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Session types statically guarantee that concurrent communication complies with a protocol. However, most
accounts of session typing do not account for failure, which means they are of limited use in real applications—
especially distributed applications—where failure is pervasive.

We present the first formal integration of asynchronous session types with exception handling in a functional
programming language. We define a core calculus which satisfies preservation and progress properties, is
deadlock free, confluent, and terminating.

We provide the first implementation of session types with exception handling for a fully-fledged functional
programming language, by extending the Links web programming language; our implementation draws on
existing work on algebraic effects and effect handlers. We illustrate our approach through a running example
of two-factor authentication, and a larger example of a session-based chat application where communication
occurs over session-typed channels and disconnections are handled gracefully.

1 INTRODUCTION

With the growth of the internet and mobile devices, as well as the failure of Moore’s law, concur-
rency and distribution have become central to many applications. Writing correct concurrent and
distributed code requires effective tools for reasoning about communication protocols. While data
types do provide an effective tool for reasoning about the shape of data communicated, protocols
also require us to reason about the order in which messages are transmitted.

Session types [Honda 1993; Honda et al. 1998] are types for protocols. They describe both the
shape and order of messages. If a program type-checks according to its session type, then it is
statically guaranteed to comply with the corresponding protocol.

Alas, most accounts of session types do not handle failure, which means they are of limited use in
distributed settings where failure is pervasive. Inspired by work of Mostrous and Vasconcelos [2014],
we present the first account of asynchronous session types in a functional programming language,
which smoothly handles both distribution and failure. We present both a core calculus enjoying
strong metatheoretical correctness properties and a practical implementation as an extension of
the Links web programming language [Cooper et al. 2007].

1.1 Session Types

We illustrate session types with a basic example of two-factor authentication. A user inputs their
credentials. If the login attempt is from a known device, then they are authenticated and may
proceed to perform privileged actions. If the login attempt is from an unrecognised device, then
the user is sent a challenge code. They enter the challenge code into a hardware key which yields a
response code. If the user responds with the correct response code, then they are authenticated.
A session type specifies the communication behaviour of one endpoint of a communication
channel participating in a dialogue (or session) with the other endpoint of the channel. Fig. 1 shows
the session types of two channel endpoints connecting a client and a server. Fig. 1a shows the
session type for the server which first receives (?) a pair of a username and password from the
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TwoFactorServer £ TwoFactorClient £
?(Username, Password).®{ !(Username, Password).&{
Authenticated : ServerBody, Authenticated : ClientBody,
Challenge : !ChallengeKey.?Response. Challenge : ?ChallengeKey.!Response.
®{ Authenticated : ServerBody, &{ Authenticated : ClientBody,
AccessDenied : End}, AccessDenied : End},
AccessDenied : End} AccessDenied : End}
(a) Server Session Type (b) Client Session Type

Fig. 1. Two-factor Authentication Session Types

client. Next, the server selects (®) whether to authenticate the client, issue a challenge, or reject the
credentials. If the server decides to issue a challenge, then it sends (!) the challenge string, awaits
the response, and either authenticates or rejects the client. The ServerBody type abstracts over the
remainder of the interactions, for example making a deposit or withdrawal.

The client implements the dual session type, shown in Fig. 1b. Whenever the server receives
a value, the client sends a value, and vice versa. Whenever the server makes a selection, the
client offers a choice (&), and vice versa. This duality between client and server ensures that
each communication is matched by the other party. We denote duality with an overbar; thus
TwoFactorClient = TwoFactorServer and TwoFactorServer = TwoFactorClient.

Implementing Two-factor Authentication. Let us suppose we have constructs for sending and
receiving along, and for closing, an endpoint.

send M N:S where M has type A, and N is an endpoint with session type !A.S
receive M: (A X S) where M is an endpoint with session type ?A.S
close M:1 where M is an endpoint with session type End

Let us also suppose we have constructs for selecting and offering a choice:

select {; M : §; where M is an endpoint with session type &{¢; : S;}ier, and j € I
offer M {{;(x;) — N;}ie; : A where M is an endpoint with session type &{¢{; — S;};es, each x;
binds an endpoint with session type S;, and each N; has type A
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We can now write a client implementation:

twoFactorClient : (Username X Password X TwoFactorClient) —o 1
twoFactorClient(username, password, s) =
let s = send (username, password) s in
offer s {
Authenticated(s) — clientBody(s)
Challenge(s) —
let (key,s) = receive (s) in
let s = send generateResponse(key) s in
offer s {
Authenticated(s) +— clientBody(s)
AccessDenied(s) — close s; loginFailed
}

AccessDenied(s) — close s; loginFailed

}

The twoFactorClient function takes a username, password, and an endpoint s of type TwoFactorClient
as its arguments. It sends the username and password along the endpoint, before offering three
branches depending on whether the server authenticates the user, sends a two-factor challenge,
or rejects the authentication attempt. Note that the rejection of an authentication attempt is part
of the protocol, and not exceptional behaviour. In the case that the server authenticates the user,
then the program progresses to the main application (denoted here by clientBody(s)). If the server
sends a challenge, the client receives the challenge key, and sends the response, calculated by
generateResponse. It then offers two branches based on whether the challenge response was
successful. The server implementation is similarly straightforward:

twoFactorServer : TwoFactorServer —o 1
twoFactorServer(s) =
let ((username, password), s) = receive s in
if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)
else
let s = select AccessDenied s in close s

The twoFactorServer function takes an endpoint of type TwoFactorServer, receives a username
and password, and which are checked using the checkDetails function. If the check passes, then the
server authenticates the client and proceeds to the application body (denoted here by serverBody(s));
if not, then the server notifies the client by selecting the AccessDenied branch. Note that this
particular server implementation opts to never send a challenge request.

To successfully implement session types, one necessarily needs a substructural type system. We
discuss three options: linear types, affine types, and linear types with explicit cancellation.

1.2 Linear Types

Simply providing constructs for sending and receiving values, and for selecting and offering choices,
is not quite enough to safely implement session types. Consider the following client:

wrongClient : TwoFactorClient —o 1
. A
wrongClient(s) =
lett = send ("Alice", "hunter2") sin
lett = send ("Bob", "letmein") sin ...
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Reuse of s allows a (username, password) pair to be sent along the same endpoint twice, violating
the fundamental property of session fidelity, which states that in a well-typed program the com-
munication taking place over an endpoint matches its session type. In order to maintain session
fidelity and ensure that all communication actions in a session type occur, session type systems
typically require that endpoints are used linearly—each endpoint must be used exactly once.

Exceptions. In real programs, linear session types are unrealistic. Thus far, we have assumed
that checkDetails always succeeds, which may be plausible if the server is checking against an
in-memory store, but certainly not if it is contacting a remote database. One approach would be to
simply have checkDetails return false should the request fail, but this approach loses information.
Instead, let us suppose we have a basic try — catch exception handling construct.

As a first attempt, we might try to write:

exnServer1 : TwoFactorClient — 1
exnServer1(s) =
let ((username, password), s) = receive (s) in
try
if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)
else
let s = select AccessDenied s in close s
catch log("Database Error")

However, the above code does not type-check and is unsafe. Linear endpoint s is not used in the
catch block and yet it may still be open if an exception is raised by checkDetails.

As a second attempt, we may decide to localise exception handling to the call to checkDetails.
We introduce checkDetailsOpt, which returns Some(result) if the call is successful and None if not.

exnServer2 : TwoFactorServer —o 1
exnServer2(s) =
let ((username, password), s) = receive (s) in
case checkDetailsOpt(username, password) of

checkDetailsOpt : Some(res)
(Username X Password) —o Option(Bool) if resthen
checkDetailsOpt(username, password) = let s = select Authenticated s in
try Some(checkDetails(username, password)) serverBody(s)
catch None else
let s = select AccessDenied s in
closess

None — log("Database Error")

Still the code is unsafe as it does not use s in the None branch of the case-split. However, we do
now have more precise information about the type of s, since it is unused in the try block. One
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solution could be to adapt the protocol by adding an InternalError branch:

TwoFactorServerExn =
?(Username, Password).®{
Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.
®{Authenticated : ServerBody, AccessDenied : End},
AccessDenied : End,
InternalError : End}

With this modification in place, we could use select InternalError s in the None branch and write
a type-correct program. But this approach is still rather unsatisfactory as it entails cluttering both
the protocol and the implementation with failure points, even though they may occur rarely.

Disconnection. The problem of failure is compounded by the possibility of disconnection. On a
single machine it may be plausible to assume that communication always succeeds. In a distributed
setting this assumption is unrealistic as parties may disconnect without warning. The problem is
particularly acute in web applications as a client may close the browser at any point. In order to
adequately handle failure we must incorporate some mechanism for detecting disconnection.

1.3 Affine Types

We began by assuming linear types—each endpoint must be used exactly once. One might consider
relaxing linear types to affine types—each endpoint must be used at most once. Statically checked
affine types underlie the existing Rust implementation of session types [Jespersen et al. 2015] and
dynamically checked affine types underlie the FuSe [Padovani 2017] and lchannels [Scalas and
Yoshida 2016] session type implementations in OCaml and Scala respectively.

However, affine types present two quandaries, both arising from endpoints being silently dis-
carded. First, a developer receives no feedback if they accidentally forget to finish the implementation
of a protocol. Second, if an exception is raised then the peer may be left waiting forever if an open
endpoint appears in the evaluation context of the raised exception.

1.4 Linear Types with Explicit Cancellation

Mostrous and Vasconcelos [2014] address the difficulties outlined above through an explicit discard
(or cancellation) operator. (They characterise their sessions as affine, but it is important not to
confuse their system with affine type systems, as in §1.3, which allow variables to be discarded
implicitly.) Their approach boils down to three key principles: endpoints can be explicitly discarded;
an exception is thrown if a communication cannot succeed because a peer endpoint has been
cancelled; and endpoint cancellations are propagated when endpoints become inaccessible due
to an exception being thrown. They introduce a process calculus including the term a4 (“cancel
a”), which indicates that endpoint a may no longer be used to perform communications. Mostrous
and Vasconcelos provide an exception handling construct which attempts a communication action,
running an exception handler if the communication action fails, and show that explicit cancellation
is well-behaved: their calculus is sound, satisfies global progress—no session gets stuck even in the
presence of cancellation—and confluent.

Explicit cancellation neatly addresses the problem of failure while ruling out the problem of
accidentally incomplete implementations and providing a mechanism for notifying peers when an
exception is raised. In this paper we take advantage of explicit cancellation to formalise and imple-
ment asynchronous session types with failure handling in a distributed functional programming
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language. Doing so is not simply a routine adaptation of the ideas of Mostrous and Vasconcelos for
the following reasons:

o They present a process calculus, but we work in a functional programming language.

e Communication in their system is synchronous, depending on a rendezvous between sender
and receiver. We require asynchronous communication, which is more amenable to imple-
mentation in a distributed setting.

e Their exception handling construct is over a single communication action, and does not allow
nested exception handling. This design is difficult to reconcile with a functional language, as
it is inherently non-compositional.

We define a core concurrent A-calculus, Exceptional GV, with asynchronous session-typed com-
munication and exception handling. As with the calculus of Mostrous and Vasconcelos, an exception
is raised when a communication action fails. But our compositional exception handling construct
can be arbitrarily nested, and allows exception handling over multiple communication actions.

Using EGV, we may implement the two factor authentication server as follows:

exnServer3 : TwoFactorServer —o 1
exnServer3(s) =
let ((username, password), s) = receive (s) in
try checkDetails(username, password) as res in
if res then let s = select Authenticated s in serverBody(s)
else
let s = select AccessDenied s in close s
otherwise
cancel (s); log("Database Error")

Following Benton and Kennedy [2001], exception handlers try L as x in M otherwise N take an
explicit success continuation M as well as the usual failure continuation N. If checkDetails fails
with an exception, then we safely discard s using cancel, which takes an endpoint and returns the
unit value. Disconnection is handled by cancelling all endpoints associated with a client. If a peer
tries to read along a cancelled endpoint, then an exception is thrown.

We implement the constructs described by EGV as an extension to Links [Cooper et al. 2007],
a functional programming language for the web. Our implementation is based on a minimal
translation to effect handlers [Plotkin and Pretnar 2013].

