Verified Networking using Dependent Types

Univefrsity
(@)
St Andrews

CS5S4099: Major Software Project

Simon Fowler
2014-04-04

Supervisor: Dr Edwin Brady






Abstract

Strongly, statically typed functional programming languages have found a strong grounding
in academia and industry for a variety of reasons: they are concise, their type systems provide
additional static correctness guarantees, and the structured management of side effects aids easier
reasoning about the operation of programs, to name but a few.

Dependently-typed languages take these concepts a step further: by allowing types to be
predicated on values, it is possible to impose arbitrarily specific type constraints on functions,
resulting in increased confidence about their runtime behaviour.

This work demonstrates how dependent types may be used to increase confidence in network
applications. We show how dependent types may be used to enforce resource usage protocols
inherent in C socket programming, providing safety guarantees, and examine how a dependently-
typed embedded domain-specific language may be used to enforce the conformance of packets to
a given structure. These concepts are explored using two larger case studies: packets within the
Domain Name System (DNS) and a networked game.
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CHAPTER 1

Introduction

Functional programming languages with strong, static type systems are becoming increasingly
popular due to the host of benefits they offer. Purely-functional languages allow side-effects to be
managed in a pure way, aiding reasoning about programs and facilitating concurrent and parallel
programming. The strong, static type systems offered by these languages enable more errors to be
caught at compile time, increasing static guarantees about correct runtime behaviour. Programs can
be expressed in a concise and high-level way, meaning that codebases are more maintainable and
understandable. The list continues.

Concentrating on correctness guarantees, we may use dependent types to enforce even stronger
specifications. Languages with dependent types allow types to be predicated on values, meaning
that arbitrarily specific type signatures may be introduced. By using more specific types to encode
invariants about programs, we add program verification at the language level, resulting in correct-by-
construction programs. Traditionally, however, dependently-typed languages have been largely only
been used as theorem-proving tools, which results in a host of missed opportunities: in particular,
errors that may be caught statically as a result of more specific types instead cause a runtime error in
a deployed system.

1.1 Problem Outline

Since dependently-typed languages have not been widely used as general-purpose programming
languages, little investigation has as yet been done into how dependent types may be used for
increasing the confidence in network applications.

In this work, we aim to firstly provide the basic infrastructure on which networked applications
may be built, using recent research developments such as dependent algebraic effects [4] to show
how resource usage protocols may be enforced.

We also reimplement and extend an embedded domain-specific language (EDSL) for specifying
the structure of packets, and statically verifying the adherence of packet implementations to these
specifications.

1.1.1  Contributions
The contributions of this project are as follows:
¢ A high-level binding to the C sockets library.

¢ Libraries for TCP and UDP, making use of dependent algebraic effects to enforce resource
usage protocols and failure handling.
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* An EDSL PacketLang specifying packet structure, and data between high- and low-level
representations.

¢ An effectual binding to the IDRIS message-passing concurrency system

¢ Two larger case studies showing how the libraries may be used in larger applications: one
using the PacketLang EDSL to implement a library to encode and decode DNS packets; and
another implementing a networked game.



CHAPTER 2

Objectives

The overarching aim of this project is to investigate how dependent types may be used within
the domain of network programming. Building upon previous work, the aim is to investigate,
using current research into general-purpose dependently-typed programming, the ways in which
dependent types may be used within the domain of network programming.

Deliverable 1 (Description, Objectives, Ethics and Resources) set out the objectives for the project
as follows:

2.0.2 Primary

¢ A framework for the creation of provably correct application-layer protocols, built on top of
TCP.

¢ Verified network bindings to underlying TCP libraries, enforcing correct usage.
¢ Sample applications making use of the network bindings.

¢ A verified implementation of the DNS protocol, including support for label compression

2.0.3 Secondary

¢ Investigation into how better to handle raw binary data efficiently within a dependently-typed
language.

¢ Investigation into an extension of the current foreign function interface to better handle raw
binary data.

2.0.4 Tertiary

¢ A framework for the creation of provably-correct transport layer protocols, built on top of IP.
* Support for threading, allowing the creation of more complex network applications.

¢ Investigation into how to measure and mitigate the overheads imposed by the verified bindings.

As the project was reasonably loosely-defined to begin with, the objectives consisted of possible
avenues of exploration. After beginning work on the project, it soon became apparent that completing
all of these objectives was far too ambitious given the time available, and that concentrating on the
primary goals were more appropriate for the scope of the project. In particular, these were refined to:

3



2. OBJECTIVES

To implement an low-level IDR1s interface to the C sockets API, Network.Socket.

To implement verified TCP and UDP bindings using the Network.Socket library.

To reimplement the PacketLang DSL [7], improving it if necessary.

To implement a larger case study, the Domain Name System (DNS), to assess the expressiveness
of PacketLang.



CHAPTER 3

Context Survey

3.1 The IDRIS Programming Language

Ipris [5] is a purely functional programming language with full-spectrum dependent types. In
contrast to other systems such as Agda [29] and Coq [2], IDR1s places a large emphasis on being
a general-purpose language, in particular being suitable for verified systems programming using a
dependently-typed foreign-function interface (FFI). Additionally, efficiency is also a primary concern
of IDRIs, in particular making use of aggressive type erasure [6] to mitigate the overheads of storing
redundant type information.

To demonstrate the concept of dependent types, consider the example of a function which reverses
a list, where a is a polymorphic type variable constrained by the Ord type class which provides a
comparator function.

reverse : 0Ord a => [a] -> [a]

This type signature enforces several invariants on the resulting implementation. In particular, we
know that the function takes one argument, a list of type a, and returns a list of the same type. If, for
example, the argument given to a function was of type [Int], attempting to return a value of type
[String] would result in a compile-time error.

At the same time, an implementation which always returns the empty list [] would conform to
this type specification and therefore correctly type-check, even though it is semantically incorrect.

Using dependent types, we may refine the specification to demand that the lists are of the same
length. Vect n ais a list of length n of type a, where n is a type-level Peano natural number.

Ord a => Vect n a -> Vect n a

This refinement provides us with additional confidence about the correctness of the implementa-
tion of the function. Of course, it is still entirely possible to write implementations which satisfy
the specification but are semantically incorrect. We may further increase the specificity of the type
signature, requiring some proof Reversed that the output list is the reverse of the input list.

Ord a => (in : Vect n a) -> (Reversed in out **x (out : Vect n a))

The (a ** b) notation denotes a X-type or dependent pair, meaning that the second argument
of the pair depends on the first.

