subscription,
because it is automatically managed by the dataflow graph. The
Formlet type in this implementation is shown in Listing 9.

Listing 9. The type Formlet<’a>
type Formlet<'a> =

| Formlet of unit -> FormletData<'a>

and FormletData<'a> =

{ view : View<Result<'a>>

layout : list<Layout> }

and Result<'a> =

| Success of 'a

| Failure of list<ErrorMessage>

Semantically, rendering the same Formlet in two different
places, either separately or composed into the same larger Formlet,
creates two completely independent instances. That is, they are not
"entangled": their internal Vars and output Views are not the same.
This is ensured by Formlet<’a> being a (wrapped) function from
unit rather than directly a record containing the View.

The type Result<'a> represents the value returned by the Form-
let, which is either successful or a list of error messages.

2 http://www.fsblogger.com
3 http://github.com/intellifactory/reactive

3 2015/9/8

http://www.fsblogger.com
http://github.com/intellifactory/reactive


The type Layout represents the layout to be rendered, as shown
in Listing 10. A FormletData contains a list of layouts that represents
items in reverse order; this way, the most common use of the
applicative functor (adding a Formlet composed of a single field
at the end of a larger Formlet) is efficient. When rendering a
Formlet whose layout is a list of several items, those are implicitly
considered a Vertical layout.

Listing 10. The Layout of a Formlet
type Layout =

{ shape : LayoutShape

label : option<Doc> }

and LayoutShape =

| Item of Doc

| Varying of View<list<Layout>>

| Horizontal of list<Layout>

| Vertical of list<Layout>

| Wrap of LayoutShape * (Doc -> Doc)

The layout contains the actual Docs that represent fields and
labels, but the structure is represented abstractly. This is for two
reasons:

• Combinators may alter the structure of a Formlet, like the func-
tion ToHorizontal in Listing 11 which transforms an arbitrary
Formlet into a horizontal-layout Formlet. An example of hori-
zontal layout is visible in Figure 2.

• The caller can choose exactly how to render the layout by
providing their own rendering function of type Layout -> Doc.
For example, they can choose to render using tables (like in
Figure 1 and Figure 2), or simple divs, or using the CSS3
flexbox functionality [1].

Listing 11. A layout-altering Formlet combinator
let ToHorizontal (Formlet fl) =

Formlet (fun () ->

let fldata = fl ()

let rec toHorizontal = function

| [] -> []

| [l] ->

match l.Shape with

| Vertical ls -> [{l with shape = Horizontal ls}]

| Varying v ->

[{l with shape = Varying (View.Map toHorizontal v)}]

| _ -> [l]

| ls -> [{shape = Horizontal ls; label = None}]

{fldata with layout = toHorizontal fl.Layout})

With these defined, it is quite straightforward to define the stan-
dard functorial, applicative and monadic combinators for Formlets.

• The functorial Map maps the result within the view and doesn’t
change the layout. A quasi-functorial MapResult, which maps
over Result<'a> instead of 'a, is also provided.

• Return, also named Yield, creates a Formlet with a constant view
and an empty layout.

• The applicative Apply, also named ⊗, performs the applicative
operation on the result within the views and concatenates the
layouts.

• The monadic Bind performs a monadic bind on the views and
combines the layouts using Varying.

Aside from these usual combinators, the primary way to create a
Formlet is using Controls. A Control is displayed as an input field of
some kind, and its View is derived from the Var bound to this input
field. Listing 12 shows the implementation of the Input control,

which is displayed as a simple text box. Similar implementations
are provided for text areas, checkboxes, radio buttons, dropdowns,
and other form components. It is important that the Var is created
inside the unit function in order to preserve composability.

Listing 12. The Input Formlet control
let Input initValue =

Formlet (fun () ->

let var = Var.Create initValue

{ view = View.FromVar var |> View.Map Success

layout = [Layout.Item (Doc.Input [] var)] })

The necessity to prevent two renderings of the same Formlet

from using the same Var is most evident when considering the Many

combinator. This function takes a simple Formlet<'a> and returns a
Formlet<seq<'a>>, where seq<'a> is F#’s abstract type for sequences,
including lists and arrays. When rendering a Many combinator, the
same Formlet is used for different items of the sequence, and there-
fore needs each of these renderings to be associated with different
Vars.