1.5 Contributions
This paper makes five main contributions:

(1) Exceptional GV (§2), a core linear lambda calculus extended with asynchronous session-
typed channels and exception handling. We prove (§3) that the calculus enjoys preservation,
progress, a strong form of confluence called the diamond property, and termination.

(2) Extensions to EGV supporting exception payloads, unrestricted types, and access points (§4).

(3) The design and implementation of an extension of the Links web programming language to
support tierless web applications which can communicate using session-typed channels (§5).

(4) Client and server backends for Links implementing session typing with exception handling
(§85.5), drawing on connections with effect handlers [Plotkin and Pretnar 2013].

(5) Example applications using the infrastructure (§6). In addition to our two-factor authentica-
tion workflow we outline the implementation of a chat server.

Links is open-source and freely-available. The website can be found at http://www.links-lang.org
and the source at http://www.github.com/links-lang/links. Users of the opam tool can install Links
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tr); lets =
etfs O i fork (At.
ork ( t.cance. ) n let (res, t) = receive t in let f = (Ax.send x s) in
let (res, s) = receive s in ) .
close s: res close t; res) in raise;
. let u = fork (Av.cancel v) in f5)
as resin

letu =sendsuin

print ("Result: " + res)
close u

(c) Closures
otherwise print "Error!"

(a) Cancellation and Exceptions (b) Delegation

Fig. 2. Failure Examples

by invoking opam install links. Examples described in the paper, and the Links source code,
are included in the supplementary material.

The rest of the paper is structured as follows: §2 presents Exceptional GV and §3 its metatheory;
§4 discusses extension to Exceptional GV; §5 describes the implementation; §6 presents a chat
application written in Links; §7 discusses related work; and §8 concludes.

2 EXCEPTIONAL GV

In this section, we introduce Exceptional GV (henceforth EGV). GV is a core session-typed linear
A-calculus with a tight correspondence with classical linear logic [Lindley and Morris 2015; Wadler
2014]. EGV is an asynchronous variant of GV with support for failure handling.

2.1 Integrating Sessions with Exceptions, by Example

Safely integrating session types with failure handling into a higher-order functional language
requires some care. In this section, we illustrate three important cases we must consider (Fig. 2):
cancellation and exceptions, delegation, and closures.

In order to initiate a session, we adopt the fork primitive of Lindley and Morris [2015]. Given a
term M of type S —o 1, the term fork M of type S creates a fresh channel with endpoints a of type
S and b of type S, forks a child thread that executes M a, and returns endpoint b.

Cancellation and Exceptions. The code in Fig. 2a illustrates the basic case of forking off a thread
and immediately cancelling the endpoint of the child thread. Variables s and ¢ are bound to peer
endpoints. The child thread immediately discards t using cancel. Meanwhile, the parent thread
attempts to receive from s, but the message it is waiting for can never arrive so an exception is
raised, and the otherwise clause is evaluated.

Delegation. A key concept in the m-calculus is mobility of names. In session calculi, sending
an endpoint is known as session delegation. The code in Fig. 2b begins by forking a thread and
returning endpoint s. The child thread is passed endpoint ¢ on which it blocks receiving. Next,
the parent thread forks a second child thread, obtaining the endpoint u. The second child thread
is passed endpoint v, which it immediately discards using cancel. Now the parent thread sends
endpoint s along u. At this point endpoint s will never be received since the peer endpoint v of u
has been cancelled. In turn, this renders s irretrievable. Consequently, an exception is thrown in
the first child thread, as it can now never receive a value.

, Vol. 1, No. 1, Article . Publication date: March 2018.



S. Fowler et al.

Types ABC:=1|A—-B| A+B| AXB | S
Session Types Su=1AS | ?AS | End

Variables x,Y,2

Terms LMN:=x | Ax M | MN

| O] let()=MinN

| (M,N) | let(x,y) =MinN

| inlM | inrM | caseL of {inl x » M;inry — N}
| forkM | send M N | receive M | close M

| cancel M | raise | try L asx in M otherwise N

Type Environments Fe=- | ILx:A

Fig. 3. Syntax

Closures. It is crucial that cancellation plays nicely with closures. The code in Fig. 2c constructs
a function f which takes an argument x which is sent along s. Next, an exception is explicitly
raised. As s appears in the closure bound to f, which appears in the continuation and so has been
discarded, s must now be cancelled.

2.2 Syntax and Typing Rules for Terms

Fig. 3 gives the syntax of EGV. Types include unit (1), linear functions (A —o B), linear sums (A + B),
linear tensor products (A X B), and session types (S).

Terms include variables (x) and the usual introduction and elimination forms for linear functions,
unit, products, and sums. We write M; N as syntactic sugar for let () = M in N and letx = Min N
for (Ax.N) M. The standard session typing primitives [Lindley and Morris 2015] are as follows:
fork M creates a fresh channel with endpoints a of type S and b of type S, forks a child thread that
executes M a, and returns endpoint b; send M N sends M along endpoint N; receive M receives
along endpoint M; and close M closes an endpoint when a session is complete.

We introduce three new term constructs to support session typing with failure handling: cancel M
explicitly discards session endpoint M; raise raises an exception; and try Lasxin M otherwise N is
used for exception handling in the style of Benton and Kennedy’s try—in—unless construct [Benton
and Kennedy 2001]. The ability to distinguish between a possibly-failing term and an explicit success
continuation is convenient both for typing and for implementation, as we will see in §5.5.

Though our implementation supports select and offer directly, and we use them in examples,
we omit them from the core calculus (following Lindley and Morris [2015, 2017]) as they can be
encoded using sums and delegation [Dardha et al. 2017; Kobayashi 2003].

Type environments are standard.

Typing. Fig. 4 gives the typing rules for EGV. As usual, linearity is enforced by splitting type
environments when typing subterms and by ensuring that leaf rules T-VAr, T-Un1T, and T-RAISE
take an empty type environment. The bulk of the rules are standard for a linear A-calculus. Session
types are related by duality. The T-Forx rule forks a thread connected by dual endpoints of a
channel. The rules T-SEND, T-Recv, and T-CLOSE capture session-typed communication.

As exceptions do not return values, the rule T-RAISE allows an exception to be given any type A.
The rule T-Try is similar to that of Mostrous and Vasconcelos [2014]:

Ta:St+p F'vP subject(p) = a
I',a:S+dopcatchP
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Term Typing

T-ABs T-Arp
T-Var I,x:Ar M:B -M:A—-oB TprN:A
x:ArFx:A '-Ax.M:A—B Ii,ILb-MN:B
T-LeTUNIT T-PAaIR T-LETPAIR
I FM:1 IFM:A IFM:AxA
T-Unit L+N:A L+N:B Lx:Ay:A +N:B
F0:1 I Flet()=MinN:A LD - (M,N):Ax B [0 F let (x,y) =MinN:B
T-INL T-INR T-CaAsE
T'rM:A I'-M:B IMH+L:A+B I,x:ArM:C Ib,x:B-N:C
TrinlM:A+B T'rinrM:A+B T1,T5 + case L of {inl x = M;inrx — N}:C
T-Fork T-SEND T-Recv T-CLOSE
I'tM:S—1 NEM:A Ib - N:AS I'rM:?A.S T'+M:End
T'rforkM:S I,brsend MN:S T + receive M:(AXS) T'+closeM:1
T-CANCEL T-Try
TrM:S OFL:A  Dyx:ArM:B T+ N:B T-RAISE
T+ cancel M:1 I1,Iz + try L as x in M otherwise N : B -+ raise: A
Duality
TAS = ?A.S 7AS =1AS End = End

Fig. 4. Term Typing and Duality

They allow exception handling over a single communication action p over name a. If the commu-
nication action fails, then control moves to the exception handling process P which is typeable
without a. In order to allow exception handling over multiple communication actions we take a
different approach. Embracing explicit success continuations as advocated by Benton and Kennedy
[2001], instead of subtracting a linear name from a context upon failure, we bind a result in M if L
evaluates successfully.

The T-Cancer rule explicitly discards an endpoint. Naively implemented, cancellation violates
progress: a thread could discard an endpoint, leaving a peer waiting forever. However, our integra-
tion of cancellation and exceptions ensures that we retain strong progress guarantees (§3).

2.3 Operational Semantics

We now give a small-step operational semantics for EGV.

Runtime Syntax. Fig. 5 shows the runtime syntax of EGV. We introduce the type S # as the type of
a channel which can be split into two endpoints of types S and S. We extend the syntax of terms to
include names ranged over by a, b, c. Depending on context, a name a is variously used to identify
a channel of type S* and each of its endpoints of type S and S. Values are standard. The semantics
makes use of configurations, which are similar to processes in the z-calculus: (va)C binds name a
in configuration C; and C || D is the parallel composition of configurations C and D.

Program threads take the form ¢M, where ¢ is a thread flag identifying whether the term is
the main thread (»), meaning that it may return a result, or a child thread (o), which may not. A
configuration may have at most one main thread.
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Types Auv=--+| st

Names a,b,c

Terms M:=---|a

Values UV Wi=x|a| AxM| ()| (V,W) | inlV | inrV
Configurations C.D,E:=(wa)C | CID | $M | halt | 4a | a(V)enb(W)
Thread Flags pu=e | 0

Top-level threads 7 :=eM | halt . .

Auxiliary threads Az=0oM | 4a | a(V)ersb(W)

Type Environments Fe=---|T,a:S

Runtime Type Environments Au=-] Aa:S | Aa:sH

Evaluation Contexts E:=[]| EM | VE

let()=EinM | let(x,y) =EinM | (E,V) | (V,E)
inlE | inrE | caseE of {inl x =» M;inrx — N}
forkE | sendEM | send VE | receiveE | closeE
cancel E | try E as x in M otherwise N
[JIPM|VP

let() =PinM | let(x,y)=PinM | (P,V) | (V,P)
inlP | inrP | case P of {inl x » M;inr x — N}
forkP | sendPM | sendV P | receive P | close P

Pure Contexts P::

cancel P
Thread Contexts F = @E
Configuration Contexts G==[]1(va)g | GlC
Syntactic Sugar
4VEy4ar|l--- |l 4an where fn(V) = {a;}i
4P24ar |l - |l an where fn(P) = {a;};
4E=Z 4ar |l - || an where fn(E) = {a;};

Fig. 5. Runtime Syntax

In addition to program threads, configurations include three special forms of thread. A zapper
thread (4 a) manages an endpoint a that has been cancelled, and is used to propagate failure. A
halted thread (halt) arises when the main thread has crashed due to an uncaught exception. A

buffer thread (a(T/))«va(W/)) is used to model asynchrony, where Visa sequence of values ready
to be received along endpoint a, and Wisa sequence of values ready to be received along endpoint

b. We will sometimes find it useful to distinguish top-level threads 7~ (main threads and halted
threads) from auxiliary threads A (child threads, zapper threads, and buffer threads).

Environments. We extend type environments I' to include runtime names of session type and
introduce runtime type environments A, which type both buffer endpoints of session type and
channels of type S¥ for some S, but not variables.

Contexts. Evaluation contexts E are set up for standard left-to-right call-by-value evaluation.
Pure contexts P are those evaluation contexts that include no exception handling frames. Thread
contexts ¥ support reduction in program threads. Configuration contexts G support reduction
under v-binders and parallel composition.