Ipr1s syntax is heavily inspired by Haskell, but with several subtle differences: in keeping with
conventions in the literature, : is used to denote membership of a type, whereas in Haskell it is used
to denote the cons operation of a list.
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3.1.1 Type-level Computation

A powerful feature of dependently-typed languages is the ability to compute types as first-class
terms. Through the use of this, we may construct a variadic adder which first takes the number of
arguments to add n, and then requires n arguments to be specified. In order to do this, we firstly
inductively define the Peano natural numbers (included in the IDRr1s standard library):

data Nat Z

| S Nat

We next define a function adderTy which takes an input (n : Nat) and inductively defines
appropriate function type:

adderTy : (n : Nat) -> Type
adderTy Z = Nat -> Nat
adderTy (S k) = Nat -> (adderTy k)

Finally, we implement the function variadic which is of type (n : Nat) -> (adderTy n). The
notation (n : Nat) denotes that the argument with type Nat is named n and may be used in further
computations. More formally, this corresponds to a I1 type in dependent type theory.

variadic : (n : Nat) -> (adderTy n)
variadic Z x = X
X

variadic (S k) = \y => x + (variadic k y)

The variadic function captures the number of arguments and the first numerical argument on
the left-hand side of the equation. In the base case, there are no additional numbers to add, and
therefore no free variables to be captured on the right-hand side, and thus the captured variable is
returned. In the inductive case, we capture the remaining free variables via an anonymous function
on the right-hand side (similar to Haskell, \ denotes a A-abstraction in IDR1s), and use them in the
recursive step.

Type-level computation is also extremely useful when dealing with universes: a data type which
defines a set of tags representing types. These may then be translated into IDpris types through a
translation function, a technique demonstrated by Oury and Swierstra [30].

data Univ = INT | BOOL | STRING | CHAR

interpUniv : Univ -> Type
interpUniv INT = Int
interpUniv BOOL = Bool
interpUniv STRING = String
interpUniv CHAR = Char

3.1.2 (Embedded) Domain-Specific Languages

A large emphasis in the IDRr1s programming language is placed on usability, with features such as
overloading of constructs such as do-notation and idiom brackets [26], and syntax macros. Through
the use of these features, it becomes much easier to implement Embedded Domain-Specific Languages
(EDSLs), which provide an abstraction over more complex underlying types to allow developers to
write higher-level domain-specific code.

Domain-specific languages are languages which are designed to aid programming for a particular
domain, such as SQL for database programming. Whilst losing expressivity—most DSLs are not
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Turing-complete, for example—they allow developers to more precisely and concisely handle domain-
specific tasks. EDSLs are DSLs which are embedded in a host language, and may therefore make use
of the type systems and constructs provided by the language.

3.1.3 Effect Handling
3.1.3.1 Monads and Monad Transformers

Purely functional languages are extremely useful for concisely expressing otherwise computations,
and allowing powerful reasoning to take place about the correctness and operation of programs.
This alone, however, does not make a language widely usable: for a language to be useful, it must be
able to interact with its environment, causing side effects.

Haskell, and indeed IDRrs, solve this through the use of monads [32]. Monads are a structure
with roots in category theory, and allow for impure, side-effecting computations to be modelled in a
purely functional language.

Although more complete explanations may be found elsewhere [36], briefly, a monad is a typeclass
providing at least two functions:

class Monad m where
return : a ->m a
(>>=) :ma->(a->mb) ->mb

The return function takes a pure value and lifts it into a monadic context. The second operation
(>>=) (pronounced bind) takes a value a in a monadic context m, and a function taking a and
producing a value m b.

To handle side effects, programs in these languages are given an entry point, main : I0 (),
where I0 is a monad supporting impure computations. In both languages, I0 is handled as a special
case, with language-based primitives being used to handle monadic binding operations.

To combine multiple monads (for example, if we wished to perform I/O operations and also
retain some state), we may define a monad transformer [21], which allows the composition of two
different monads. A monad transformer consists of an outer monad and an inner monad; to perform
an operation in the context of the inner monad, the 1ift function is used. These suffice for very
small numbers of monads, but soon become unwieldy when larger numbers are used. This leads
library developers to either permit operations which may perform arbitrary IO actions (which may
break abstractions and safety), or to combine many effects code into a coarse-grained monad.

3.1.3.2 No More Heavy Lifting: Resource-Dependent Algebraic Effects

More recent work focuses on handling effects algebraically [31]. Making use of the handler abstraction
advocated by Kammar et al. [18], recent work has made use of dependent types to implement a
framework, Effects [4], to facilitate programming with algebraic effects. This has several advantages:
effects are composable, meaning that we may specify multiple effects and use them without needing
to explicitly include 1ift calls; and they allow a developer to specify an associated resource. Since
operations may be predicated on a certain resource type, and this resource may change after an
operation, Effects makes it much simpler to enforce resource usage protocols.

Further work on Effects has brought substantial changes to the framework since its initial
publication. For brevity, we outline the latest version here.

We begin with one of the canonical examples of enforcing resource usage protocols in dependently-
typed programming: accessing a file!. We want to allow files to be opened for either reading or

1We make use of the implementation included in the main Ipris distribution for this example.
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writing, and ensure that read and write operations only happen when in the correct mode. We also
want to ensure that all resources are released once the file handle is no longer needed.

To do this, we firstly describe the File IO operation abstractly by defining a generalised algebraic
data type of kind Effect.

Effect : Type
Effect = (x : Type) -> Type -> (x -> Type) -> Type

data FileIO : Effect where
Open : String -> (m : Mode) ->
{() ==> {res} if res then OpenFile m else ()} FileIO Bool

Close : {OpenFile m ==> ()} FileIO ()
ReadLine : {OpenFile Read} FilelIO String
WriteLine : String -> {OpenFile Write} FileIO ()
EOF : {OpenFile Read} FilelIO Bool

The main difference between the latest Effects library and the published version is the fact that
the output resource may be calculated from the result of the operation, which greatly helps with
failure handling. The Effect kind specifies three parameters: a result type, an input resource type,
and a function from the result type to an output resource type. To aid developers in specifying the
types of effectual operations, Effects provides syntactic sugar. The Open operation provides an
example:

Open : String -> (m : Mode) ->
{() ==> {res} if res then OpenFile m else ()} FileIO Bool

The operation takes two parameters: a filename and a Mode m (an ADT specifying file modes).
The effect type specifies that the operation requires an uninitialised resource (), and returns a Bool.
If this is true, then the output resource is OpenFile m, whereas if it failed then the output resource
remains uninitialised.