Listing 13. An example use of the Formlet.Many combinator
let PetsFormlet =

PetFormlet

|> Formlet.Many

When rendering a Formlet.Many, buttons are automatically added
to insert a new element (green button in Figure 2) and delete an
element (red buttons in Figure 2).

Figure 2. The Pets Formlet rendered with a table layout
The radio button group has been passed to ToHorizontal from

Listing 11 for more compact rendering.

Input validation works in a very similar way as in WebSharper.

Formlets. It simply maps the View of a Formlet, transforming a
Success into Failure if a predicate is false.

Listing 14. Formlet input validation
module Validation =

let Is pred error (Formlet fl) =

Formlet (fun () ->

let fldata = fl()

{fldata with view =

fldata.view |> View.Map (function

| Success x as r -> if pred x then r else Failure [error]

| Failure _ as r -> r)})

2.3 Implementing Piglets using UI.Next

The existing Piglets implementation
Like WebSharper.Formlets, the existing WebSharper.Piglets is based
on IntelliFactory.Reactive’s HotStreams. More precisely, the type
Stream<'a> is a thin wrapper around a HotStream<Result<'a>>.

Instead of Streams, UI.Next.Piglets use reactive values from
UI.Next. They are replaced in the Yield function by a Var: this means
that the rendering function will receive a Var instead of a Stream.
The Var can be bound to form controls to update the Piglet state, and
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can be used to create a View in order to display the current value of
a variable. This way, the whole Controls module from WebSharper.

Piglets can be dropped from UI.Next.Piglets, and standard UI.Next

functions such as Doc.Input and Doc.EmbedView can be used to input
and display reactive values, respectively.

Listing 15. Piglet defined using UI.Next primitives
type Piglet<'a, 'v> =

{ read : View<Result<'a>> ; render : 'v }

val Yield : 'a -> Piglet<'a, (Var<'a> -> 'v) -> 'v

val ⊗ : Piglet<'a -> 'b, 'v -> 'w> -> Piglet<'a, 'w -> 'x> ->

Piglet<'b, 'v -> 'x>

However, similarly to UI.Next.Formlets, the Stream<'a> in the
Piglet itself is replaced with a View<'a>: this enables views of the
data to be combined by the ⊗ operator. As a concrete example,
Listing 16 shows the implementation of the Yield and ⊗ operations.

Another aspect where the use of UI.Next brings more type safety
is in managing failure. The possibility of failure is represented by
the same type Result<'a> as in Formlets. In Piglets like in Formlets,
the following property holds: input is always successful, and failure
is only introduced by validation filters. However, since WebSharper.

Piglets represents both inputs and internal reactive values as the
same type Stream<'a>, this property is not enforced statically, and
the implementation of input elements needs to explicitly trigger the
Stream with a Success value.

In UI.Next-based Piglets, on the other hand, this property can be
enforced. The type Result<'a> is now explicitly present in the View

of a Piglet, but absent from the Var passed to the render function.
This way, the Yield function can implement an always-successful
Piglet and validation filters can then map this Success to a Failure

as needed.

Listing 16. Operations on UI.Next Piglets
let Yield x =

let v = Var.Create x

{ read = View.Map Success (View.FromVar v);

render = fun f -> f v }

let ⊗ (pf: Piglet<_, _>) (px: Piglet<_, _>) =

let v = View.Map2 Result.Apply pf.read px.read

Piglet.Create v (pf.render >> px.render)

Recall that the Piglet Yield operation takes an initial value as its
argument. The function creates a Var to be passed as an argument
to the rendering function, and a View to represent the current value.