Free Names. We let the meta operation fn(—) denote the set of free names in a term, type
environment, buffer environment, value, configuration, pure context, or evaluation context.
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Term Reduction M—m N
E-Lam Ax.M)V —pm M{V/x}
E-Un1T let)=()inM —pq M
E-PAIrR let (x,y) = (V,W)inM —pm M{V/x,W/y}
E-INL case inl V of {inl x > M;inrx > N} —p M{V/x}
E-Inr case inr V of {inl x » M;inrx —» N} —pm N{V/x}
E-VAL try V as x in M otherwise N —\ M{V/x}

E-LirT EM] —m EM'], ifM—op M
Configuration Equivalence c=9D
cl@oig =i e clio=DIcC (va)(vb)C = (vb)(va)C
Cll (va)D = (va)(C || D), ifa¢fn(C) glCl=§Gg[D], ifCc=D

— — — —
a(V)emsb(W) = b(W)ema(V) o()llIC=C (va)(vb)(Lall 4b |l a(e)b(e)) I C=C
Configuration Reduction
E-Fork F [fork (Ax.M)] — (va)(vb)(F [a] || oM{b/x} || a(e)«~b(e)),

where a, b are fresh

E-SEND Fsend U a] || a(V)ersb(W) —s Fla] | a(V)ersb(W - U)
E-RECEIVE F[receive a] || a(U - V)orsb(W) — FLU,a)] || a(V)~rsb(W)
E-CLose  (va)(vb)(F [close a] || F'[close b] || a(e)~~b(e)) — FLO] I F'[0]
E-CANCEL Flcancela] — F[0] Il za

E-Zap fallaU-Vyswb@) — tall $U || a(V)emb(W)
E-CLOSEZAP (va)(vb)(F [close a] || 4b || a(e)«w»b(e)) — F0]

E-RECEIVEZAP F [receivea] || 4b || a(e )ew»b(W) — Flraise] || sall 40 || a(e)«va(W)
E-RaIsE ¥ [try P[raise] as x in M otherwise N] — F[N] || 4P
E-RAISECHILD oP[raise] — 4P

E-RAISEMAIN eP[raise] — halt | 4P

E-LirrC glc] — g[D], ifCc—D
E-LirTM oM — oM’, ifM —p M

Fig. 6. Reduction and Equivalence for Terms and Configurations

Syntactic Sugar. We follow the standard convention that parallel composition of configurations
associates to the right. We write 4V, 4 P, and 4 E, as shorthand for the parallel composition of zapper
threads for each free name in values V, pure contexts P, and evaluation contexts E, respectively.

Following prior work on linear functional languages with session types [Gay and Vasconcelos
2010; Lindley and Morris 2015, 2016, 2017], we present the semantics of EGV via a deterministic
reduction relation on terms (— ), an equivalence relation on configurations (=), and a nonde-
terministic reduction relation on configurations (—). We write = for the relation =—=. Fig. 6
presents reduction and equivalence rules for terms and configurations.

Term Reduction. Reduction on terms is standard call-by-value S-reduction.

Configuration Equivalence. A running program can make use of the standard structural -calculus
equivalence rules [Milner 1999] of associativity and commutativity of parallel composition and
name restriction; scope extrusion; and congruence. We incorporate a rule to allow buffers to be
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treated symmetrically and two garbage collection rules, allowing completed child threads and
cancelled empty buffers to be discarded.

Communication and Concurrency. The E-Fork rule creates two fresh names for each endpoint of
a channel, returning one name and substituting the other in the body of the spawned thread, as
well as creating a channel with two empty buffers. The E-SEND and E-RECEIVE rules send to and
receive from a buffer. The E-CrosE rule discards an empty buffer once a session is complete.

Cancellation. The E-CANCEL rule cancels an endpoint by creating a zapper thread. The E-Zap
rule ensures that when an endpoint is cancelled, all other endpoints stored in the buffer of the
cancelled endpoint are also cancelled: it dequeues a value from the head of the buffer and cancels
any endpoints contained within the dequeued value. It is applied repeatedly until the buffer is
empty. The E-CLoSEZAP rule closes an endpoint whose peer endpoint has been cancelled.

Raising Exceptions. Following Mostrous and Vasconcelos [2014], an exception is raised when it
would be otherwise impossible for a communication action to succeed. The E-RECEIVEZAP rule
raises an exception if an attempt is made to receive along a cancelled endpoint whose buffer is empty.
There is no rule for the case where a thread tries to send a value along a cancelled endpoint; the
free names in the communicated value must eventually be cancelled, but this is achieved through
E-Zap. We choose not to raise an exception in this case since to do so would violate confluence,
which we discuss in more detail in §3.5. Not raising exceptions on message sends is standard for
languages such as Erlang.

Handling Exceptions. The E-Raisk rule invokes the otherwise clause if an exception is raised,
while also cancelling all endpoints in the enclosing pure context. If an unhandled exception occurs
in a child thread, then all free endpoints in the evaluation context are cancelled and the thread
is terminated (E-RA1SECHILD). If the exception is in the main thread then all free endpoints are
cancelled and the main thread reduces to halt (E-RAISEMAIN).

3 METATHEORY

Even in the presence of channel cancellation and exceptions, EGV retains all of GV’s strong
metatheoretic properties [Lindley and Morris 2015].

The central property of session-typed systems is session fidelity: all communication along
session channels follows the prescribed session types. Session fidelity follows as a corollary of the
preservation of configuration typeability under reduction.

Session calculi with roots in linear logic exhibit deadlock-freedom since interpreting the logical
cut rule as a combination of a name restriction and parallel composition necessarily ensures
acyclicity of configurations. Coupled with appropriate reduction rules, it is also possible to use
deadlock-freedom to derive a global progress result. We prove that global progress holds even in the
presence of channel cancellation. (Our proof is direct, not requiring catalyser processes [Carbone
et al. 2014; Mostrous and Vasconcelos 2014].) We also prove that EGV is confluent and terminating.

3.1 Runtime Typing

In order to state our main results we require typing rules for names and configurations. These are
given in Fig. 7. The configuration typing judgement has the shape I'; A ¢ C, which states that
under type environment I, buffer environment A, and thread flag ¢, configuration C is well-typed.
Thread flags ensure that there can be at most one top-level thread which can return a value: o
denotes a configuration with a top-level thread and o denotes a configuration without. The main
thread returns the result of running a program. Any configuration C such that I'; A +* C has exactly
one main thread or halted thread as a subconfiguration.
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Term Typing Session Slicing S /74) Queue Typing
-
A

T-NAME N
Sje=S$ OFV:A DLrV:
a:Stra:S ' TA_o/ A
IAS/A-A=S/A re-e LDV VA A
Configuration Typing ;AR C
T-Nu T-CoNNECT]
:Aa:st9 ¢ MLa:S$M 9 C DyAga:S+%2 D
;A |-¢ (va)C I, I; A1, Ag,a : Sﬁ I—¢1+¢2 C || D
T-CONNECT2 T-Mix
MiALa:SHF' C Tna:SiA k2D A C T+ D
I, T A Ag,a: SP+9%2 ¢ || D LD AL Ay +91492 C || D
T-BUFFER
S/A=5/B
T-MaIN T-CHILD -

THM:A rem:1  CHar T-Zav n+V:A Lrw:B
T;-+° oM T;-+° oM -5+ +* halt a:S;-+° 4a I,Dsa:S,b:S r° a(T/))wb(W)
Flag Combination Session Type Reduction
cioce otrece A8 — S IAS — S

o+o=o0 e + o undefined
Environment Reduction ;A —T;A
§— 5 §— 9 S— 9
Ia:S;A —T,a:S5;A ;A a:S—T;Aa:S I‘;A,a:Sﬁ—>I‘;A,a:SIﬁ

Fig. 7. Runtime Typing

The T-Nvu rule introduces a channel name. The T-CoNNECT; and T-CONNECT; rules connect two
configurations over a channel. The T-Mix rule composes in parallel two independent configurations
that share no channels. The three rules for parallel composition use the + operator to combine the
flags from the subconfigurations.

The T-MaIN and T-CHILD rules introduce main and child threads. Child threads always return
the unit value. The T-HALT rule types the halt configuration, which signifies that an unhandled
exception has occurred in the main thread. The T-ZaP rule types a zapper thread, given a single
name in the type environment. The T-BUFFER rule ensures that buffers contain values corresponding
to the session types of their endpoints. This is the only rule that consumes names from the buffer

environment. Buffers rely on two auxiliary judgements. The queue typing judgement I - VA
states that under type environment I', the sequence of values V have types "A. The session slicing

5
operator S/ A captures reasoning about session types discounting values contained in the buffer.
The session types of two buffer endpoints are compatible if they are dual up to values contained in
the buffer. The partiality of the slicing operator ensures that one queue in a buffer is empty.
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3.2 Preservation

Preservation for the functional fragment of EGV is standard.
LEMMA 3.1 (PRESERVATION (TERMS)). IfT + M : Aand M —p M’, thenT + M’ : A.
Preservation of typing by configuration reduction holds only for closed configurations.

Relation Notation. Given a relation R, we write R’ for its reflexive closure.
We write ¥ for the restriction of type environments I' to contain runtime names but no variables:

Yiu=-|%,a:S

THEOREM 3.2 (PRESERVATION). If ¥; A +? C and C —> C’, then there exist ¥/, A’ such that
WA —" WA and VN FPCL

Proor. By induction on the derivation of C — C’, making use of Lemma 3.1, and lemmas
for subconfiguration typeability and replacement. The proof cases can be found in §A.1 of the
supplementary material. O

Typing and Configuration Equivalence. As is common in functional languages inspired by logical
accounts of session-typed concurrency [Lindley and Morris 2015, 2017], typeability of configurations
is not preserved by equivalence. As an example, consider T'; A +% (va)(vb)(C || (D || E)) where
a € fn(C),b e fn(D), and a, b € fn(E). However, T; A ¥ (va)(vb)((C || D) || &), since only a or
b would be present in the type environment when typing &.

Fortunately the looseness of the equivalence relation is not a problem, as any reduction sequence
that passes through an ill-typed configuration is equivalent to one that does not.

THEOREM 3.3 (PRESERVATION MoDULO EQUIVALENCE). If¥;A +? C,C = D, and D — D', then:

(1) There exists some & such that D = &, and ¥; A F &, and & — &’
(2) There exist ¥', A’ such that ¥; A — AN and VN FPE
3) D =&

Proor skeTcH. The only non-trivial cases of reduction are those that involve a synchronisa-
tion with a buffer (E-SEnD, E-RECEIVE, E-CLOSE, E-ZaP, E-CLOSEZAP, E-RECEIVEZAP). The only
equivalence rule that can lead to an ill-typed configuration is associativity of parallel composition

cl@le=ciole

where both compositions arise from the T-CoNNECT; and T-CONNECT; rules. The only reason
to apply the associativity rule from left-to-right is in order to enable threads inside C and D to
synchronise. But for synchronisation to be possible there must exist a name a such that a € fn(C)
and a € fn(D). Because the left-hand-side is well-typed, we know that C and & have no names in
common, that D and & share a name, and that the right-hand-side must be well-typed as there is
still exactly one channel connecting each of the parallel compositions. The argument for the case
of applying the rule from right-to-left is symmetric. In summary, any ill-typed use of equivalence
is useless, as it does not enable any more reductions. O

3.3 Deadlock-freedom

Due to its correspondence with linear logic, GV is naturally deadlock-free. As none of the new
constructs introduce cycles between threads, the same holds for EGV. The proof of deadlock-freedom
is thus similar to that for GV [Lindley and Morris 2015].

We begin by classifying the notion of a ready thread: that is, a thread which is ready to perform
an action on some channel endpoint.
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Definition 3.4. We say that term M is ready to perform an action on name a if M is about to send
on, receive on, close, or cancel a. Formally:

ready(a, M) £ 3E.(M = E[sendV a])V (M = E[receivea])V (M = E[closea])V (M = E[cancela])

Given the notion of a ready thread, we may characterise the notion of a dependency between
communication actions.

Definition 3.5. Let C be a buffer such that a and b are not bound by C. We say that a depends on
b in C, written depends(a, b, C), if C is a buffer connecting a and b, or a appears in some thread
ready to perform an action on b, or if a depends on some name ¢ which depends on b. Formally:

— —
depends(a, b, a(V )«b(W))
— —
depends(a, b, b(W)«~sa(V))
depends(a, b, $M) = ready(b, M) A a € fn(M)
depends(a, b, C) £3D,.8,¢.C = G[D || E] A depends(a, ¢, D) A depends(c, b, E)

Remark. The above definition of dependency is an overapproximation to the intuitive notion, as
a buffer need not have dependencies in both directions, but for our purposes this does not matter. 0

Definition 3.6. We say that a configuration is deadlocked if it contains cyclic dependencies:
deadlocked(C) £ 3D, &, a,b. C = G[D || E] A depends(a, b, D) A depends(b, a, &)

With these definitions in place, we can show that EGV terms are deadlock-free. The first step is to
show that at most one name is shared between two configurations.

