
First-class Distributed Session Types
Simon Fowler

University of Edinburgh
simon.fowler@ed.ac.uk

1 Introduction
Communication-centric programming languages such as Erlang,
Go, and Pony put communication and concurrency at the centre
of their design, providing lightweight processes which co-ordinate
through the use of message-passing, making applications easier to
structure and reason about than shared-memory systems.

Communication follows protocols, either for external communi-
cation (such as SMTP [14]) or for internal communication between
different components of a system. How do we document the in-
herent communication patterns in an application, and how do we
ensure that applications conform to these protocols?

Session types [6, 7] encode communication patterns as types. We
describe the design and implementation of a distributed extension to
the web-based, session-typed functional language Links, allowing
the creation of multi-user web applications which can communicate
using first-class session-typed channels. We outline ongoing work
adapting the work of Mostrous and Vasconcelos [12] to the setting
of functional languages, in order to handle the case where partici-
pants go offline during the course of a session. Distributed Session
Links is available at http://www.github.com/links-lang/links.

2 Background
Go [1] provides simply-typed channels such as chan(int). Session
types allow more expressive types: for example, we can describe
a “calculator server” (example originally due to Gay and Hole [5]),
allowing the choice between addition and negation operations:

CalcServer = &{ add :?Int.?Int.!Int.CalcServer;
neg :?Int.!Int.CalcServer }

Here, the & operator offers a choice between the add and neg
operations. The add operation receives two integers and sends an
integer (where receiving is denoted by ? and sending is denoted
by !), whereas the neg operation receives a single integer before
sending an integer. The client would have the dual session type:

CalcClient = ⊕{ add :!Int.!Int.?Int.CalcClient;
neg :!Int.?Int.CalcClient }

Note here that where the server sends a message, the client receives
a message, and where the server offers a choice, the client makes a
selection (denoted by ⊕). Session types guarantee that communica-
tion follows the protocol described by the session type, preventing
communication mismatches and deadlocks along a single channel.

On the Challenge of Linearity The main technical hurdle in
implementing session types is that of linearity. Intuitively, we wish
to ensure that each “step” of a session channel is only used once.
Consider the following function:

sig f : (!Int.?Int.end) ~> Int
fun f(s){
var t = send (5, s); var s = send (5, s);
var (x, s) = receive s; x

}

Here, function f takes a session type s of type !Int.?Int.end:
that is, a channel over wish we wish to send an integer and then
receive an integer. However, naïvely implemented, we could sim-
ply re-use the first endpoint, sending an integer twice, and losing
all guarantees given by the session type! Linearity ensures that
each endpoint is used exactly once, ensuring that endpoints are not
reused, and that all communication actions are completed.

Embeddings inmainstream languages such as Haskell [10, 13, 15]
and Scala [16] check linearity at runtime or through advanced type
system features, but can introduce embedding artefacts and can
have complex error messages. Another approach is to add session
types as first-class constructs. Recent work extends the Links [3]
web-based functional language with first-class session types [11].

3 Links: From Multithreaded to Distributed
Links provides supports both simply-typed actor-style processes
and session-typed channels, which imply a degree of location trans-
parency: for example, we should be able to send a message over a
channel regardless of the location of the peer endpoint. In spite of
this, prior to this work each concurrency runtime remained stub-
bornly independent, introducing the “barriers” shown in Figure 1.

This work liberates the abstractions by breaking the barriers
between the concurrency runtimes.

1

Server

Clients 2 3

Figure 1. “Barriers” between concurrency runtimes

A Simple Example Consider a web application which comprises
two types of client: a “pinger” which sends a Ping message and
receives a Pong message, and a “ponger” which receives a Ping
message and sends a Pong message.

We begin by describing the PingPong session type, describing a
channel which receives a Ping, sends a Pong, and then finishes.
typename PingPong = ?(Ping) . !(Pong) . End;

We firstly create an access point, ap, which acts as a “matchmak-
ing service” for processes to establish sessions. We add two routes,
/pinger and /ponger, which take a callback function passing the
URL and a location, returning the page to be displayed. The calls to
serveWebsockets and servePages start the webserver.
fun main() {
var ap = new();
addRoute("/pinger", fun(_, loc) { Pinger.page(loc, ap) });
addRoute("/ponger", fun(_, loc) { Ponger.page(loc, ap) });
serveWebsockets(); servePages()