The ⊗ function takes as its arguments a function-valued Piglet
of type Piglet<'a -> 'b, 'v -> 'w>, and applies the argument
Piglet<'a, 'w -> 'x> within the Piglet context. In order to imple-
ment this, a new View is created from the Views of the argument
Piglets. View.Map2 and Result.Apply are applicative functor opera-
tions for Views and Results, respectively. Result.Apply concatenates
lists of error messages if both Results are Failures. The rendering
functions are simply composed: (>>) is the standard F# operator
for flipped function composition.

Returning to our example, the PetPiglet function can stay the
same: while we change the implementation of the Piglets library,
the interface remains compatible. We do, however, change the
render function to use the UI.Next reactive DOM layer:

Listing 17. Rendering Function for UI.Next Pet Piglet
let RenderPetPiglet name species =

div [

Doc.Input name

Doc.Radio [] string [Dog, Cat, Piglet] species

]

Another feature of Piglets is the pseudo-monadic bind combina-
tor, named Choose in WebSharper.Piglets and renamed to Dependent

in UI.Next.Piglets. This combinator allows the display of a "depen-
dent" Piglet to react to the value of a "primary" Piglet. Its type is
given in Listing 18.

Listing 18. Dependent Piglet
type Dependent<'b,'u,'w> =

member View : View<Result<'b>>

member RenderPrimary : 'u -> Doc

member RenderDependent : 'w -> Doc

val Dependent : primary: Piglet<'a, 'u -> 'v> ->

dependent: ('a -> Piglet<'b, 'w -> 'x>) ->

Piglet<'b, (Dependent<'b,'u,'w> -> 'y) -> 'y>

when 'a : equality and 'v :> Doc and 'x :> Doc

The switch to UI.Next allows a much cleaner implementation of
Dependent. Indeed, one feature of this operator is that it is mem-
oized: if the primary Piglet’s value has already been seen, then
the dependent Piglet is not recomputed. In WebSharper.Piglets, this
required a lot of care with regard to the lifetime of the subscrip-
tions induced by the memoized dependent Piglet, and many explicit
unsubscriptions and resubscriptions. With UI.Next.Piglets, this is
once again managed by the dataflow graph, as Views which are not
transitively observed by a Sink are implicitly disconnected from the
graph until they become active again. The memoization can there-
fore be handled by the usual simple memoize function that just
stores the result corresponding to a given argument.

3. Data binding in UI.Next

Web forms such as those created using Formlets and Piglets do
not exist in a vacuum. They are generally intended to edit the data
from a given data source. This data source can be the browser’s
local storage, or a database on the server side accessed via Ajax
requests or Websockets. If it is acceptable for this data source to be
updated only when the form is submitted, then it is sufficient to do
so imperatively in the function passed to Formlet.Run or Piglet.Run.

However, it is increasingly common for web applications to syn-
chronize the page in real time with the data source. The advent of
WebSockets, in particular, has largely participated in the popularity
of such live applications.

Formlets and Piglets, as described so far, were very inadequate
for this paradigm. Their purpose was to provide the user with
an interface to enter the components of a final return value, and
the reactive components were used mainly to enhance this user
interface. In order to accommodate live-updated applications, the
reactive layer must be able to interact with external data sources.

To solve this problem, we first introduce Models, which gener-
alize mutable Vars to store their data differently, and in particu-
lar ListModels which provide facilities to store collections of items.
Then we present the abstract type IRef which encompasses Vars
and Models and can also be created by applying a lens on an IRef.
Finally, we show how Formlets can be enhanced to be backed by
external models.

3.1 Models
UI.Next Vars are very simple: a reference cell storing a value of type
'a, observable as a View<'a>. However, it is sometimes preferable
to expose data to the dataflow graph differently from how it is
stored. For example, one might want to store data as a mutable
structure, while keeping the values passed to the graph immutable.
This functionality is provided by Models.

A Model<'i, 'm> is conceptually a reference cell storing a value
of type 'm and a mapping function of type 'm -> 'i, which exposes
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its contents to the dataflow graph as a View<'i>. The API is de-
scribed in Listing 19. Note how the Update function acts impera-
tively on the 'm value.