In order to use an effect, we must do two further things: specify handlers, which define how each
effectual operation may be interpreted in a given execution context, and promote it to a concrete
effect.

Handlers are defined by making an effect and an execution context an instance of the multi-
parameter Handler type class. Here, m is an execution context, which is often a monad but this does
not always have to be the case: for example, to handle an effect in a pure context, id is sufficient.

class Handler (e : Effect) (m : Type -> Type) where
handle : res -> (eff : e t res resk) ->
((x : t) ->resk x ->ma) ->ma

Here, res is the input resource, and eff is the effect. The final argument is a continuation
function which takes the result and value of the output resource. We must then specify handle
functions for each operation, pattern matching on the resource to make use of the file handle if it
exists, and pattern matching on the abstract effect operation to make use of the parameters.

instance Handler FileIO IO where
handle () (Open fname m) k = do h <- openFile fname m
valid <- validFile h
if valid then k True (FH h)
else k False ()
handle (FH h) Close k = do closeFile h
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k () O

handle (FH h) ReadLine k = do str <- fread h

k str (FH h)
handle (FH h) (WritelLine str) k = do fwrite h str

k () (FH h)
handle (FH h) EOF k = do e <- feof h

k e (FH h)

To use these in operations, we must promote the abstract effect into a concrete effect, which is
achieved using the MKEff function. The Type parameter denotes the resource type.

FILE_IO : Type -> EFFECT
FILE_IO t = MKEff t FileIO

To make working with effects easier, we then create wrapper functions which may be used in
effectual programs. The wrapper function for the Open operation is shown below.

open : Handler FileIO e =>
String -> (m : Mode) ->
{ [FILE_IO ()] ==>
[FILE_IO (if result then OpenFile m else ())] }
Eff e Bool
open f m = Open fm

Finally, we may write a program making use of this effect, and execute it in the underlying
execution context using the run function.

fileTest : String -> {[FILE_IO ()]} Eff IO (Maybe String)
fileTest fn = with Effects do
True <- open fn Read
| False => return Nothing
line <- readLine
close
return (Just line)

main : I0 ()
main = do
m_line <- run (fileTest "test_file.txt")
case m_line of
Just line => putStrLn $ "First line: " ++ line
Nothing => putStrLn "Error opening file for reading"

Note in particular the guard syntax in fileTest: in this notation, we specify the expected result
of open as True, assuming that the file was successfully opened. We handle possible failure cases
inline using guard notation. The code following the guard notation is the code which is executed in
the success case.

3.2 Related Work

3.2.1 Haskell with Language Extensions

While the core type system of Haskell is different from that of a language with full-spectrum
dependent types (in particular, lacking full I'l-types), recent work has steered Haskell’s type system
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towards one supporting ever more dependently-typed features. In particular, the Glasgow Haskell
Compiler (GHC) supports Generalised Algebraic Data Types (GADTs) [17], which are a powerful
tool for allowing matching to refine type variables; the DataKinds extension [40] which allows
the promotion of data types to the kind level; and type families, which allow limited type-level
computation. The Strathclyde Haskell Enhancement [25] additionally provides a preprocessor to
simulate dependent types within Haskell.

At the same time, Haskell provides no mechanisms for first-class theorem proving, much less
the more powerful tactic-based approaches used in Coq and Ipris. As outlined by Lindley and
McBride [22], Haskell requires many language extensions and encoding of otherwise trivial lemmas
to accomplish tasks which would be relatively simple in other languages. Conversely, they show that
GHC’s constraint solver may be used in some circumstances to avoid explicit calls to some lemmas
once they are defined.

3.2.2 Data Description Languages

The challenge of representing binary data is not a new one, and several approaches exist for
specifying binary data as embedded domain specific languages. In this section, we discuss some of
the existing solutions to this problem, and contrast them with the PacketLang language used within
this project.

3.2.2.1 PacketTypes

PacketTypes [27] is a standalone domain-specific language which allows the declarative specifica-
tion of packet structures. As well as specifying and naming primitive fields, PacketTypes allows
constraints to be placed on the data in a separate where clause. Other functionality included within
PacketTypes involves the notions of overlaying: that is, embedding one packet type within another,
and refinement, which adds additional constraints to an existing packet.

The approach of using types to specify packet descriptions is a common theme between Packet-
Types and the PacketLang DSL. Our language allows the possibility of constraints on data through
the Proposition constructs (which are internally implemented using a X type binding approach),
but this is done as part of the packet specification as opposed to being in a separate clause. Over-
laying is easily supported in PacketLang as each packet specification may be bound as a first-class
construct, and refinement may be achieved simply by specifying additional constraints.

The main difference between the two systems is that PacketTypes is a standalone DSL, meaning
that it has its own compiler and type system. PacketLang, on the other hand, is an embedded domain
specific language, meaning that it makes use of the type system of the host language. Whereas
PacketTypes works by generating parsing and marshalling code, PacketLang is completely defined
within Iprrs itself. Another limitation of PacketTypes is the fact that the interpretation of later parts
of packets may not depend on the values of data specified earlier in the packet. This would make it
unable to represent DNS packets, for example.

3.2.2.2 The Data Description Calculus

The Data Description Calculus (DDC) [11] is a formalism for describing data definition languages
using a small core dependent type theory, and provides a formal semantics for other data description
languages. We do not attempt a formal translation from PacketLang into the DDC, but many of the
constructs and semantics of PacketLang correspond to the DDC.
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3.2.2.3 Protege

Protege [39] is a domain-specific language embedded in Haskell, primarily geared towards specifying
protocol stacks in embedded systems such as sensor networks. Using Protege, developers may
specify not only packet structures, but also protocols and protocol stacks: that is, the order in which
packets may be sent and received, and how protocols interact. Although the authors’ treatment of
protocols has little in the way of formal grounding in the context of session types, their finite state
machine approach provides a sufficient way of specifying packet ordering for the purposes of the
implementation.

As an embedded domain-specific language, Protege differs from PacketTypes in that it does not
require an external compiler, instead making use of the constructs present in Haskell itself. Similar
to PacketTypes and differently to PacketLang, however, Protege operates by generating C parser
code instead of working with decoded data in Haskell itself. This is due to the application domain
of embedded systems, which operates almost exclusively with C.

Protege makes use of the constructs defined within the DDC.

3.2.2.4 DataScript

DataScript [1] is a data description language similar to PacketTypes. By using Java as a target
language, class files are generated which contain accessor methods for each field of the data
representation, and provide a constructor to marshal Java code into this representation. In this sense,
it may be seen as similar to middleware such as CORBA [35], with the important difference that
DataScript is designed to specify the exact physical layout of the marshalled data.