}

http://www.github.com/links-lang/links

Both the Pinger and Ponger provide a function page which
takes the location and the access point as arguments, and produces
a page (asssuming a function simplePage returning some HTML).
The spawnAt construct spawns a function at a given location, in
this case on the client. The Pinger requests from the access point,
obtaining an endpoint which is the dual of the PingPong type. The
process then sends a Ping, logs this to the browser console, then
receives and logs a Pong. The Ponger performs the dual actions.

module Pinger {
sig page : (Location, AP(PingPong)) ~> Page
fun page(loc, ap) {
var pid = spawnAt(loc,
{ var ch = request(ap);
var ch = send(Ping, ch); print("Sent Ping!");
var _ = receive(ch); print("Received Pong!") });

simplePage()
} }

module Ponger {
sig page : (Location, AP(PingPong)) ~> Page
fun page(loc, ap) {
var pid = spawnAt(loc,
{ var ch = accept(ap);
var (_, ch) = receive(ch); print("Received Ping!");
var _ = send(Pong, ch); print("Sent Pong!") });

simplePage()
} }

Links handles all session type checking, session establishment,
data serialisation and deserialisation, and session teardown trans-
parently. A more full-featured example, that of a distributed web-
based chat server, can be found at https://github.com/links-lang/
links/blob/master/examples/distribution/chatserver/.

Breaking the Barriers The main concepts in the implementation
are as follows:

First-Class Locations and Closure Serialisation
We make the notion of a location first-class, explicitly allowing
processes to be spawned on a given client. To do so, we closure-
convert an application, delivering an initial state containing the
functions to be run on the client.

Generalised Process IDs and Channel IDs We generalise pro-
cess IDs to include locations. Channel endpoints consist of a pair
of endpoint IDs; each runtime tracks local endpoints. Communi-
cation with an external process or peer channel endpoint results
in an external request.

Websockets Whereas Links previously used AJAX requests to
encode remote procedure calls [3, 4], Distributed Links supports
bidirectional communication through the use of websockets.

Server-side Routing Web clients cannot connect to each other
directly, so it is necessary to have some server-side routing. The
server keeps track of the locations of each endpoint and process,
which also involves inspecting messages for process and channel
IDs which were created on a client.

Distributed Delegation Delegation allows session endpoints to
be sent along other session endpoints. Alas, in the presence of
asynchrony and distribution, this proves to be challenging (see Hu
et al. [8]). We have devised a distributed delegation algorithm
which works in the more restricted web-based setting, by syn-
chronising with a client to reobtain “lost messages”, and sequen-
tialising delegation requests to ensure that a “carrier channel” is
not delegated before a previous delegation is complete.

4 Affine Sessions with Exceptional Syntax
Whenwriting web applications with session types, we cannot expect
linearity: users may, of course, simply close their browsers before a
session has completed! As a result, processes simply become stuck
waiting for a message which will never arrive.

Mostrous and Vasconcelos [12] describe a synchronous process
calculus which can relax the requirement of linearity to that of
affinity (that each endpoint must be used at most once), which
precisely captures our scenario. The authors provide an exception
handling construct which attempts to perform a communication
action ρ along a channelawith session type S . If the communication
action fails (for example, if the partner endpoint is unavailable),
then process P (typeable without a) is evaluated.

Γ, a : S ⊢ ρ Γ ⊢ P subject(ρ) = a
Γ, a : S ⊢ do ρ catch P

Alas, this does not adapt straightforwardly to our setting of an
asynchronous concurrent λ-calculus. Consider the following:
sig recvAndAdd : (?Int.end, ?Int.end) ~> Int
fun recvAndAdd(s, t) {
try {
var (x, s) = receive s; var (y, t) = receive t;
x + y

} catch { (-1) }
}

Here, we have a program which attempts to receive two integers
along two different channels, returning their sum should both re-
ceives succeed, or returning (−1) should either operation fail. This
example is not typeable using the previous construct–either s or t
would have to be used within the catch block!

Instead, we propose a construct inspired by Benton & Kennedy’s
Exceptional Syntax [2], with the following typing rule:

Γ1 ⊢ M : A Γ2, x : A ⊢ N : B Γ2 ⊢ N : B

Γ1, Γ2 ⊢ tryM as x in N otherwise N ′ : B

Here,M is a term which contains a potentially-failing operation,
such as sending to a channel whose partner endpoint is unavailable.
ShouldM evaluate correctly, it is bound to x in N . Otherwise, N ′

is evaluated. This formulation allows us to type our program:
fun recvAndAdd(s, t) {
try {
var (x, s) = receive s;
var (y, t) = receive t; (x, y)

} as (x, y) in { (x + y) } otherwise { (-1) }
}

We have formalised the construct as an extension to an asyn-
chronous variant of the GV calculus [9]. The key idea is to stratify
evaluation contexts into pure contexts and exception handling con-
texts, and to inspect the free channel variables of the possibly-failing
term upon a communication failure, disabling all affected channels.
Implementing this calculus in Links is the subject of ongoing work.