Lemma 3.7. IfT; A F? C and AD,E.C = G[D || E], then fn(D) N fn(E) is either O or{a} for

some name da.

ProoF. By induction on the derivation of T; A +¢ C, due to the partitioning of the type envi-
ronment and buffer environment in the typing rules for parallel composition. The T-CONNECT;
and T-CoNNECT; rules allow exactly one name to be shared, whereas T-Mix forbids sharing of
names. ]

We use this lemma to prove that well-typed configurations are deadlock-free.
THEOREM 3.8. IfT; A + C, then ~deadlocked(C).

ProoF. By contradiction. By the definition of deadlocked, we know that there must be some
cyclic dependency, which would be ill-typed due to Lemma 3.7. O

3.4 Progress

Deadlock-freedom alone is not sufficient to prove progress, especially in the presence of channel
cancellation. In order to prove that EGV enjoys a strong notion of progress we identify a notion of
canonical form for configurations. We prove that every well-typed configuration is equivalent to a
well-typed configuration one in canonical form, and that irreducible configurations that do not
reduce and contain no free channels are equivalent to either a value or to halt.

The functional fragment of EGV satisfies a progress property. The proof is a standard induction
on typing derivations.

LEMMA 3.9 (PROGRESS: TERM REDUCTION). If¥ + M : A, then either:

o M is a value;
e there exists some M’ such that M —p M’; or
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® M has the form E[M’], where M’ is a session typing primitive of the form: fork V, send V W,
receive V, close V, or cancel V.

To reason about progress of configurations, we characterise canonical forms, which make explicit
the property that at most one name is shared between threads. Recall that A ranges over auxiliary
threads and 7~ over top-level threads (Fig. 5). Let M range over configurations of the form:

Al I Am | T
Definition 3.10 (Canonical Form). A configuration C is in canonical form if there is a sequence of
names dg, . . ., an, a sequence of configurations Aj, ..., A,, and a configuration M, such that:
C = (va)(Ar Il vax)(A | -+ |l (van)(Ap I M) ...))

Each thread A; appearing next to a v-binder is composed using either T-CoNNECT; or T-
CONNECT;, whereas each thread in M is composed using T-Mix. All well-typed configurations can
be written in canonical form.

THEOREM 3.11 (CANONICAL ForMS). Given C such thatT; A +* C, there exists some C’ = C such
thatT; A +* C’ and C’ is in canonical form.

Proor. By induction on the count of v-bound variables, following Lindley and Morris [2015].
The additional features of EGV do not change the essential argument. The full proof can be found
in §A.2 of the supplementary material. O

Armed with the notion of a canonical form, we can proceed to classify the nature of configurations
which do not reduce.

THEOREM 3.12. Suppose ¥; A +* C where C is in canonical form and C =.
Let C = (var)(Aq || (va)(Az | -+ || (van)(An | M))...)).
(1) For1 < i < n, each thread in A; is either:
(a) a child thread oM for which there exists a € {a; | 1 < j < i} U fn(¥) such that ready(a, M);
(b) a zapper thread ja such thata € {a; | 1 < j < i} U fn(¥); or
(c) a buffer.
OM=A--- Il A, || T such that for1 < j < m:
(a) ﬂ; is either:
(i) a child thread oN such that N is a value or ready(a, N) for somea € {a; | 1 < i <
n} U fn(¥);
(ii) a zapper thread 4 a for somea € {a; | 1 < i < n} U fn(¥); or

(iii) a buffer.

(b) Either:
(i) T = oN, where either N is a value, or ready(a, N) for somea € {a; | 1 < i < n} U fn(¥);
or
(ii) T = halt.

The proof considers the form of each subconfiguration. By Lemma 3.9, we know that each thread
must either be a value or of the form E[M], where M is a communication or concurrency action.
This action cannot be fork since it could reduce, thus the thread must be ready to perform an
action on a channel, which by the typing rules must either be in the environment or a preceding
v-bound variable. As a corollary, we obtain a more precise result for closed configurations.

COROLLARY 3.13. Suppose -;- +* C where C is in canonical form and C =5.
Let C = (vay)(Ay || (vaz)(Az || -+ || (van)(An | M) .. ).
Then:
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(1) For1 < i < n, every thread in A; is either:
(a) a child thread oM for some M such that ready(a;, M); or
(b) a zapper thread 4 a;; or

(c) a buffer.
OM=A--- Il A, I| T such that for1 < j < m:
(a) Each A is either a fully-reduced child thread oV, a zapper thread j a; for some1 <i < n,
or a buffer.

(b) Either T~ = oW, for some value W, or 7 = halt.

We now come to our main result: if the top-level thread has reduced to a value which contains
no free channels, then the entire configuration is equivalent to a value. If the top-level thread has
halted, we can show that the entire configuration is equivalent to halt. These results are established
as a consequence of Corollary 3.13, along with the garbage collection congruences of Fig. 6.

THEOREM 3.14 (GLOBAL PROGRESS). Let -;- +* C and C =, and let D be the top-level thread of C.
IfD = eV andfn(V) =0, then C = oV. If D = halt, then C = halt.

3.5 Confluence

EGV enjoys a strong form of confluence known as the diamond property [Barendregt 1984].

THEOREM 3.15 (DIAMOND PROPERTY).
If¥; A F C, and C = Dy, and C = D,, then either D; = Ds, or there exists some D5 such that
Dz - 1)3 and@z - @3.

Proor. First, note that —, is entirely deterministic and hence confluent due to the call-by-
value, left-to-right ordering imposed by evaluation contexts. By linearity, we know that endpoints to
different buffers may not be shared, so it follows that communication actions on different channels
may be performed in any order. Nevertheless, two critical pairs arise due to asynchrony. The first
arises when it is possible to send to or receive from a buffer. There is a choice of whether the send
or the receive happens first. Both cases reduce to the same configuration after a single further step.

F [send U d] || a(T/))wb(V . W) || F'[receive b]

Fla] | a(V)ersb(V - W - U) || F'[receive b] Fsend U a] || a(V)ersb(W) || F'[(W,b)]
\}

Fla] | a(V)ansb(W - U) || F'[(W,b)]

The second critical pair arises when sending to a buffer where the peer endpoint has a non-empty
buffer and has been cancelled. There is a choice over whether the value at the head of the queue is
cancelled before or after the send takes place. Again, both cases reduce to the same configuration
after a single further step.

Fsend U a] || 4b || a(V)ersb(V - W)
Flal |l 4b || a(V)ewsb(V - W - U) Flsend U] || 4b 1| 4V || a(V)arb(W)

=

Flalll 4b 1| 4V || a(V)ensb(W - U)

]
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Remark. The system becomes non-confluent if we choose to raise an exception when sending to
a cancelled buffer. Say we were to replace E-SEnD with the following two rules:

(vb)(F [send U d] | a(%wbﬁ) I §M) — (v)(F[a] | a(%wb@ U) Il M)
Flsend U al || 4b || a(V)~nsb(W) — F[raise] || 4b || $U || a(V)~rsb(W)

Then, configuration (vb)(¥ [sendUa] || ¥'[cancelb] || a(T/))wb(W/)) results in a non-convergent
critical pair, as follows:

(vb)(F[send U a] || F'[cancel b] || a(V)ersb(W))

(vb)(F [a] || 7' [cancel b] || a(V)eb(W - U)) (vb)(F[send U a] || FLOT Il b || a(V)arsb(W))
b)(Fal | F'TO] Nl 4B || a(V)emb(W - U)) (vb)(F [raise] || FLO] 1l 4B 11 $U || a(V)~rsb(W))

In either case, the endpoints contained in U will still eventually be cancelled, thus preservation
and global progress still hold. However, the lack of confluence affects exactly when the exception is
raised in context ¥ . This decision has practical relevance, in that it characterises the race between
sending a message and propagating a cancellation notification in the distributed setting. o

3.6 Termination

As EGV is linear, it has an elementary strong normalisation proof.

THEOREM 3.16 (STRONG NORMALISATION). If'¥; A +9 C, then there are no infinite = reduction
sequences from C.

Proor. Let the size of a configuration be the sum of the sizes of the abstract syntax trees of all
of the terms contained in its main threads, child threads, and buffers, modulo garbage collection
(i.e. exhaustively applying the rule o() || C = C from left-to-right). The size of a configuration is
invariant under = and strictly decreases under —, hence = reduction must always terminate. O

We conjecture that the strong normalisation result continues to hold in the presence of unre-
stricted types or shared channels for session initiation, but the proof technique is necessarily more
involved. We believe that a logical relations argument along the lines of Pérez et al. [2012] or a CPS
translation along the lines of Lindley and Morris [2016] would suffice.

4 EXTENSIONS
4.1 User-defined Exceptions with Payloads

In order to focus on the interplay between exceptions and session types we have thus far considered
the simplest case of exception handling, in which there is a single kind of exception. In practice it
can be useful to distinguish between multiple kinds of user-defined exception, each of which may
carry a payload.

Consider again the example of handling the exception in checkDetails. Two reasons why the
exception may arise are that the database is corrupt, or that there are too many connections. We
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Syntax
Types A B:=---| Exn
Terms L,M,N =:=---| X(M) | raise M | try L as x in M unless H
Exception Handlers H == {Xj(x;) » N;};

Runtime Syntax

Evaluation Contexts E ::= - - - | raise E | try E as x in M unless H
Term typing I(X)=A T'rM:A
TP-Try
TP-ExN TP-RAISE L FL:A
2(X)=A 'rM:A I'FM:Exn I,x:ArM:B (Fz,yi:Z(X,-)kN,-:B)i
'+ X(M):Exn T'rraise M: A I, Ix F try L as x in M unless {X;(y;) — N;}; :B
Term Reduction M—m N

EP-VaL tryVasxinMunlessH —p M{V/x}
Configuration Reduction cC—9D

EP-RAISE
F [try E[raise X(V)] as x in Munless Hl — F[N{V/y}] || 4E where X ¢ handled(E)
(X(y)» N)eH
EP-RA1SECHILD o E[raise X(V)] — 4E| 4V where X ¢ handled(E)
EP-RAISEMAIN e E[raise X(V)] —  halt|| 4E|| 4V where X ¢ handled(E)

Fig. 8. User-defined Exceptions with Payloads

might like to handle each case separately:

exnServerd(s) =
let ((username, password), s) = receive (s) in
try checkDetails(username, password) as resin
if res then let s = select Authenticated s in serverBody(s)

else
let s = select AccessDenied s in close s
unless
DBCorrupt(y) — cancel (s); log("Database Corrupt: " + y)
TooManyConnections(y) — cancel (s); log("DB Error: Too many connections: " + y)

An exception in checkDetails might be raised by the term raise DatabaseCorrupt(filename), for
example. Our approach generalises straightforwardly to handle this example.

Syntax. Figure 8 shows the extensions to EGV to accommodate exceptions with payloads. We
introduce a type of exceptions, Exn. We assume a countably infinite set X € E of exception names,
and a type schema function 3(X) = A mapping exception names to their payload types. We extend
raise to take a term of type Exn as its argument. Finally, we generalise try L as x in M otherwise N
to try L as x in M unless H, where H is an exception handler with clauses {X;(y;) — N;};, such
that X; is an exception name; y; binds the payload; and N; is the clause to be evaluated when the
exception is raised.
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Typing Rules. The TP-ExN rule ensures that an exceptions payload matches its expected type. The
TP-Rarisk and TP-Try are the natural extensions of T-RA1st and T-Try to accommodate exceptions
with payloads.

Semantics. Our formulation is similar to operational accounts of handlers for algebraic effects;
the formulation here is inspired by that of Hillerstrém et al. [2017]. To define the semantics of the
generalised exception handling construct, we first introduce the auxiliary function handled(H),
which defines the exceptions handled in a given evaluation context:

handled(P) = 0 handled(try E as x in M unless H) = handled(E) U dom(H)

handled(E) = handled(E’), if E is not a try and E’ is the immediate subcontext of E

The EP-RAISE rule handles an exception. The side conditions ensure that the exception is caught by
the nearest matching handler and is handled by the appropriate clause. As with plain EGV, all free
names are safely discarded. The EP-Ra1seCHILD and EP-RAISEMAIN rules cover the cases where an
exception is unhandled. Note that due to the use of the handled function we no longer required
pure contexts. All of EGV’s metatheoretic properties (preservation, global progress, confluence,
and termination) adapt straightforwardly to this extension.