Listing 19. The API of the Model type
module Model =

val Create : ('m -> 'i) -> 'm -> Model<'i, 'm>

val Update : ('m -> unit) -> Model<'i, 'm> -> unit

val View : Model<'i, 'm> -> View<'i>

Under the hood, this simple type of Model is implemented as a
Var with a Map on its view, as shown in Listing 20.

Listing 20. The implementation of the Model type
type Model<'i, 'm> = M of Var<'m> * View<'i>

module Model =

let Create proj init =

let var = Var.Create init

M (var, View.Map (View.FromVar var) proj)

let Update f (M (var, _)) =

Var.Update var (fun x -> f x; x)

let View (M (_, view)) = view

The most common use case for models is to store a collection
of items as a mutable, resizable array, implemented in F# as the
type ResizeArray<'a>, and expose it to the dataflow graph as an
immutable sequence (type seq<'a> in F#). Such a model is imple-
mented in UI.Next as the type ListModel<'k, 't>.

The type ListModel<'k, 't> provides an API to insert, delete,
and update individual items in the collection. Part of this API
is shown in Listing 21. In order to be able to implement this
functionality, items of type 't are identified by a key of type 'k. This
means that, for example, the method Add will replace an existing
item with the same key, if any. The function to extract the key of an
item is passed to the smart constructor ListModel.Create.

Listing 21. The API of the ListModel type
type ListModel<'k, 't when 'k : equality> =

member View : View<seq<'t>>

member Add : 't -> unit

member RemoveByKey : 'k -> unit

member UpdateBy : ('t -> option<'t>) -> 'k -> unit

member Key : ('t -> 'k)

module ListModel =

val Create : ('t -> 'k) -> seq<'t> -> ListModel<'k, 't>

A type Key is also provided to simplify the creation of keys when
the stored datatype does not have an intrinsic unique identifier. The
function Key.Fresh() creates a new unique key on each invocation.

Most of the time, the View from a ListModel is integrated into
the dataflow graph using a function of the View.Convert* family
shown in Listing 22. These functions map a View<seq<'a>> to a
View<seq<'b>> using a function 'a -> 'b, and use caching to avoid
needing to call the function on all items of the sequence if only
some of them have changed.

Listing 22. The View.Convert family of functions
module View =

val Convert : ('a -> 'b) -> View<seq<'a>> -> View<seq<'b>>

when 'a : equality

val ConvertBy : ('a -> 'k) -> ('a -> 'b) ->

View<seq<'a>> -> View<seq<'b>>

when 'k : equality

val ConvertSeq : (View<'a> -> 'b) -> View<seq<'a>> -> View<seq<'b>>

when 'a : equality

val ConvertSeq : ('a -> 'k) -> ('k -> View<'a> -> 'b) ->

View<seq<'a>> -> View<seq<'b>>

when 'k : equality

These functions can be split in two groups:

• Convert and ConvertBy are intended for use when the value
associated with a given key does not change with time. They
call the mapping function for every element whose key was not
in the previous sequence. This means that if the new sequence
has an element whose key was already in the old sequence, then
this new value is ignored. Convert is essentially ConvertBy id.

• ConvertSeq and ConvertSeqBy are intended for use when the value
associated with a given key might change with time. They
also call the mapping function for every element whose key
was not in the previous state, but instead of passing it the
corresponding value, it passes a view on the value. This means
if the new sequence has an element whose key was already in
the old sequence, then this new value is propagated to this view.
ConvertSeq is essentially ConvertSeqBy id.

Each of these functions also has a counterpart in the Doc module,
defined based on the following template:

module Doc =

let Convert (f: 'a -> Doc) (v: View<seq<'a>>) : Doc =

Doc.EmbedView (View.Map Doc.Concat (View.Convert f v))

The ListModel type also exposes a number of Views for charac-
teristics of the sequence such as its length or the value of the item
with a given key. Such Views could be constructed using View.Map on
the View<seq<'a>>, but the provided implementation is optimized by
mapping directly on the internal Var<ResizeArray<'a>>.