Once again, DataScript is a standalone DSL, requiring an external compiler. It also does not
provide parser-like primitives such as choice, unlike PacketLang.

3.2.2.5 PADS

PADS [10] is another data description language which again takes the standalone DSL approach:
descriptions may be compiled to generate either parsing and parsing code, or code to convert the
described ad-hoc data definitions into more standard formats such as XML.

3.2.2.6 A Library for Processing Ad hoc Data in Haskell

Wang and Gaspes [38] describe a data description language embedded in Haskell. Unlike Protege,
DataScript and PADS/ML and more similarly to PacketLang, this library is an embedded DSL and as
such does not involve an additional compiler or code generation.

The library is an embedding of the DDC in Haskell, and makes heavy use of the ideas behind
monadic parser generators such as Parsec [19]. This technique, unlike that of PacketLang, is
unidirectional: that is, while it allows data to be parsed in, it provides no facility for writing data
back out according to a specification. We also gear our implementation more towards packet data,
providing functions specific to the marshalling and unmarshalling of packet data from network
sockets.

3.2.3 Previous Work

This work is largely inspired by the paper “IDrRIs—Systems Programming Meets Full Dependent
Types” [7], which motivates IDR1s as a high-level language capable of being used for low-level
applications. In particular, the main claim made is that dependent types may be used to provide
additional static guarantees about low-level systems code, through the use of domain-specific
languages and a dependently-typed foreign function interface.

11
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In this work, we reimplement and extend the PacketLang EDSL for specifying binary packet
data within IDr1s, and marshalling and unmarshalling data using the packet specifications.

Development of the IDr1s language is rapid. In the three years since the publication of this paper,
the language has been completely rewritten, making the existing implementation of PacketlLang
obsolete beyond simple repair. Additionally, new language features such as type classes and
the Effects framework provide interesting avenues of exploration for improving the existing
implementation.

Recent previous work has concentrated on using Effects to implement resource usage protocols
for web applications including a database library and the Common Gateway Interface (CGI) [12]. We
build upon the lessons learnt from this work, in particular with respect to failure handling, in the
task of enforcing resource usage protocols for TCP and UDP.

12



CHAPTER 4

Requirements Specification

4.1 C Socket Bindings

Socket Creation
Users should be able to obtain a C socket descriptor, given socket parameters.

Socket Abstraction
The socket descriptor should be wrapped in another data type to preserve type-safety. That is,
socket descriptors should not be exposed as an integer, even though that is their underlying
representation.

Socket Binding
Users should be able to bind a created socket to a socket address and port.

Listening on a socket
Users should be able to listen on a bound stream socket.

Accepting Clients
Users should be able to accept incoming connections from a bound stream socket.

Closing Sockets
Users should be able to close sockets, in turn releasing the held resources.

Error Reporting
Errors should be reported as part of the result of the operation, and not require an additional
top-level function call. That is, errors should be exposed as a sum type with the result of a
successful operation.

Sending Data
Users should be able to send data to a remote host using a connected socket in the case of a
stream socket, or to a given address and port in the case of a datagram socket. There should be
two modes for sending data: one for sending a string of data, and one for sending a populated
raw buffer.

Errors with sending or receiving data should be reported.
Receiving Data
Users should be able to receive data from a connected stream socket or from a bound datagram.

There should be two modes for receiving data: one for receiving a string of data, and one for
populating a buffer.

13
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In the case of receiving from a datagram socket, the socket address of the remote host should
also be returned.

4.2 TCP Bindings

Connection
Clients should be able to connect to a remote host, given a socket address and port.

Sending Data
Connected clients should be able to send data to remote host. If a user writes code which
attempts to send data to either an unconnected socket, or has not checked whether a previous
send or receive operation succeeded, this should be caught at compile time. If an error occurs
when attempting to send data, further send and receive operations using the socket should not
be permitted.

Receiving Data
Connected clients should be able to receive data from the remote host. As above, this should
only be possible in a valid state, and code which does not guarantee this should not compile.
If the read operation fails, further send and receive operations should not be permitted.

Closing the socket
Users should be able to close a socket and release all opened resources. By specifying a
type signature demanding an uninitialised resource at the start and end of the function, and
assuming a total function, all code paths should result in the associated resources being released.
If this is not the case, then the user should be notified at compile time.

Socket Abstraction
Users should never have to explicitly specify a socket as a parameter to any operations within
the effect: this should be handled by the effect itself.

Binding
TCP server sockets should be able to bind to an address and port.

Listening
Successfully-bound TCP server sockets should be able to listen for new connections. If a socket
is not successfully bound and the user attempts to listen for connections, then a compile-time
error should result.

Accepting Clients
Listening TCP server sockets should be able to accept new clients, either in the same thread or
a new thread. The state of the client socket should not affect the state of the server socket.

Client Handler Function
When accepting a client, users should be able to specify a handler function to handle the
incoming client. The type of this function should specify, assuming the function is total, that
the socket should be closed once the function terminates.

Sending and Receiving Data
It should be possible to send data to, and receive data from, accepted client sockets, assuming
that they are in a valid state. If a send or receive operation fails, then the socket should be
invalidated.



4.3. UDP Bindings

4.3 UDP Bindings

Sending Data
Users should be able to asynchronously send data to another socket, given a socket address
and port.

Socket Abstraction
Users should not have to manually obtain or specify socket descriptors: this should instead be
handled by the relevant operations.

Binding
Users should be able to bind a UDP server to a given address and port.

Sending and Receiving Data
Users should be able to send and receive data on a bound server socket, and send data from
a UDP client. Sending data to a remote host will require the socket address and port of the
remote host, and receiving data from the bound socket will also return the socket address and
remote port of the remote host.

It should not be possible to send or receive data on an unbound server socket, or a socket in an
invalid state.

4.3.1 PacketLang DSL

DSL Data Types
Users should be able to specify bounded binary data, null-terminated strings, length-indexed
strings, Boolean values, and propositions on data.

DSL Control Constructs
The DSL should include constructs for choice (both by testing on a Boolean predicate, and by
testing two specifications), lists of data, length-indexed lists of data, and sequencing.

Data Dependencies
Packet specifications should be able to depend on previously-specified data. For example, the
length of an integer may be specified by a length field.

Data Marshalling
If, and only if, a packet specifies a packet specification, it should be possible to marshal the
data into a packet for transmission either by TCP or UDP. Attempting to construct a packet
using an implementation which does not correspond to a given packet specification should
result in a compile-time type error.