4.2 Unrestricted Types and Access Points

Unrestricted (intuitionistic) types allow some values to be used in a non-linear fashion. Access
points [Gay and Vasconcelos 2010] provide a more flexible method of session initiation than
fork, allowing two threads to dynamically establish a session. Both features are useful in practice:
unrestricted types for obvious reasons, and access points because they admit cyclic communication
topologies supporting, for instance, racey stateful servers such as chat servers.

Access points decouple spawning a thread from establishing a session. An access point has the
unrestricted type AP(S). The interface for access points is given by the following operations:

spawn M : 1 where M has type 1
news : AP(S)

request M : S where M has type AP(S)
accept M : S where M has type AP(S)

The spawn M construct spawns M as a new thread; newg creates a fresh access point; request M
and accept M generate fresh endpoints that are matched up nondeterministically to form channels.
With access points we can macro-express fork:

fork M £ let ap = news in
spawn (M (accept ap));
request ap

By decoupling process and channel creation we lose the guarantee that the communication
topology is acyclic, and therefore introduce the possibility of deadlock. Nevertheless, a weak form
of progress still holds: the only way of getting stuck is deadlock. In the presence of access points
the confluence and termination properties no longer hold (access points are nondeterministic and
can encode higher-order state and hence Landin’s knot).

5 IMPLEMENTATION

In this section we describe our extensions to the Links programming language to incorporate the
exception handling functionality of EGV as well as extensions to the Links concurrency runtimes to
support distribution. Links [Cooper et al. 2007] is a statically-typed, ML-inspired, impure functional
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TwoFactorServer £
?(Username, Password).®{
Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.
®{ Authenticated : ServerBody,
AccessDenied : End}
AccessDenied : End}

TwoFactorClient £ TwoFactorServer
exnServer3 : TwoFactorServer —o 1

exnServer3(s) =
let ((username, password), s) = receive (s) in

try checkDetails(username, password) as auth in

if auth then
let s = select Authenticated s in
serverBody(s)

else
let s = select AccessDenied s in
close s

otherwise
cancel (s);
log("Database Error")

(a) EGV

typename TwoFactorServer =
?(Username, Password).[+]
Authenticated: ServerMain,
Challenge: !ChallengeKey.?Response.

[+]| Authenticated: ServerMain,
AccessDenied: End [+],

AccessDenied: End |[+];

typename TwoFactorClient = ~TwoFactorServer;

sig exnServer3 : (TwoFactorServer) ~> ()
fun exnServer3(s) {
var ((username, password), s) = receive(s);
try checkDetails(username, password) as auth in {

if (auth) {
var s = select Authenticated s;
serverBody(s)

} else {
var s = select AccessDenied s;
close(s)

}

} otherwise {

cancel(s);
log("Database Error")

(b) Links

Fig. 9. Two-factor Authentication Session Types in EGV and Links

programming language designed for the web. Links is designed to allow code for all “tiers” of a web
application—client, server, and database—to be written in a single uniform language. Lindley and

Morris [2017] extend Links with first-class session types, relying on lightweight linear typing as
described by Mazurak et al. [2010] and row polymorphism [Rémy 1994]. We extend their work to
account for distributed web applications, which amongst other things necessitates handling failure.

5.1 From Exceptional GV to Links

First, let us see how we may realise the ideas from the core calculus in the Links language itself.
Figure 9a shows the definition of the client of the two-factor authentication workflow in the core
calculus, and Figure 9b shows the definition in Links. The mapping is rather direct; type aliases

are introduced by typename, and selection is denoted by [+] ...
example, offering a choice is denoted by (& ...

|+]. Although not appearing in the

|&]. Duality is denoted by a tilde (~). A difference

between the core calculus and the implementation is that to concentrate on the metatheory, we
have a purely linear calculus, and explicitly require endpoints to be closed in EGV. Links allows
both linear and unrestricted types. In order to concentrate on programmability in Links, endpoints
of type End are unrestricted, and can be implicitly discarded. In the example, close is defined as

fun close(_) { () }.
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Type signatures in Links are introduced by sig—we assign an explicit type signature to
twoFactorClient, but Links also supports type reconstruction. The ~> function arrow denotes that the
function is impure and thus cannot be run as part of a database query. Let-bindings are expressed
with the var keyword.

5.2 The Links Model

Links provides a uniform language for web applications. Client code is compiled to JavaScript,
server code is interpreted, and database queries are compiled to SQL. Each client and server has its
own concurrency runtime, providing lightweight processes and message passing communication.

Earlier versions of Links [Cooper et al. 2007] invoke a fresh copy of the server per server request
and communication between client and server is via RPC calls which invoke a fresh copy of the
server, relying on serialisation of continuations in order to maintain server state. However, the
web has moved on: in addition to the traditional-request model, single-page applications are web
applications which are usable without reloading a web page. Advances such as WebSockets allow
socket-like bidirectional asynchronous communication between client and server, in turn allowing
richer applications where data (for example, comments on a GitHub pull request) flows more freely
between client and server. Moving to a model based on lightweight threads and session-typed
channels avoids the inversion of control inherent in RPC-style systems, and allows development to
be driven by the communication protocol.

In order to better support dynamic single-page applications and multi-user applications such as
chat, Links now adopts an application server model, in which the server persists. On top of this
we have implemented communication between client and server using session-typed channels.
Since channels are a location-transparent abstraction, we also optionally allow the abstraction
of client-to-client communication, routed through the server. In future, we are also interested in
investigating the use of WebRTC [Bergkvist et al. 2012] for purely client-to-client communication.

5.3 Concurrency

Links provides typed, actor-style concurrency, where processes have a single incoming message
queue and can send asynchronous messages. Lindley and Morris [2017] extended Links with session-
typed channels, using Links’ process-based model but replacing actor mailboxes with session-typed
channels. We extend their implementation to support distribution and failure handling.

The client relies on continuation-passing style (CPS), trampolining, and co-operative threading.
Client code is compiled to CPS, and explicit yield instructions are inserted at every function
application. When a process has yielded a given number of times, the continuation is pushed to the
back of a queue, and the next process is pulled from the front of the queue. While modern browsers
are beginning to integrate tail-recursion, and we have updated the Links library to support it,
adoption is not yet widespread. Thus, we periodically discard the call stack using a trampoline.
Cooper [2009] discusses the Links client concurrency model in depth. The server implements
concurrency on top of the OCaml 1wt library [Vouillon 2008], which provides lightweight co-
operative threading. At runtime, a channel is represented as a pair of endpoint identifiers:

(Peer endpoint, Local endpoint)
Endpoint identifiers are unique. If a channel (a, b) exists at a given location, then that location

should contain a buffer for b.

5.4 Distributed Communication

In order to support bidirectional communication between client and server we use WebSockets [Fette
and Melnikov 2011]. A WebSocket connection is established by a client. When a request is made
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and a web page is generated, each client is assigned a unique identifier, which it uses to establish a
WebSocket connection. Any messages the server attempts to send prior to a WebSocket connection
being established are buffered and delivered once the connection is established. Once the WebSocket
connection is established, we use a JSON protocol to communicate messages such as access point
operations, remote session messages, and endpoint cancellation notifications.

Due to delegation, it is possible that one client will hold one endpoint of a channel, and another
client will hold the other endpoint. In order to provide the illusion of client-to-client communication,
we route the communication between the two clients via the server. The server maintains a map

Endpoint ID — Location

where Location is either Server or Client (ID), where ID identifies a particular client. The map
is updated if: a connection is established using fork or an access point; an endpoint is sent as part
of a message; or a client disconnects. The server also maintains a map

Client ID+ [Channel]

associating each client with the publicly-facing channels residing on that client, where Channel
is a pair of endpoints (a,b) such that b is the endpoint residing on the client. Much like TCP
connections, WebSocket connections raise an event when a connection is disconnected. Upon
receiving such an event, all channels associated with the client are cancelled, and exceptions are
invoked as per the exception handling mechanism described further in §2 and §5.5.

Session Delegation. It is possible to send endpoints as part of a message. Session delegation in the
presence of distributed communication has intricacies in ensuring that messages are delivered to
the correct participant; our implementation adapts the algorithms described by Hu et al. [2008].
Further details can be found in §B of the supplementary material.

5.5 Session Typing with Failure Handling

Handlers for Algebraic Effects. Algebraic effects [Plotkin and Power 2001] and their han-
dlers [Plotkin and Pretnar 2013] are a modular abstraction for programming with user-defined
effects. Exception handlers are in fact a special case of handlers for algebraic effects. Consequently,
we leverage the existing implementation of effect handlers in Links [Hillerstrom and Lindley 2016;
Hillerstrom et al. 2017]. In §4 we generalise try —as—in—otherwise— to accommodate user defined
exceptions. Effect handlers generalise further to support what amounts to resumable exceptions
in which the handler not only has access to a payload, but also to the delimited continuation (i.e.
evaluation context) from the point at which the exception was raised up to the handler, allowing
effect handlers to implement arbitrary side-effects; not just exceptions.

Adopting the syntax of Hillerstrom and Lindley’s /1‘: « calculus [Hillerstrdm and Lindley 2016],
we translate exception handling as follows:

[raise] = do raise
[try L as x in M otherwise N] = handle [L] with
return x — [M]
raiser > cancel r; [N]

The introduction form do op invokes an operation op (which may represent raising an exception or
some other effect). The elimination form handle M with H runs effect handler H on the computa-
tion M. In general an effect handler H consists of a return clause of the form return x — N, which
behaves just like the success continuation (x in N) of an exception handler, and a collection of
operation clauses, each of the form op p r — N. Each clause specifies how to handle each operation
analogously to how exception handler clauses specify how to handle each exception, except that as
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well as binding payload parameters p, each operation clause also binds a resumption parameter r.
The resumption r binds a closure that reifies the continuation up to the nearest enclosing effect
handler, allowing control to pass back to the program after handling the effect. In the case of our
translation, the fail operation has no payload, and rather than invoking the resumption r we cancel
it, assuming the natural extension of cancellation to arbitrary linear values, whereby all free names
in the value are cancelled (r being bound to the current evaluation context reified as a value).

As a preprocessing step, before translating to effect handlers, we insert a dummy exception
handler around each forked thread

(fork M)* = fork (try (M)* as x in () otherwise ())

which has the effect of simulating the E-RAISECHILD rule, ensuring that unhandled exceptions are
trapped and all endpoints in the context are cancelled if an exception is raised.

As we are targeting linear effect handlers, the sharing of linear variables between the success
and failure continuations of an exception handler is problematic since there is no reason, a priori,
to assume that operations should not be handled more than once. The issue can be resolved by
restricting the typing rule for try in order to disallow any free variables in the continuations:

T-TRYRESTRICTED
I'rL:A x:A+M:B -+ N:B

I'+try Lasxin M otherwise N : B

This rule may look overly restrictive, but in fact it still allows us to simulate the unrestricted rule
via a simple macro translation using a Maybe type:

(try L as x in M otherwise N)* = case try (L) as x in Some x otherwise None of
Some x > (M)*
None > (N)T

Links performs this translation as another preprocessing step.

Raising Exceptions. An exception may be raised either explicitly through an invocation of raise
(desugared to do raise), or through a blocked receive call where the partner endpoint has been
cancelled. Thus, we know statically where any exceptions may be raised.

In order to support cancellation of closures on the client, we adorn closures with an explicit
environment field that can be directly inspected. Currently, Links does not closure convert con-
tinuations on the client, so we use a workaround in order to simulate cancelling a resumption
(as required by the translation [-])). When compiling client code, for each occurrence of do raise,
we compile a function that inspects all affected variables and cancels any affected endpoints in
the continuation. For each occurrence of receive, we compile a continuation to cancel affected
endpoints to be invoked by the runtime system if the receive operation fails.