Listing 23. Additional Views provided by ListModel
type ListModel<'k, 't> =

member LengthAsView : View<int>

member TryFindByKeyAsView : 'k -> View<option<'t>>

member ContainsKeyAsView : 'k -> View<bool>

3.2 The IRef abstraction and lensing
Models allow the storage of a reactive value in a different shape
from its representation in the dataflow graph. However, user inputs
such as Doc.Input do not only need to be able to read from an item’s
field using a View, but must be able to write to it. For this purpose,
we introduce the abstract type IRef<'a>, described in Listing 24.
The I prefix is a .NET convention for interface types.

Listing 24. The type IRef for abstract settable reactive values
type IRef<'a> =

abstract Get : unit -> 'T

abstract Set : 'T -> unit

abstract Update : ('T -> 'T) -> unit

abstract UpdateMaybe : ('T -> 'T option) -> unit

abstract View : View<'T>

This type represents a reactive value that can be read from or
written to. The simplest form of IRef<'a> is Var<'a>, which stores
its value directly as a reference cell. But more advanced IRefs can
also be constructed from existing IRef using lenses [17, 25].

Since F# does not support higher-kinded types, our implemen-
tation of lenses is the most basic version of the concept: a pair of a
getter function and an updater function. This approach has already
been used in F# by the Aether library [3].

type Lens<'a, 'b> = ('a -> 'b) * ('b -> 'a -> 'a)

With these defined, it is now trivial to implement lensed IRefs,
that is, IRefs that, instead of storing a value directly like Var, store
it in another IRef by changing its value through a lens.
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type IRef<'a> with

member a.Lens ((get, update) : Lens<'a, 'b>) : IRef<'b> =

{ new IRef<'b> with

member b.Get() = get (a.Get())

member b.Set(v) = a.Update (update v)

member b.Update(f) =

a.Update(fun t -> update (f (get t)) t)

member b.UpdateMaybe(f) =

a.UpdateMaybe(fun t ->

Option.map (fun v -> up v t) (f (get t)))

member b.View = View.Map get a.View }

Controls such as Doc.Input are then modified to take as argu-
ment IRef<'a> instead of Var<'a>. One can then implement a user
interface in which several input fields reflect the value of different
fields of the same record in a Var, as shown in Listing 25.

Listing 25. A simple use of lensed IRefs
type Person =

{ firstName: string; lastName: string; id: Key }

static member FirstName : Lens<Person, string> =

(fun p -> p.firstName), (fun n p -> { p with firstName = n })

static member LastName : Lens<Person, string> =

(fun p -> p.lastName), (fun n p -> { p with lastName = n })

let nameForm (p: IRef<Person>) =

form [

label [

text "First name: "

Doc.Input [] (p.Lens Person.FirstName)

]

label [

text "Last name: "

Doc.Input [] (p.Lens Person.LastName)

]

]

let v = Var.Create {

firstName = "John"; lastName = "Doe"; id = Key.Fresh() }

nameForm v

ListModels also provide lensed IRefs to modify a single ele-
ment, referenced by its key.

type ListModel<'k, 't> =

member Lens : 'k -> IRef<'t>

let people = ListModel.Create (fun p -> p.id) []

let peopleForm =

people.View |> Doc.ConvertSeqBy people.Key (fun k v ->

nameForm (people.Lens k))

3.3 Integration into Formlets
In order to use these data binding features in abstractions like
Formlets, we require some additions.

For simple Formlets, new versions of Controls are necessary
which, instead of taking an initial value as argument and creating
an internal Var every time it is instantiated, takes as argument
an IRef and uses it as its backing reactive variable, as shown in
Listing 26. Note that, unlike the previous kind of control, multiple
instantiations of such a data-bound control will be "entangled",
since they are backed by the same IRef.