Data Unmarshalling
If, and only if, an incoming packet satisfies a packet specification, it should be possible to
unmarshal the incoming data into its constituent components.

4.3.2 DNS Library

Requests
It should be possible for users to make DNS requests using a specified type and class.

Responses
It should be possible for users to receive responses from DNS servers in user-friendly, high-level
data types.

15
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Payload Implementations
Common payload types such as A and CNAME records should be supported.

Data Type Correctness
Payloads in higher-level Ipris data types should only contain payloads which correspond to a
given DNS type and class. It should not be possible to create an instance of a DNS packet with
a payload not corresponding to the stated type and class combination. Length fields should
correspond to the length of each section.

Packet Correctness It should not be possible to create a packet which does not conform to the DNS
packet specification. This means that it should not be possible to create a packet with a payload
that does not match the given type and class combination; all types and class values should be
valid according to the specification; length fields should correspond to payload lengths; count
fields should correspond to the number of records in each section; and all integers should fit
within their relevant bounds.



CHAPTER 5

Development Methodology

5.1 Rapid Application Development

As this is a primarily a research project, the priority was largely to create working software quickly,
in order to demonstrate the feasibility of research concepts. For this reason, rapid application
development (RAD) [24] was chosen as the primary software development methodology.

Rapid application development makes use of an underlying iterative development methodology,

as outlined in Figure 5.1.
Requirements Analysis & Design
Implementation
Planning

Deployment

Initial
Planning
Evaluation
Testing

Figure 5.1: Iterative Development Model [33]

The short cycles enable software to be developed incrementally, with the evaluation of previous
iterations being used in subsequent iterations. This works particularly well when developing research
code, where certain concepts may prove to work successfully, or conversely certain methods may
prove to be unsuccessful and require revisiting. The aim at the end of each cycle, however, is to have
a working software system, and improve upon this in subsequent iterations.

Rapid application development incorporates iterative development with the added notion of
developing prototypes. By building prototypes of software components (for example, the PacketLang
DSL), we may use this as a base to test the ideas, revisiting and revising them as necessary if issues
arise later in the process.

Figure 5.2 shows the main workflow within the rapid application development process. RAD
encompasses four phases: planning, in which requirements are planned; user design, in which the
system is used and additional requirements are elicited; construction, in which development takes
place; and finally cutover, in which the new system is implemented.
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Requirements
Planning

‘ UserDesign Construction

Figure 5.2: Rapid Application Development [34]

5.2 Type-Driven Development

The use of dependent types during development naturally fosters particular styles of development:
whereas with a dynamically-typed language, it would be foolish to write a nontrivial piece software in
anything but a test-driven style with extensive unit testing coverage, languages with more expressive
type systems provide additional safety guarantees within the type system, reducing the need for
unit testing. Of course, unit testing only detects the presence of defects, and doesn’t guarantee their
absence.

As well as this, types form an integral part of the development process. The nature of dependently-
typed programming involves encoding specifications about the implementation of programs within
type signatures. This runs contrary to certain trends within functional programming: users of
ML-based languages such as OCaml [20], for example, rely on type inference: that is, inferring a
type from an implementation, and raising errors if types have been inconsistently used within the
implementation.

Type inference is, however, undecidable for languages such as Ipris which incorporate full-
spectrum dependent types. Whilst at times (for example, on inner functions declared in where
clauses) this is undesirable, it can be viewed as a feature as opposed to a limitation: with specific
enough types it becomes possible to infer programs, which has been recently incorporated into
interactive editing tools [3].

Another useful tool made possible due to the IDR1s type system is the possibility to specify
placeholders, or metavariables. By then entering proof mode, we may examine the context of the
metavariable—that is, the names and types of other variables that are in scope—and use this
information to guide the implementation. To take a concrete example, let us examine an incomplete
implementation of the encodeRR function, which is used when encoding a DNS resource record into
a format which may be written to a packet.

encodeRR : DNSRecord -> Either DNSEncodeError (mkTy dnsRR)
encodeRR (MkDNSRecord name ty cls ttl rel pl) = with Monad do
dom <- encodeDomain name
b_ttl <- isBounded 32 (intToNat ttl)
encoded_pl <- encodePayload rel pl
let pl_len = (bitLength (dnsPayloadLang ty cls) encoded_pl) “div" 8
b_len <- isBounded 16 (intToNat pl_1len)
Right (dom ## ty ## cls ## b_ttl ## b_len ## encoded_pl ## ?mv)



5.3. Tools Used

In this code snippet, we are unsure of the type of the final argument needed to construct the
packet implementation, and have thus inserted a metavariable ?mv. We may then enter proof mode
to retrieve the current context and goal type:

---------- Assumptions:
pl_ty : DNSPayloadType
name : List String

ty : DNSType
cls : DNSClass
ttl : Int

rel : DNSPayloadRel ty cls pl_ty
pl : DNSPayload pl_ty
class : Monad (Either DNSEncodeError)
dom : mkTy dnsDomain
classl : Monad (Either DNSEncodeError)
b_ttl : Bounded (fromInteger 32)
class2 : Monad (Either DNSEncodeError)
encoded_pl : mkTy (dnsPayloadlLang ty cls)
pl_len : Length
class3 : Monad (Either DNSEncodeError)
b_len : Bounded (fromInteger 16)
---------- Goal: R LR
{holel6} : (\x5 =>
val b_len =
div (bitLength (dnsPayloadlLang ty cls) x5) 8) encoded_pl

This tells us that the final argument is an equality proof between the value of the b_len argument,
and the length of the encoded DNS payload.

5.3 Tools Used

From the outset, this project has been made publicly available on GitHub'. In any larger project,
version control is of course essential, as it allows changes to be made from different working locations,
provides an audit trail in case a regression should arise, and additionally provides an important
avenue of code dissemination should other developers wish to use or contribute to the project.

Thttp://www.github.com/SimonJF/IdrisNet and later http://www.github.com/SimonJF/IdrisNet2.
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CHAPTER 6

Ethics

This project made no use of human subjects or external data. As such, there were no ethical
considerations for this project and accelerated ethical approval was sought.
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CHAPTER ;

Design

7.1 System Overview
The system is split up into several components:

Socket Library
The socket library IdrisNet.Socket is an Ipris binding to lower-level C socket functionality.
It provides data types and bindings to functions in the C socket library, with the intention
of allowing developers the flexibility to write additional applications on top of the standard
interface.

C Helper Library
The socket library idrisnet. c makes use of the IDr1s foreign function interface to communicate
with native code. In some instances, it is possible to call these functions directly from the Idris
code, if there exist direct translations from the IDRrIS types to the types in the C function. This
is not possible in all cases however, and this helper library exists to facilitate this interaction by
performing any additional setup and translations between types that is required.