Distributed Exceptions. We require surprisingly little additional machinery in order to provide
distributed exceptions and provide an answer to the question: “Well, what happens if a client closes
the browser window?”. We maintain a mapping from client IDs to the list of channels contained on
that client and we add a special message type to notify a client that the peer endpoint of a channel it
owns has been cancelled. WebSockets—much like TCP sockets—raise a closed event when they are
closed. Consequently, when a channel is closed, we look up the channels owned by the terminated
client and notify all clients containing the peer endpoints of the cancelled channels.
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|

typename ChatClient = !Nickname. /[ Links chat * N
[& Join: = C | @ localhost:8080 Q ¥
?(Topic, [Nickname], ClientReceive).ClientSend,
Nope:End |&]; Links Session-Typed Chat

typename ClientReceive =

[&| Join : ?Nickname .ClientReceive, Topic: System Check
. 2N . .
Chat : ?(Nickname, Message).ClientReceive, Joined as Mike
NewTopic : ?Topic .ClientReceive, .
. ] . Joe just joined
Leave : ?Nickname .ClientReceive

Joe: Hello, Mike!
|&1;

Mike: Hello, Joe! System working?

typename ClientSend = Joe: Seems fo be.

[+] Chat : ?Message.ClientSend, Mike: Okay, fine.
Topic : ?Topic .ClientSend [+]; Joe: Okay.
Joe just left

typename ChatServer = ~ChatClient;
typename WorkerSend = ~ClientReceive;
typename WorkerReceive = ~ClientSend; | bl

Fig. 10. Chat Application Session Types

6 EXAMPLE: A CHAT APPLICATION

In this section we outline the design and implementation of a web-based chat application in Links
making use of distributed session-typed channels. Informally, we write the following specification:

e To initialise, a client must:
— connect to the chat server; then
- send a nickname; then
— receive the current topic and list of nicknames.
o After initialisation the client is connected and can:
— send a chat message to the room; or
— change the room’s topic; or
- receive messages from other users; or
— receive changes of topic from other users.
o Clients cannot connect with a nickname that is already in use in the room.
o All participants should be notified whenever a participant joins or leaves the room.

Session Types. We can encode much of the specification more precisely as a session type, as shown
in Figure 10. The client begins by sending a nickname, and then offers the server a choice of a Join
message or a Nope message. In the former case, the client then receives a triple containing the current
topic, a list of existing nicknames, and an endpoint (of type ClientReceive) for receiving further
updates from the server; and may then continue to send messages to the server as a connected
client endpoint (of type ClientSend). (Observe the essential use of session delegation.) In the latter
case, communication is terminated. The intention is that the server will respond with Nope if a client
with the supplied nickname is already in the chat room (the details of this check are part of the
implementation, not part of the communication protocol).
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sig worker : (Nickname, WorkerReceive) ~> ()
fun worker(nick, c) {
try {
offer(c) {

Client 1 | Server

s
|
Client 2 i
|
s

CC=_ChatClient CS =ChatServer CR = ClientReceive S = Supervisor

case Chat(c) ->
var (msg, c) = receive(c);
chat(nick, msg);
C

case NewTopic(c) ->
var (topic, c) = receive(c);
newTopic(topic);
c

}
} as (c) in {
worker(nick, c)
} otherwise {
(a) Architecture leave(nick)

(b) Worker Implementation

Fig. 11. Chat Application Architecture and Worker Implementation

The ClientReceive endpoint allows the client to offer a choice of four different messages: Join,
Chat, NewTopic, or Leave. In each case the client then receives a payload (depending on the choice, a
nickname, pair of nickname and chat message, or topic change) before offering another choice. The
ClientSend endpoint allows the client to select between two different messages: chat and NewTopic. In
each case the client subsequently sends a payload (a chat message or a new topic) before selecting
another choice. The chat server communicates with the client along endpoints with dual types.

Architecture. Figure 11a depicts the architecture of the chat server application. Each client has
a process which sends messages over a distributed session channel of type ClientSend to its own
worker process on the server, which in turn sends internal messages to a supervisor process
containing the state of the chat room. In turn, these messages trigger the supervisor process to
broadcast a message to all chat clients over a channel of type ~ClientReceive. As is evident from the
figure, the communication topology is cyclic; in order to construct this topology the code (see the
supplementary material) makes essential use of access points.

Disconnection. Figure 11b shows the implementation of a worker process which receive messages
from a client. The worker takes the nickname of the client, as well as a channel endpoint of type
workerReceive (which is the dual of clientSend). The server offers the client a choice of sending a
message (Chat), or changing topic (NewTopic); in each case, the associated data is received and an
appropriate message dispatched to the supervisor process by calling chat or newTopic. The client may
leave the chat room at any time by closing the browser window. All other participants are notified
when a participant joins or leaves. When a client closes its connection to the server, all associated
endpoints are cancelled. Consequently, an exception will be raised when evaluating the offer or
receive expressions where the user has closed their browser window. To handle disconnection,
we wrap the function in an exception handler, which recursively calls worker if the interaction is
successful, and notifies the server that the user has left via a call to leave if an exception is raised.
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7 RELATED WORK
7.1 Session Types with Failure Handling

Carbone et al. [2008] provide the first formal basis for exceptions in a session-typed process calculus.
Our approach provides significant simplifications: zapper threads provide a simpler semantics and
remove the need for their queue levels, meta-reduction relation, and liveness protocol.

Our work draws on that of Mostrous and Vasconcelos [2014], who introduce the idea of cancella-
tion. Our work differs from theirs in several key ways. Their system is a process calculus; ours is
a A-calculus. Their channels are synchronous; ours are asynchronous. Their exception handling
construct scopes over a single action; ours scopes over an arbitrary computation.

Caires and Pérez [2017] describe a core, logically-inspired process calculus supporting non-
determinism and abortable behaviours encoded via a nondeterminism modality. Processes may
either provide or not provide a prescribed behaviour; if a process attempts to consume a behaviour
that is not provided, then its linear continuation is safely discarded by propagating the failure of
sessions contained within the continuation. Their approach is similar in spirit to our zapper threads.
Additionally, they give a core A-calculus with abortable behaviours and exception handling, and
define a type-preserving translation into their core process calculus.

Our approach differs in several important ways. First, our semantics is asynchronous, handling
the intricacies involved with cancelling values contained in message queues. Second, we give a
direct semantics to EGV, whereas Caires and Pérez rely on a translation into their underlying
process calculus. Third, to handle the possibility of disconnection, our calculus allows any channel
to be discarded (including the ability to handle uncaught exceptions), whereas the authors opt for
an approach more closely resembling checked exceptions, aided by a monadic presentation.

These works are all theoretical; backed by our theoretical development, our implementation
integrates session types and exceptions, extending Links.

Multiparty Session Types. Fowler [2016] describes an Erlang implementation of the Multiparty
Session Actor framework proposed by Neykova and Yoshida [2017b] with a limited form of failure
recovery; Neykova and Yoshida [2017a] present a more comprehensive approach, based on refining
existing Erlang supervision strategies. Chen et al. [2016] introduce a formalism based on multiparty
session types [Honda et al. 2016] that handles partial failures by transforming programs to detect
possible failures at a set of statically determined synchronisation points. These approaches rely on
a fixed communication topology, using mechanisms such as dependency graphs or synchronisation
points to determine which participants are affected when one participant fails. For binary channels,
delegation implies location transparency, thus we must consider dynamic topologies.

7.2 Session Types and Distribution

Hu et al. [2008] introduce Session Java (SJ), which allows distributed session-based communication
in the Java programming language, making use of the Polyglot framework [Nystrom et al. 2003]
to statically check session types. Hu et al. are the first to present the challenges of distributed
delegation along with distributed algorithms which address those challenges. We adapt their
algorithms to web applications. S] restricts communication to a fixed set of simple types; Links
allows arbitrary values to be sent. S] provides statically scoped exception handling, propagating
exceptions to ensure liveness (but this feature is not formalised).

Scalas and Yoshida [2016] introduce lchannels, a lightweight implementation of session types
in Scala. To maximise applicability of their approach and not require any modifications to Scala,
their approach makes use of affine types, with duplicate outputs detected at runtime. By virtue
of the translation into the linear z-calculus introduced by Kobayashi [2003] and later expanded
on by Dardha et al. [2017], Lchannels is particularly amenable to distribution. Scalas et al. [2017]
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build upon this approach to translate a multiparty session calculus into the linear z-calculus to
provide the first distributed implementation of multiparty session types to support delegation.

7.3 Session Types via Affine Types

Rust [Matsakis and Klock II 2014] provides ownership types [Clarke 2003], ensuring that an object
has at most one owner. Jespersen et al. [2015] use Rust’s ownership types to encode affine session
types. It would be interesting to explore whether our exception handling methodology can be
applied to ensure progress in the Rust implementation using Rust’s destructor mechanism.

8 CONCLUSION AND FUTURE WORK

Session types allow conformance to a protocol to be checked statically. Designing languages with
session types requires a substructural type system, and the prevailing consensus has hitherto been
to require linear use of endpoints to enforce session fidelity and to prevent premature discarding of
open channels.

We have argued that in order to write realistic applications in the presence of distribution and
failure, linearity should be supplemented with an explicit cancellation operation. We show that,
even in the presence of channel cancellation, our core calculus is well-behaved, being deadlock-free,
type sound, confluent, and terminating.

In tandem with the formal development, we have developed a practical extension of the Links web
programming language to support distributed session-based communication for web applications,
thus providing the first implementation of asynchronous session types and exceptions in a functional
programming language. Our implementation takes advantage of recent work on handlers for
algebraic effects, paving the way for further study of linear effect handlers.

8.1 Future Work

Linear Effect Handlers. Our implementation combines linearity and effect handlers. Linear effect
handlers are new, and a ripe area of study in their own right; in the near future we aim to formalise
session-typed concurrency directly in terms of linear effect handlers.

Resources. We have discussed explicit cancellation and exception handling for session types.
It would be interesting to investigate whether the approach scales to the more general case of
exception/effect handling when using substructural types to enforce protocols in the presence of
resources (e.g. files).

Multiparty Session Types. The theory of multiparty session types [Honda et al. 2016] has led to a
multitude of implementations, but multiparty session types are yet to be incorporated as first-class
constructs in a core functional language. A natural starting point would be a A-calculus into which
we can translate the MCP calculus of Carbone et al. [2016], which is based on classical linear logic.
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A SELECTED FULL PROOFS
A.1 Preservation

Firstly, typing of terms is preserved by substitution.
LEmMMA A.1 (SUBSTITUTION). IfI; + M : BandIy,x : B+ N : A, then 1, I + N{M/x} : A.
Proor. By induction on the derivation of I;,x : BF N : A. m]

Lemma A.2 shows that a subterm of a well-typed evaluation context H (and therefore also a pure
evaluation context E) is typeable with a subset of the type environment. Lemma A.3 states that the
subterm of a well-typed evaluation context can be replaced. Both follow the formulation of Gay
and Vasconcelos [2010].

LEMMA A.2 (TYPEABILITY OF SUBTERMS). If D is a derivation of T + E[M] : A, then there exist I, T;
and B such that T’ = I', 13, that D has a subderivation D’ that concludes I + M : B, and the position
of D" in D corresponds to the position of the hole in E.

Proor. By induction on the structure of E. O

LEMMA A.3 (REPLACEMENT (EVALUATION CONTEXTS)). If:

D is a derivation of 1, Iz - E[M] : A

D’ is a subderivation of D concluding T, + M : B

The position of D’ in D corresponds to that of the hole in E
I+N:B

thenIy,I3 + E[N] : B.

Proor. By induction on the structure of E. O

To prove preservation on configurations, we must first establish some auxiliary results on
configuration contexts. Lemma A.4 states how we may type subconfigurations.

LEMMA A.4 (TYPEABILITY OF SUBCONFIGURATIONS). If D is a derivation of T; A +% G[C], then
there exist I/, ', ¢’ such that D has a subderivation D’ that concludesT’; A’ v C, and the position
of D" in D corresponds to the position of the hole in G.

Proor. By induction on the structure of G. O

Lemma A.5 states that we may replace a subconfiguration of a configuration context. The lemma
is slightly complicated by the fact that (va)G binds a variable a, but replacement is safe if the typing
environments are related by the environment reduction relation.