Listing 26. The InputRef Formlet control
let InputRef (ref: IRef<'a>) : Formlet<'a> =

Formlet (fun () ->

{ view = ref.View |> View.Map Success

layout = [Layout.Item (Doc.Input [] ref)] })

Integrating lensed ListModels requires a more extensively modi-
fied version of Formlet.Many. To understand it, we need to first look
at how the original Formlet.Many is implemented.

Internally, Formlet.Many uses a model of type ListModel<Key,

Key * FormletData<'t>>. The Key of this model is internal to the
implementation and isn’t visible to the user; it is used to minimize
recomputation of both returned value and rendered layouts via
View.ConvertBy.

In order to implement a variant of Formlet.Many backed by
a provided ListModel<'k, 't>, which we’ll call ManyWithModel, a
first intuition would be to simply pass this ListModel’s View to
ConvertBy in order to obtain a ListModel<'k, 'k * FormletData<'t>>,
and then follow the same implementation as previously. Unfortu-
nately, this brings rendering-related issues. The difference is that
in Formlet.Many, the underlying ListModel is only updated when an
item is added or removed, whereas here the ListModel is updated
every time a lensed IRef is updated. Even though no key is added
or removed, and therefore the function passed to ConvertBy is never
called, the update still propagates through the dataflow graph down
to the Doc rendering. What this translates to visually is a re-render
of the full Formlet as soon as the user types in an input box. This is
clearly not acceptable user experience.

The solution is to have an internal model of type ListModel<'k,

'k * FormletData<'t>> which only gets updated on insert or remove.
To ensure that this is the case, ConvertBy is called on the base
ListModel’s View, and items are inserted into or removed from the
internal ListModel by calling Add or RemoveByKey within the mapping
function, as shown in Listing 27.

Listing 27. The internal ListModel in Formlet.ManyWithModel
let ManyWithModel (m: ListModel<'k, 'a>)

(f: IRef<'a> -> Formlet<'b>) : Formlet<seq<'b>> =

Formlet (fun () ->

let mf = ListModel.Create fst (m.Value |> Seq.map (fun x ->

let k = m.Key x

let (Formlet fl) = f (m.Lens k)

(k, fl ())))

let cb =

m.View |> View.Map (fun xs ->

for x in xs do

let k = m.Key x

if not (mf.ContainsKey k) then

mf.Add(k, (f (m.Lens k)).Data ())

for (k, _) in mf.Value do

if not (m.ContainsKey k) then

mf.RemoveByKey k)

{view = (* ... *); render = (* ... *)})

In order to ensure that the view cb is inserted in the dataflow
graph, it is then mapped into a Doc.Empty and concatenated into the
layout.

4. Related Work
4.1 Functional Web Programming
Links [4] is a functional web programming language which aims
to address the impedance mismatch problem: that of having to use
multiple programming languages for multiple tiers of development.
Users can write client, server and database code in the Links lan-
guage, which compiles the client code to HTML and JavaScript,
and the server code to SQL. In WebSharper, we use the concept
of writing all layers in a single language, but instead of writing a
new language, we use F# by leveraging features such as language-
level reflection and type providers. In contrast to Links, the server
component of WebSharper is persistent as opposed to CGI-based.

The Links implementation of formlets [5] uses a preprocessing
step: forms are written using HTML-like markup, and desugared
into applicative style in a subsequent step. This offers some control
over the layout, but the order of fields remains fixed. Links only

7 2015/9/8



provides applicative formlets, with data only accessible through
form submission.

Yesod [23] is a web framework for the Haskell programming
language. Concentrating on the server aspects of Haskell web ap-
plications, Yesod makes use of Haskell’s type system and metapro-
gramming through Template Haskell to facilitate the creation of
correct and secure web applications.