TCP Server Effect
The TCP server effect IdrisNet.TCP.TCPServer is a module allowing developers to write
TCP servers that are guaranteed to conform to correct resource usage protocols.

TCP Client Effect
The TCP client effect IdrisNet.TCP.TCPClient is a module allowing developers to connect
to, and communicate with, a TCP server.

UDP Server Effect
The UDP server effect IdrisNet.UDP.UDPServer is a module allowing developers to bind to a
UDP socket, and send and receive data using UDP.

UDP Client Effect
The UDP client effect IdrisNet.UDP.UDPClient exists as a stateless UDP client, allowing users
to send UDP data to other UDP sockets.

Packet DSL
The Packet DSL module IdrisNet.PacketlLang provides a domain-specific language for
specifying the format of packets. Making use of dependent types, we may use this DSL to
ensure that packets conform to the packet descriptions.
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Packet Library
The packet library IdrisNet.Packet uses the packet descriptions to marshal the contents into
a buffer to be sent. Additionally, we may use packet descriptions to unmarshal packets into
their constituent components for use in a user application.

Process Effect
The Process library Effect.Process provides an effectual interface to the existing message-
passing concurrency functionality, along with new abstractions for allowing spawned threads
to operate with effects.

Figure 7.1 gives a high-level overview of the system, showing the interactions between components.
In particular, the socket library interacts with the underlying C helper library, which itself interacts
with the C sockets APIL. User programs may interact with the Packet DSL in order to construct
packets and interpret packet definitions, but do not interact directly with the packet library. This
functionality is instead exposed by the protocol bindings.

\4

User Application

Packet DSL
(IdrisNet.PacketLang) | 1

7y Packet Library
(IdrisNet.
Packet)
\d \ A
VA Vi L L
TCP Client Effect (IdrisNet. TCP Server Effect UDP Client Effect UDP Server Effect
TCP.TCPClient) (IdrisNet.TCP.TCPServer) (IdrisNet.TCP.TCPClient) (IdrisNet.TCP.TCPServer)

Idris Socket Library (Network.Socket)

C Helper Library (idrisnet.c)

4

Y

> C Sockets Library

Figure 7.1: A high-level overview of the library

7.2 Network Library

7.2.1 Socket Library

The IdrisNet.Socket library provides a relatively low-level interface to the C socket APL

Initial prototypes of the library ! did not provide access to this socket interface, instead providing
coarser-grained granularity to support protocol-specific operations. Additionally, much of the socket
setup routines were provided in the unmanaged C-code level, using a C-based structure to maintain
state across operations.

Thttp://www.github.com/SimonJF/IdrisNet


http://www.github.com/SimonJF/IdrisNet

7.2. Network Library

An example of this would be listening for connections on a TCP server socket. Instead of
providing the C socket operations at the Idris level, a TCP server file instead appealed to a routine
which created, bound, and listened on a socket at the C level.

This approach was abandoned for a variety of reasons: firstly, the granularity of the operations
was much too coarse, and therefore resulted in a lack of flexibility. An example of this would be a
user wishing to bind to a socket, but defer listening on the socket to a later point in the execution of
a program. Secondly, since multiple operations took place in each unmanaged function call, error
reporting became more difficult, as it was necessary to return which particular operation caused
an error should the entire computation fail. Thirdly, the C sockets API is very general, allowing
for many different protocols, socket types and addressing modes to be used. In the original model,
these were not exposed to the user, resulting in a lack of flexibility.

The approach used within the final version of the project involves a low-level Ipris API binding
to the C socket library, which makes calls directly to the C socket libraries via the foreign function
interface (FFI) where possible. Where this is not possible, for example where additional code such
as setting up a ‘hints’ structure when binding to a local address, small helper functions in a much
thinner wrapper library (idrisnet.c) are called.

7.21.1 API

The library implements the API functions specified in Figure 7.2, which will be familiar to the reader
with a background in network programming.

socket : SocketFamily ->
SocketType ->
ProtocolNumber ->
I0 (Either SocketError Socket)

close : Socket -> I0 ()
bind : Socket -> (Maybe SocketAddress) -> Port -> I0 Int
connect : Socket -> SocketAddress -> Port -> I0 Int
listen : Socket -> I0 Int
send : Socket -> String -> IO (Either SocketError BytelLength)
recv : Socket -> Int -> IO (Either SocketError (String, BytelLength))
sendBuf : Socket -> Ptr -> Int -> I0 (Either SocketError BytelLength)
recvBuf : Socket -> Ptr -> Int -> I0 (Either SocketError BytelLength)
accept : Socket -> IO (Either SocketError (Socket, SocketAddress))
sendTo : Socket -> SocketAddress -> Port ->

String -> I0 (Either SocketError BytelLength)
sendToBuf : Socket -> SocketAddress -> Port ->

BufPtr -> ByteLength -> I0 (Either SocketError BytelLength)
recvFrom : Socket -> BytelLength ->

I0 (Either SocketError (UDPAddrInfo, String, BytelLength))
recvFromBuf : Socket -> BufPtr -> BytelLength ->

I0 (Either SocketError (UDPAddrInfo, BytelLength))
accept : Socket -> I0 (Either SocketError (Socket, SocketAddress))

Figure 7.2: The User-Facing API for IdrisNet.Socket

These API functions simply expose the lower-level functionality in IDR1S, providing similar type
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signatures to those of the C APIs. Several data types and type synonyms are used, however, to
ensure readability and add additional type safety guarantees.

record Socket : Type where

MkSocket : (descriptor : SocketDescriptor) ->
(family : SocketFamily) ->
(socketType : SocketType) ->
(protocolNumber : ProtocolNumber) ->
Socket
data SocketFamily = AF_UNSPEC —— Unspecified
| AF_INET — IP / UDP etc. IPv4
| AF_INET6 —— IP / UDP etc. IPv6

ProtocolNumber : Type
ProtocolNumber = Int

SocketError : Type
SocketError = Int

SocketDescriptor : Type
SocketDescriptor = Int

data SocketAddress = IPv4Addr Int Int Int Int
| Hostname String

Figure 7.3: The Socket Type

Figure 7.3 describes the data types used to represent a socket in IDRr1s. In particular, the native
file descriptor referring to the socket is stored as an integer, and each socket is associated with a
particular addressing family (for example, IPv4 or IPv6), a type of socket (for example, TCP or UDP),
and an optional protocol number.