5 Conclusion
Wehave described an extension to the Links programming language
to support the use of session types in the web-based distributed
setting. We have outlined the design and implementation, and have
described ongoing work on the design of construct able to handle
participants going offline during a session. Future work includes
refining and implementing the core calculus for affine sessions, as
well as adding the ability to interact with other Links servers in
addition to web clients.

2

https://github.com/links-lang/links/blob/master/examples/distribution/chatserver/
https://github.com/links-lang/links/blob/master/examples/distribution/chatserver/

References
[1] 2017. The Go Programming Language. https://golang.org/. (2017).
[2] Nick Benton and Andrew Kennedy. 2001. Exceptional syntax. Jour-

nal of Functional Programming 11 (2001), 395–410. https://doi.org/10.1017/
s0956796801004099

[3] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links: Web
Programming Without Tiers. In Formal Methods for Components and Objects
(FMCO ’06), Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever (Eds.), Vol. 4709. Springer Berlin Heidelberg, 266–296. https:
//doi.org/10.1007/978-3-540-74792-5_12

[4] Ezra E. K. Cooper and Philip Wadler. 2009. The RPC calculus. In PPDP. ACM,
231–242.

[5] Simon Gay and Malcolm Hole. 2005. Subtyping for session types in the pi
calculus. Acta Informatica 42, 2 (22 Nov. 2005), 191–225. https://doi.org/10.1007/
s00236-005-0177-z

[6] Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best
(Ed.). Lecture Notes in Computer Science, Vol. 715. Springer Berlin Heidelberg,
509–523. https://doi.org/10.1007/3-540-57208-2_35

[7] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language prim-
itives and type discipline for structured communication-based programming.
In Programming Languages and Systems, Chris Hankin (Ed.). Lecture Notes in
Computer Science, Vol. 1381. Springer Berlin Heidelberg, Berlin/Heidelberg,
Chapter 9, 122–138. https://doi.org/10.1007/bfb0053567

[8] Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based Dis-
tributed Programming in Java. In ECOOP, Jan Vitek (Ed.). Lecture Notes in
Computer Science, Vol. 5142. Springer Berlin Heidelberg, Berlin, Heidelberg,
Chapter 22, 516–541. https://doi.org/10.1007/978-3-540-70592-5_22

[9] Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions.
In ESOP. Springer, 560–584.

[10] Sam Lindley and J. Garrett Morris. 2016. Embedding session types in Haskell. In
Proceedings of the 9th International Symposium on Haskell. ACM, 133–145.

[11] Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types.
In Behavioural Types: From Theory to Tools, Simon Gay and Antonio Ravara (Eds.).
River Publishers.

[12] Dimitris Mostrous and Vasco T. Vasconcelos. 2014. Affine Sessions. In Coordi-
nation Models and Languages, Eva Kühn and Rosario Pugliese (Eds.). Springer
Berlin Heidelberg, 115–130. https://doi.org/10.1007/978-3-662-43376-8_8

[13] Matthias Neubauer and Peter Thiemann. 2004. An Implementation of Session
Types. In Practical Aspects of Declarative Languages, Bharat Jayaraman (Ed.).
Lecture Notes in Computer Science, Vol. 3057. Springer Berlin Heidelberg, 56–70.
https://doi.org/10.1007/978-3-540-24836-1_5

[14] J. Postel. 1982. Simple Mail Transfer Protocol. Technical Report 821. RFC Editor,
Fremont, CA, USA. http://www.rfc-editor.org/rfc/rfc821.txt

[15] Riccardo Pucella and Jesse A. Tov. 2008. Haskell Session Types with (Almost) No
Class. SIGPLAN Not. 44, 2 (Sept. 2008), 25–36. https://doi.org/10.1145/1543134.
1411290

[16] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in
Scala. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 56. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

3

https://golang.org/
https://doi.org/10.1017/s0956796801004099
https://doi.org/10.1017/s0956796801004099
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/bfb0053567
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-662-43376-8_8
https://doi.org/10.1007/978-3-540-24836-1_5
http://www.rfc-editor.org/rfc/rfc821.txt
https://doi.org/10.1145/1543134.1411290
https://doi.org/10.1145/1543134.1411290

	1 Introduction
	2 Background
	3 Links: From Multithreaded to Distributed
	4 Affine Sessions with Exceptional Syntax
	5 Conclusion
	References