Interestingly, Yesod contains both applicative and monadic
formlets. The monadic semantics are, however, different to those of
flowlets: Yesod formlets are statically generated upon page loads,
with data obtained through form submission. WebSharper formlets
and flowlets are designed to allow the data contained within a form
to be used within client code on the webpage. Consequently, the
main aim of monadic Yesod formlets is to allow more flexibility
in the presentation of the form. Monadic Yesod formlets sepa-
rate the model and view components of form elements, allowing
the model components to be combined applicatively, and the view
components to be used within a rendering function. The rendering
function takes the form of a Template Haskell representation of an
HTML page, with the view components of form elements used as
parameters to form components such as input boxes.

This mechanism is in contrast both with flowlets, as it does
not allow dynamic sub-forms, and with Piglets, as the rendering
function is specialised to HTML.

The iTask framework [20] is an interactive workflow system
based the idea of task-oriented programming (TOP). Task-oriented
programming is a high-level paradigm centred around the concept
of tasks—“abstract descriptions of interactive persistent units of
work that have a typed value” [13]. Task-oriented programming
is powerful: tasks may be combined using a large number of com-
binators supporting recursion, monadic binding, parallel composi-
tion, and others. Although the iTask framework developed from
iData [19], a way of constructing web forms, the paradigm targets
a different level of abstraction, concentrating on the creation of, and
interplay between tasks as opposed to the creation of reactive web
forms.

4.2 Reactive Programming
The Reactive Extensions (Rx) [12, 16] library is designed to allow
the creation of event-driven programs. The technology is heavily
based on the observer pattern, which is an instance of the publish
/ subscribe paradigm. Rx models event occurrences, for example
key presses, as observable event streams, and has a somewhat more
imperative design style as a result. The dataflow layer in UI.Next

models time-varying values, as opposed to event occurrences.
Functional Reactive Programming (FRP) [8] is a paradigm re-

lying on values, called Signals or Behaviours which are a function
of time, and Events, which are discrete occurrences which change
the value of Behaviours.

FRP has spawned a large body of research, in particular concen-
trating on efficient implementations: naïvely implemented, purely-
monadic FRP is prone to space leaks. One technique, arrowised
FRP [10], provides a set of primitive behaviours and forbids be-
haviours from being treated as first-class, instead allowing the
primitive behaviours to be manipulated using the arrow abstrac-
tion. Krishnaswami [11] provides an implementation of FRP with-
out spacetime leaks by aggressively deleting obsolete behaviour
values, and separating values into those which may be evaluated
immediately, and those which depend on future values. Ploeg and
Claessen [21] modify the original FRP interface of Elliott and Hu-
dak [8] to ensure that functions exposed by the library do not have
to retain obsolete values.

Elm [6] is a functional reactive programming language for web
applications, which has attracted a large user community. Elm

implements arrowised FRP, using the type system to disallow leak-
prone higher-order signals.

While UI.Next draws inspiration from FRP, it does not attempt
to implement FRP semantics. Instead, UI.Next consists of observ-
able mutable values which are propagated through the dataflow
graph, providing a monadic interface with imperative observers.
Consequently, presentation layers such as the reactive DOM layer
can be easily integrated with the dataflow layer. Such an approach
simplifies the implementation of reactive web abstractions such as
Flowlets and Piglets.

5. Conclusion
Web abstractions such as Formlets provide concise, compositional
ways to structure web applications, and obtain information from
users in a structured, type-safe manner.

Extensions to the original Formlet abstraction, such as Flowlets
and Piglets, require reactive programming in order to support dy-
namic composition and custom rendering functions. In this paper,
we have shown how the dataflow primitives from UI.Next can re-
place the previously imperative implementation of the reactive por-
tions of the implementation of Formlets, Flowlets, and Piglets.

We have additionally demonstrated how reactive web abstrac-
tions can, through the use of reactive models and lensed reactive
variables to implement data binding, be used to interact with exter-
nal data sources.

Flowlets and Piglets are useful extensions to the original Form-
let abstraction, but do not currently have a formal semantics. We
are currently working on a semantics for UI.Next, with the goal of
providing a unified semantics for reactive web abstractions. Addi-
tionally, we are currently investigating the use of F# type providers
to embed typed, reactive data within web pages.
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