Underlying calls to the C socket library generally either return 0 if the socket connection has been
closed by the remote host (for streaming sockets), —1 if an error has occurred (setting the errno
value), or another positive value (for example, the number of bytes sent or received) if the operation
has succeeded. We encapsulate the result of such operations using a sum type, Either, which is an
algebraic data type parameterised over two type variables a and b, detailing that an inhabitant of the
type may either be of type a or b.

7.2.2 Protocol Bindings

With the lower-level socket functionality exposed in the IdrisNet.Socket library, we may make
use of the Effects framework to implement higher-level, dependently-typed bindings for protocols
such as TCP.

7.23 TCP

TCP is implemented on top of the C Sockets library simply by specifying a socket type of SOCK_STREAM
and an address family of AF_INET for IPv4, or AF_INET6 for IPv6. In our implementation, we use



7.2. Network Library

this to implement TCP functionality purely through the IdrisNet.Socket library, without needing
to implement additional TCP-specific functionality in the C helper library.

At the same time, correctly making use of TCP sockets involves using a distinct resource usage
protocol for both clients and servers, which we model through the use of dependent algebraic effects.

Sockets may be used either as TCP servers or TCP clients, and the resource usage protocols and
permitted operations differ for each usage. For example, servers must firstly bind to an address,
listen for clients, and accept and handle incoming clients. For this reason, we use two separate effects,
TCPCLIENT and TCPSERVER instead of one, coarser-grained TCP effect.

Socket operations such as bind, listen, send and recv may either succeed, fail with a fatal error,
fail with a recoverable error (such as EAGAIN or EWOULDBLOCK), or indicate that the remote host has
closed the connection. In order to encapsulate this within the client and server effects, we declare an
ADT, SocketOperationRes parameterised over the type of an operation should it succeed.

data SocketOperationRes a = OperationSuccess a

| FatalError SocketError
I

|

RecoverableError SocketError

ConnectionClosed
7.2.3.1 TCP Client Effect
0
tcpConnect
TCPFinalise
tcpClose
ClientConnected > ErrorState

tcpSend, tcpRecv

Figure 7.4: State transition diagram for the TCP Client effect

Figure 7.4 shows the state transition diagram for the TCP client effect. Execution begins in
the uninitialised state, denoted by the unit resource (). By connecting to a remote host using the
tcpConnect function, we transition into the ClientConnected state, where it is possible to read and
write data to the stream, and close the connection.

Reading and writing may fail, however, and this is handled by the Effects library by interpreting

the result of the operation and possibly transitioning into a state denoting failure, ErrorState.

In order to encode these transitions, we define a function interpOperationRes which takes a
SocketOperationRes, and returns the type of the output resource.

interpOperationRes : SocketOperationRes a -> Type
interpOperationRes (OperationSuccess _) = ClientConnected
interpOperationRes (FatalError _) = ErrorState
interpOperationRes (RecoverableError _) = ClientConnected
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interpOperationRes ConnectionClosed = ()

We also define a function interpConnectRes which returns ClientConnected if successful, and
() otherwise.
With this in place, we may define the abstract TCPClient effect, shown in Figure 7.5.

data TCPClient : Effect where
Connect : SocketAddress ->
Port ->
{() ==> interpConnectRes result}
TCPClient (SocketOperationRes Socket)

Close : { ClientConnected ==> ()} TCPClient ()
Finalise : { ErrorState ==> () } TCPClient ()

WriteString : String ->
{ ClientConnected ==> interpOperationRes result}
TCPClient (SocketOperationRes BytelLength)

ReadString : BytelLength ->
{ ClientConnected ==> interpOperationRes result }
TCPClient (SocketOperationRes (String, Bytelength))

WritePacket : (pl : PacketLang) ->
(mkTy pl) ->
{ ClientConnected ==> interpOperationRes result }
TCPClient (SocketOperationRes BytelLength)

ReadPacket : (pl : PacketLang) ->
Length ->
{ ClientConnected ==> interpOperationRes result }
TCPClient (SocketOperationRes (Maybe (mkTy pl, BytelLength)))

Figure 7.5: TCP Client Effect

The client effect details seven operations:

Connect
Attempts to establish a connection with a remote host on the given address and port. If
successful, then transitions into the ClientConnected state. If not, then remains in the
uninitialised state, denoted by the unit type ().

Close
Closes a currently open socket, and transitions back into the uninitialised state.

Finalise
Closes a socket in an erroneous state.

WriteString
Writes a string to the currently open socket. Requires the socket to be in the ClientConnected
state, and based on the result of the operation, either remains in the ClientConnected state if
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the operation was successful, or transitions to the ErrorState state if not. If successful, returns
the number of bytes written to the stream.

ReadString
Reads a string from the socket, with the same input and output transitions as above. If
successful, returns a tuple of the string that was read from the socket and the length of the
string read from the socket.

WritePacket
Uses the packet language DSL described in Section 7.3, taking in a packet description and a
corresponding concrete implementation and writing this to the socket. The input and output
transitions are as above. If the operation was successful, then the length of the written data is
returned.

ReadPacket
Similarly, uses the packet language DSL to attempt to unmarshal data given a particular packet
description.

From this model, we may derive several correctness guarantees:

Theorem 1. It is not possible to write to, or read from, a socket without first establishing a connection.

Proof. Send and receive operations require the effect to be in the ClientConnected state. It is only
possible to transition into the ClientConnected state after a successful Connect operation, which
establishes a connection. Failure to do so, or check that the operation succeeded, will result in a
compile-time type error.

Theorem 2. It is not possible to write to, or read from, a socket if the connection has been invalidated by the
failure of a previous operation.

Proof. As above, send and receive operations require the effect to be in the ClientConnected state,
and the failure of an operation will result in a transition to the ErrorState state. Attempting to
perform a read or write operation whilst in the ErrorState state, or without checking if a read or
write operation has succeeded, will result in a compile-time type error.

Theorem 3. By specifying a program with uninitialised input and output resource types, it is not possible to
write a total program which does not close any open handles.

Proof. If no operations are performed, no handles are created. If the Connect operation is attempted
but fails, no connection will be made, and the resource will remain uninitialised. If a connection
is successfully created, the effect will transition into the ClientConnected state. In order to return
the effect into the uninitialised state, either the Close or Finalise operations must be called, which
close the connection. Failure to call these will result in a compile-time type error.

7.2.3.2 TCP Server Effect

Figure 7.6 shows the state transition diagram for the TCP server effect. Server sockets operate in a
different way to client sockets, in that they must firstly bind to a port, listen for incoming connections,
and then accept and work with the incoming collections.