LEMMA A.5 (REPLACEMENT (CONFIGURATIONS)). If:

D is a derivation of T; A +¢ G[C]

D’ is a subderivation of D concluding thatT'; A’ +¢" C for someT’, N\, §’
;A +¢ C’ for someT", A" such thatT'; N TN

The position of D in D’ corresponds to that of the hole in G

then there exist some T”"', A"’ such thatT"""; " +¢ G[C’] andT; A —" T, A",

Proor. By induction on the structure of G. O

Theorem 3.2 (Preservation (Configurations)
Assume " only contains entries of the form a; : S;.
IfT; A F? C and C —> C’, then there exist T’, A’ such thatT; A —? T/; A’ andT/; A +9 C.
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Proor. We proceed by induction on the derivation of C — C’. If there is a choice on the value
of ¢, (for example, if the configuration contains a thread), we prove the cases where ¢ = o. The cases
where ¢ = o are similar (but use T-THREAD instead of T-MAIN in the inversion and construction
steps for that thread).

Case E-Fork

F [fork Ax.M] — (va)(vb)(F [a] || M{b/x} || a(e)«~b(€))

Assumption: T; A +* F [fork Ax.M]
By definition of ¥ : AE.¥ = e(E[fork Ax.M])
By T-MAIN:

o A=

e T'+ E[fork Ax.M] : A
Let D be the derivation of T +* E[fork Ax.M] : A.
By Lemma A.2:

L] EIFl,l"z.l" = Fl,l"z

e 1D’ such that D’ is a subderivation of D concluding I, + fork Ax.M : B

o The position of D" in D corresponds to the position of the hole in E.
By inversion on T-FORK:

oI, + fork Ax.M:S
e L +HAx.M:S — End

By Lemma A.3:
el,a:SrE[a:A
By inversion on T-ABs:
oL, x:SFM:1
By Lemma A.1:
eI, b:S+M{b/x}:1
By T-THREAD:
e I,,b:S+oM{b/x}
By T-BUFFER:
e 5a:S,b:Sk a(e)e~b(e)
By T-CONNECT;:
e Dsa:S,b:Stre M{b/x) || ale)e~b(e)

By T-CONNECT;:

e [,Tya:S" b: St E[a] || oM{b/x) || a(e)erb(e)
By T-Nu:

e [Ta:S' F* (vb)(Ela] Il oM{b/x} Il a(e)~b(e))
By T-Nu:

e T, Ts- ¥ (va)(vb)(Ela] || oM{b/x} || a(e)~~b(e))
SinceI' =T}, Iy and A = -

o I+ +° (va)(vb)(Ela] || oM{b/x} || a(e)~~+b(e))
as required.

Case E-SEND
— -
Fsend V' a] || a(V)ermsb(W) —
— - ,
Fla] || a(V)emsb(W - V')
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Assumption: T; A +* ¥ [send V' a] || a(T/))wb(W)
By inversion on T-CONNECT;:
L] EIFl,l"z.l" = Fl,l"z
o AA;, A2 A = Ay, A a: S
e Ii,a:S;A+* Fsend V' q]
= — —
e ;A a:SH a(V)ewwb(W)
By the definition of ¥ and knowledge that ¢ = e:
e JE.¥ = e(E[send V' a])
By T-MAIN:
e AN ="
eIl,a:S+E[sendV’'a]:C
Let D be the derivation of I1,a : S+ E[send V' a] : C.
By Lemma A.2:
e A3, I I ,a:S=15,T4,a:S
e JD’ such that D’ is a subderivation of D concluding that Iy,a : S+ send V' a : B
e The position of D’ in D corresponds to the position of the hole in E.
By inversion on T-SEND:

.B:Sl
e S=1AY5
eIV :A

By knowledge that S = !A.S":

o Th; Mg a: A5 k° a(V)ensb(W)
By the definition of duality:

— — —

o Ih; Ay a:?A.8" +° a(V)emsb(W)
By inversion on T-BUFFER:

o L5, I.I; =I5, T

o Az =b:T

— TS

e ?AS'/A=T/B
By the definition of the slicing function:

o T/B =1By. -~ 1B,.1AS for each B; € B.
It follows that:

— = —
eS/A=T/B-A
- -
By the definition of '+ V : A:
- -
oL, -W-V':B-A

Thus by T-BUFFER:
— — —
e I, I;a:58,b:T+H a(V)ewb(W - V")
By Lemma A.3:
eI3,a:S8 +E[a]:C
By T-MAIN:

e I3,a:5;-+° o(E[a])
By the definition of ¥ :
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o Fa] = E[d]

So
e I3,a:5; +° Fla]
By T-CONNECT;:

o ), Ty, Tysa: S, b T +* (Fla] || a(V)ewb(W - V7))

We have that T = I, I3, I, and that A = a : S¥,b : T. Since S = !A.S’ and (1A.5")* — 5%, we
have that T; A — T;a: S%;b : T, with

o Tia: 5% b T+ Fla] || a(V)awb(W - V')
as required.

Case E-RECEIVE

— —
F [receive a] || a(V' - V)emsb(W) —
FIV', )] Il a(V)eb(W)
Assumption: T; A +* ¥ [receive a] || a(V’ -V)Wb(lf\_)/)
By inversion on T-CONNECT;:
o Hrl,rz.r = Fl,Fz
e AN, Ay A = Ay, Ag,a: S
e I,a:S;A; +* F[receive a]
- - —
e In;Ay,a:S¢H® a(V’ . V)Wb(W)
By the definition of F:
e JE.F = ¢(E[receive a])
By T-MAIN:
e AN ="+
e Ij,a:S+ E[receivea] : C
Let D be the derivation of I, a : S + E[receive a] : C.
By Lemma A.2:
e A3 I I ,a:S=15,T4,a:S
o JD’ such that D’ is a subderivation of D concluding I';,a : S + receive a : B
e The position of D’ in D corresponds to the position of the hole in E.
By inversion on T-REcv:

[ ] r4:~
o S="AS
e B=(AxS)

Since S = ?A.S’, by duality we have that:
o I;Ay,a:1AS" +° a(V’ ~T/>)<~w»b(M_)/)
By inversion on T-BUFFER:
o dI5, Ix.In =15, Tk

e Ay=b:T
- -
e;+-V - V:A-A

- —

eIy +-W:B

— S TS
o IAS'/A-A=T/B
- —
By the definition of I5 - V' - V : A- A:

o dI7, I3.I5 = 17,13
o I+ V':A
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- -
eV A

By Lemma A.3:
° T3,F7,a : Sk E[(V,,CI)] :C

By T-MAIN:
e I3, I;,a:8;-+* E[(V',a)]: C

By the definition of the slicing function:

—

— -
«S'/A=T/B
By T-BUFFER:
— — —
o I, I5;a:S,b: T+ a(V)ewb(W)
By T-CONNECT;:
— —
L4 r37 r6’ r7»r8;a : S’ﬁ3b (T r* E[(V,v a)] ” a(V)M‘)b(W)
We know thatT = I3, I, Iy, Iy and A = a : Sﬁ,b : T and that S = ?A.S’. Since ?A.S" — S/, we
have that (?A.5")¥ — $’%. Thus:
ela:8,b:T—T;a:5,b:T
Therefore: . .
eT;a:S8,b:T+* E[(V',a)] || a(V)«b(W)
as required.

Case E-CLOSE

(va)(vb)(F [close a] || F'[close b] || a(e)~~b(e)) — FLO] II F'[0]

Assumption: T; A +* (va)(vb)(F [close a] || F'[close b] || a(e)«~b(€)).

For the sake of the proof, we assume that # [close a] is a main thread, and ¥ ’[close b] is a child
thread. Proving the other combinations (¥ [close b] being the main thread, or both being child
threads) follows exactly the same pattern.

By inversion on T-Nu, twice:

e T;Aa:S% b: T+ Fclose a] || F'[close b] || a(e)«~b(e)

By inversion on T-CONNECT{:

EIFl, FZF = Fl, rz
AAL A A = AL A,
I,a:S;A; +° F[close a]
L;Ag,a: S+ F'[close b] || a(e)«b(e)
By inversion on T-CoNNECT; and T-BUFFER:
e Ai=-and A, =-
e I,,b: T+ F'[close b]
e 5a:S,b:Tr° a(e)e~b(e)
By inversion on T-MAIN:
o AN{="-
e JE,C.Ij,a:S+ E[closea] : C
By Lemma A.2 and T-CLOSE:

e 1D’ such that D’ is a subderivation of D concluding thata : S + close a : 1
e S=End
e The position of D’ in D corresponds to the position of the hole in E.
By Lemma A.3 and T-UN1T:
o I'i;- ¥ F[0]

By inversion on T-CHILD:
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e Ny="-
e dE'T;,b: T+ E’[close b] : 1
By Lemma A.2 and T-CLOSE:
e JE’ such that E’ is a subderivation of E concluding that b : T + close b : 1
e T =End
o The position of E’ in E corresponds to the position of the hole in E.
By Lemma A.3 and T-UN1T:
o ;- +° F'[()]
By T-Mix, it follows that T; A +* F[()] || F’[()] as required.

Case E-RECEIVEZAP

F [receivea] || 40 || a(e)ew»b(T/)) — F[raise] || fall 4b || a(e)wb(T/))
Assumption: T; A +* F [receive a] || a(e)«va(T})
By inversion on T-CONNECT{:
o A, L, T =14,1%
e A, Ay.A = Ay, Ay a: S
e Ii,a:S;A + F[receive a]
Ty;Ag.a: S+ 4b || a(e)ewb(V)
By definition, JE.F = ¢(E[receive a]).
By inversion on T-MAIN:
e AN ="-
By Lemma A.2:
o A5, I,.Ih,a:S=151,a:S
e 1D’ such that D’ is a subderivation of D concluding that I'y,a : S + receive a : B
e The position of D’ in D corresponds to the position of the hole in E.

By inversion on T-Recv:
oI, ="
e S="AS
By Lemma A.3:
e I3 + E[raise] : B
By T-MaAIN:
o I35 +° F[raise]
By T-ZAp:
©ea:S;-+4a
By T-CONNECT;:
o TiAga:S* 1t fall 4 1| a(e)~b(V)
By T-Mix:
o T;A +* Fraise] || 4a || a(e)~wb(V)
as required.

Case E-CLOSEZAP

(va)(vb)(F [close a] || £b || a(e)~~b(e)) — F[()]
Assumption: I'; A +* (va)(vb)(F [close a] || 4D || a(e)«~b(€))
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By inversion on T-Nu, twice:

e T;Aa:S% b:THr* Flcloseal || 4b || a(e)evsb(e)
By inversion on T-CONNECT;, twice, and T-BUFFER:
ILa:S; - +* F[close a]

b: T;_~ (e é_b
5a:S,b:Tr° a(e)e~b(e)
A=-
By inversion on T-MAIN:
e JE.¥ [close a] = eE[close da]
e AdCT,a:S+ E[closea] : C

By Lemma A.2:

e 1D’ such that D’ is a subderivation of D concluding thata : S + close a : 1
e The position of D’ in D corresponds to the position of the hole in E.

By T-Uni1t, Lemma A.3, and T-MAIN:
e AR FL0]

as required.

Case E-CANCEL

— — —
F [cancel a] || a(V)e~b(Q)) — FO] Il tall a(V)eb(W)
Assumption: T'; A +* ¥ [cancel a] || a(T;)«wsb(W)
By inversion on T-CONNECT;:
L] EIFl,l"z.l" = Fl,l"z
e AA;, Ay.A = Ay, Agya: SH
eI,a:S;A;+* F[cancel a]
— — -
I5;A0,a:S F° a(V)Mb(W)
By the definition of F:
e JE.F = ¢(E[cancel a])
By inversion on T-MAIN:
e AN ="
e I,a:S+ E[canceld] : C

By Lemma A.2:
L 3F3,F4.T1,a : S = Tg,F4,a : S
e 1D’ such that D’ is a subderivation of D concluding I';,a : S + cancel a : B
o The position of D’ in D corresponds to the position of the hole in E.
By inversion on T-CANCEL:
[ r4 = -
[ ] B = 1
By Lemma A.3:
e I3 +E[(]:C
By T-MAIN:
e I;- +* E[()]
By T-Zap:
ea:S;-+4a
By T-CONNECT;:
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— —
o D;Ag,a:S* 0 fa | a(V)emb(W)
By T-Mix:
§ e — —
o I, T5582,a:S*+* E[O] I fa ll a(V)eb(W) || fa
SinceT = I, T3 and A = A, a : S*, we have that
— —
o TiAza: 8%+ E[0] Il £all a(V)ewb(W)
as required.

Case E-Zap
ﬁ

fall aU - V)yewb(W)) — sall dei |-+ || beu Il a(V)ensb(W)
Assumptions:

© T30+ a || a(V)enb(W)
e fn(U) = {ci};
By inversion (T-CONNECT; ):
e A=N,a: S
e a:St+° 4a
= — —
e ;A a:S+H a(V)ewb(W)
By inversion (T-BUFFER):
o EIFl,I‘g.F = Fl,rz
e N=0b:T
= -
eFU-V:A-A
- =
eL+-W:B
3
e S/A=T/B
By definition of slicing:
° S=IAS
By duality:
e S="AS
By buffer typing:
o A, [T} = 15,14
e 3+-U:A
- -
oL FV:A
By assumptions (T only contains channel variables; fn(U) = {c;};):
e I3=0c:5,,....cn: S,
By T-BUFFER:
— — —
e ;a:S,b:Tr° a(V)ersb(W)
By T-Zap:
ea:S5;-+° 4a
By T-ZaP (repeated applications):
®c;:Sc;F° geforalle
By T-Mix (repeated applications):

— =
e T5a:S8.b:Tr fer |l -+l den |l a(f)erb(W)
By T-CONNECT;:
— -
e [5a:S™b:Tr sall fer |l - Il fen Il a(V)ewb(W)

Recalling that A’ = b : T, and that S = ?A.S’, we have that ?A.S" — §’, and therefore that
;A —T;a:5%b:T.
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Thus N -
e Tia:S™.b:Tr fall fei |l Il fcn ll a(V)awb(W)
as required.

Case E-RAISEMAIN

eP[raise] — halt || ay || --- || fa, where fn(E) = {ai}ic1..n

Assumption: I'; A +° eP[raise]

By inversion on T-MAIN, we have that:
e '+ P[raise] : A
e A=

By Lemma A.2:
L Hfl,TZ.T = Fl,Fz
e 1D’ such that D’ is a subderivation of D concluding that I} + raise : B
e The position of D’ in D corresponds to the position of the hole in E.

By inversion on T-RAISE:

oI ="

So
o = Fg

Since I contains only runtime names, we have that
el'=a;:5,...,a,:5,

By T-HALT:

e ;- +°* ehalt
By T-Zap, we have:
® q;:5;;-+° éa,-

for all a;
By repeated applications of T-Mix, we have:
e AR halt || fay || --- |l 2an

as required.
Case E-Ra1seCHILD

oP[raise] — fay || --- || san where fn(E) = {ai}ie1..n
Assumption: I'; A +° oP[raise]
By inversion on T-CHILD, we have that:
e '+ P[raise] : 1
e AN="-
By Lemma A.2:
° Hfl, FZF = Fl, rz
e 1D’ such that D’ is a subderivation of D concluding that I I raise : 1
o The position of D" in D corresponds to the position of the hole in H.
By inversion on T-RAISE:

oI ="

So
o ['= FZ

Since I contains only runtime names, we have that
el'=a;:5,...,a,:5,

By T-Zap, we have:
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®a;:S5;-F fa

for all q;
By repeated applications of T-Mix, we have:
e AR far |l --- 1l fan

as required.
Case E-RAISE

¥ [try P[raise] as x in M otherwise N] —
FINTIN fai |l --- |l 4an where fn(P[raise]) = {a;}ic1..n

By inversion on T-MAIN, we have that 3E.D = eE[try L as x in M otherwise N]

o I' + E[try L as x in M otherwise N] : A
e AN="-
By Lemma A.2:
L] EIFl,l“g.F = F1,r2
e 1D’ such that D’ is a subderivation of D concluding that I} + try Lasx in M otherwise N : B
o The position of D’ in D corresponds to the position of the hole in H.
By inversion on T-TRy:
eI +L:B
ex:B'vM:B
e - +-N:B
Since T’ contains only runtime names, we have that
L] Tl =a :51,...,an ZSn
By Lemma A.3:
o, +* E[N]: B
By T-Zap, we have:
® q;:S5;;-+° éai

for all q;
By repeated applications of T-Mix, we have:
o Ts-F* F[NI Il Zar ll -+ Il fan
Since A = -, we have that
e AR FINII far Il -+ |l £an

as required.

Case E-L1FT

GlC] — Gl[C']
ifC—C'.
Assumption:
e ;A F? G[C]
Call this derivation D.
By Lemma A.4:
e dI'", A’, ¢’ such that D has a subderivation concluding I''; A’ ' C
e The position of D’ in D corresponds to the position of the hole in G.
By the induction hypothesis:
° HF’I;AH.FH;A” '_qﬁ’ C/
° r/;A/ _)? rII;A//
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By Lemma A.5:
e Ar"’; A’ such that I"”; A" +¢ G[C'] and T; A —" T""; A"’
as required.

Case E-L1IrTM

M —> ¢pM’
iftM—p M.
Assumption:
e I;AR® oM
By inversion on T-MAIN:
o AN="
eI'FM:A
By Lemma 3.1, we have that:
oI'FM:A
By T-MAIN:
o T;-+° oM
as required.

A.2 Canonical Forms

Theorem 3.11: Canonical Forms Given C such thatT; A +* C, there exists some C’ = C such that
[;A+* C’ and C' is in canonical form.

Proor. The proof is by induction on the count of v-bound variables, following Lindley and
Morris [2015]. Without loss of generality, assume that the v-bound variables of C are distinct. Let
{a; | 1 < i < n} be the set of v-bound variables in C and let {D; | 1 < j < m} be the set of threads
in C.

In the case that n = 0, all threads must be composed using T-Mi1x; we can therefore use commu-
tativity and associativity of parallel composition to derive a well-typed canonical form.

In the case that n > 1, pick some a; and D); such that g; is the only v-bound variable in fn(D;);
Lemma 3.7 and a standard counting argument ensure that such a name and configuration exist.
By the equivalence rules, there exists & such that ;A +¢ C = (va;)(D; || &) (that g; is the only
v-bound variable in fn(D;) ensures well-typing). Moreover, we have that there exist I C T, A’ C A,
and S, such that either T’,a; : S; A’ +? Eor T';A,a; : S+? E. By the induction hypothesis, there
exists &’ in canonical form such that either I, a; : S; A’ +? E =&’ or T';N,a; : S+? & = &’ Let
C’ = (va;)(D;j Il &). By construction it holds that I'; A +? C = C’ and that C’ is in canonical form.

O
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b
B=~C

c

(c) Entangled Delegation

(b) Simultaneous Delegation

Fig. 12. Cases of Distributed Delegation

B DISTRIBUTED DELEGATION

A key feature of 7-calculus is mobility, that is, sending channel names as values. In session-based
languages and calculi, mobility is realised as session delegation, allowing session-typed channel
endpoints to be sent over other session-typed channels. We saw an example of session delegation
in §6, in the ChatClient type:
typename ChatClient =!Nickname.
[&|Join:?(Topic, [Nicknamel], ClientReceive).ClientSend,
Nope:End|&];

An endpoint of type ClientReceive is passed as a message.

B.1 Challenges of Distributed Delegation
Session delegation is a vital abstraction in session-based programming. However, its integration
with both asynchrony and distribution brings several challenges. The seminal work on distributed
delegation is Session Java [Hu et al. 2008].

Fig. 12 shows three scenarios of distributed delegation, as described by Hu et al. [2008]. We

write X = Y to indicate that X wishes to send x to Y over y on the basis that X’s last known
y

b
location of the corresponding endpoint for y is Y. Now suppose B= C. Following Hu et al. [2008],
c

we refer to B as the session-sender, C as the session-receiver, and A as a passive party. There is no
happens-before relation between A sending a message to B along a, and B delegating b to C along
c. Thus, a message could be sent to A after A has given up control of a. Following Hu et al. [2008],
we call such messages lost messages.
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1.A— S:Send(t,v,[b — V])
2. A : start recording lost messages W ford
3. S:o=0c[bm B];5 =5 U{t}
4.S — B : Deliver(t,v, [b 7])
5.5 — A: GetLostMessages([b])
A : stop recording lost messages for b

6
7.A — S : LostMessageResponse([b — W])
8.S — B: Commit(t,[b — IT)V])
9 S:8=06\{t}
— - =
10. B : buffers(b] =V + W + U

whereﬁ = messages received for b between (3) and (8)

Fig. 13. Operation of Distributed Delegation Protocol

B.2 Approaches to Distributed Delegation

The simplest safe way to implement distributed delegation is to store all buffers on the server, but
this requires a blocking remote call for every receive operation. A second naive method is indefinite
redirection, where the session-sender indefinitely forwards all messages to the session-receiver.
This retains buffer locality, but requires the session-sender to remain online for the duration of the
delegated session.

Hu et al. [2008] describe two more realistic distributed delegation algorithms: a resending protocol,
which re-sends lost messages after a connection for the delegated session is established, and a
forwarding protocol, which forwards lost messages before the delegated session is established. The
key idea behind both algorithms is to establish a connection between the passive party and the
session-receiver, ensure that the lost messages are received by the session-receiver, and to continue
the session only once lost messages are received.

B.3 Delegation in Distributed Session Links

Alas, we cannot directly re-use the resending and forwarding protocols of Hu et al. [2008] because
of two fundamental differences in our setting: Links clients do not connect to each other directly,
and in Links multiple sessions may be sent at once. Thus, we describe the high-level details of a
modified algorithm which addresses these two constraints. We utilise two key ideas:

e Much like the resending protocol, lost messages are retrieved and relayed to the session-
receiver once the new session has been established.

e We ensure the session-receiver endpoint is not delegated until the delegation has completed,
by queueing messages that include the session-receiver endpoint, and resending them once
delegation has completed.

We now consider the case where session-sender and session-receiver are different clients; the

case where session-sender is a client and session-receiver the server is similar. Let client A be
session-sender and client B be session-receiver.

Example. Suppose client A sends a value v containing a session endpoint d along channel (s, t),
recalling that s is the peer endpoint and ¢ is the local endpoint. The initial endpoint location table
is:

O'é[SF—)A,tI—)B,bI—)A,CP—)A]
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Fig. 13 shows the operation of the delegation protocol on this example. In Step 1, A sends a message

—
to the server S, containing the peer endpoint ¢, value to send v, and the buffer V for b, before
beginning to record lost messages for b. Upon receiving this message, the server updates its internal
mapping for the location of b to be B, adds t to the set of delegation carriers §, and sends a Deliver

_)
message containing ¢, v, and V, before sending a GetLostMessages request to A. Upon receiving

N
this message, A will stop recording lost messages for b, and relay the lost messages W for b to
S. The server then sends a Commit message containing ¢ and the lost messages for all delegated
endpoints, and removes ¢t from the set of delegation carriers.

The final buffer for b is the concatenation of the initial buffer T/'), the lost messages M_}, and all

N
messages U received for b before the Commit message.

B.4 Correctness

We argue correctness of the algorithm in a similar manner to Hu et al. [2008]. Due to co-operative
threading, we can treat each sequence of actions happening at a single participant (for example,
steps 3-8) as atomic. Since (as per step 3) the endpoint location table is updated prior to the lost
message request, we can safely split the buffer of the delegated session into three parts: the initial

buffer being delegated (T/')); the lost messages (W); and the messages received after the change in

the lookup table but before the Commit message is received (ﬁ) and reassemble them, retaining
ordering.

In our setting, since session channels are not associated with sockets, simultaneous delegation
(Fig. 12b) can be handled in the same way as simple delegation. In the case of entangled delegation
(Fig. 12c, since delegation carriers may not be delegated themselves until the lost messages have
been received, we can be sure that the lost message requests are sent to the correct participant.
Hence, the case devolves to simple delegation.
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