In order to encapsulate this within the effect, we define five different states: the unit type () once
again represents an uninitialised socket, ServerBound represents a socket that has been bound to
an address and a port, ServerListening indicates that a socket is listening for connections, and
ErrorState indicates that an error has occurred and the socket is therefore unusable. Both the
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finaliseServer

bind closeBound

closeListening ServerBound > ErrorState

listen

ServerListening

accept

Figure 7.6: state transition diagram for the TCP server effect

Listen and Accept operations may fail, therefore transitioning into the ErrorState state, but it is
not necessary to define separate failure states for each as the cleanup operation is identical.

Clients are accepted using the Accept and ForkAccept operations. The difference between these
two operations is that Accept accepts the client in the same thread, meaning that no further clients
will be accepted until the program handling the newly-accepted program has ceased execution. The
ForkAccept operation, on the other hand, spawns a new VM thread to handle the new client.

In order to accept a client, a function of type ClientProgram must be specified, which is a type
synonym as described below.

ClientProgram : Type -> Type
ClientProgram t = {[TCPSERVERCLIENT (ClientConnected)] ==>
[TCPSERVERCLIENT ()]} Eff IO t

The TCPSERVERCLIENT effect is identical to that of the TCPCLIENT effect, but does not include
functionality for connecting to remote clients. The ClientProgram type specifies that the effectful
program passed to Accept begins in the ClientConnected state, allowing read and write operations
to be performed on the newly-accepted client, and ends in the uninitialised state, indicating that the
accepted socket must be closed.

Our model of a TCP server socket allows us to derive further correctness guarantees.

Theorem 4. It is not possible to attempt to accept clients without firstly successfully binding to, and listening
on, a socket and port.

Proof. The required input resource for the Accept and ForkAccept operations is ServerListening.
In order to transition to the ServerListening state, it is firstly necessary to call the Bind operation,
which transitions into the ServerBound state and binds to the socket, and secondly necessary to call
the Listen operation, which listens on the bound socket. Failure to perform these two steps and
check that they have completed successfully will result in compile-time type error.
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Theorem 5. It is not possible to perform operations on a socket that has been invalidated by the previous
operation.

Proof. The input resource for the Bind operation is ServerListening. If the Listen operation fails,
then the effect will transition into the ErrorState state, and thus not fulfil this requirement. The
required input resource for the Accept and ForkAccept operations is ServerBound. If the the Bind
operation fails, then the effect will transition into the ErrorState state, thereby not fulfilling this
requirement. If a call to Accept or ForkAccept fails, the effect will transition into the ErrorState
state.

Theorem 6. Assuming a total ClientProgram function, all resources used by a new client that has been
accepted using the Accept or ForkAccept operations will be released.

Proof. The type of ClientProgram specifies an input resource of ClientConnected and an output
resource of (). If the program passes the totality checker—that is, it terminates without looping
infinitely—the Close function must be called in order to transition to the () state, thereby releasing
the resources.

7.24 UDP

UDP is similarly implemented using the underlying IdrisNet.Socket library, making use of the
DGRAM socket type and the asynchronous and connectionless sendto and recvfrom functions.

In spite of being a simpler protocol, UDP servers have a resource usage protocol: if recvfrom
is to be used, the socket must firstly be bound to a port. Although sendto and recvfrom make
no guarantees about the arrival of data when used with datagram sockets, they will return a code
denoting success should the operation be attempted successfully, regardless of whether the data
arrived successfully. An error occurring at this point indicates a failure with the bound socket,
meaning that no further operations should be attempted.

udpFinalise
A
udpClose udpBind
\/

UDPBound > ErrorState
udpWriteString,
udpReadString,
udpWritePacket,
udpReadPacket,

Figure 7.7: State transition diagram for the UDP server effect

The operations on the UDPSERVER effect are similar to those of the TCPCLIENT effect, along with
the ability to bind to a port. In order to send and receive datagrams, programs making use of the
UDPSERVER effect must firstly successfully bind to an address and port. Since UDP is a connectionless
protocol, send operations also require a SocketAddress and Port, and receive operations also
additionally return a data structure of type UDPAddrInfo, which contains the SocketAddress and
Port of the remote client.
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Similarly to the TCPClient and TCPServer effects, the results of effectful operations are encapsu-
lated in an ADT parameterised over the result type, allowing the resulting resource to be calculated
from the function result.

Theorem 7. It is not possible to attempt to receive data on an unbound socket.

Proof. The UDPSReceiveString and UDPSReadPacket operations require an input resource of UDPBound.
In order to transition from the uninitialised state to the UDPBound state, it is necessary to perform the
UDPSBind operation. This binds the socket. Failure to do so, or failure to check that the operation
was successful, results in a compile-time type error.

Theorem 8. It is not possible to attempt to send or receive data on a socket that has been invalidated by a
failed previous operation.

Proof. All send and receive operations require an input resource of UDPBound, and either remain in
the UDPBound state if the operation was successful, or transition to the UDPError state if the previous
operation failed. If an operation fails and the effect therefore is in the UDPError state, then no further
operations may be performed.

Theorem 9. By specifying a program using the UDPServer effect with uninitialised input and output
resource types, it is not possible to write a total program which does not close any open handles.

Proof. If no operations are performed, no handles are created, and the resource remains uninitialised.
If the UDPSBind operation is performed unsuccessfully, any intermediate handles are closed within
the operation, and the resource remains uninitialised. If the UDPSBind operation is completed
successfully, the state will transition to UDPBound, and the Close operation, which closes all opened
resources, must be called to transition back into the uninitialised state. If a read or write operation is
unsuccessful and triggers a transition into the ErrorState state, the UDPSFinalise operation must
be called in order to transition to the uninitialised state, which closes all open resources. If a program
is written which specifies an uninitialised output resource, but one of the code paths results in a
non-unit output resource, this will result in a compile-time type error.

In addition to the stateful implementation of UDP servers described above, we also include a
second effect, UDPCLIENT, which may be used to send UDP packets without needing to be bound to
a socket.

7.3 Packet DSL

The PacketlLang DSL facilitates the declarative specification of packets, and allows for low-level data
to be marshalled and unmarshalled. PacketLang was first exposited by Brady [7] as a demonstration
of how IDri1s could be used for low-level systems programming.

As Ipris is very actively developed, however, the original implementation in the paper is outdated
and no longer compiles. Additionally, new advances in the language (for example, dependent
algebraic effects) allow us to use the DSL in different ways to statically enforce additional invariants.
For these reasons, we present a rewritten version of PacketlLang to take advantage of the new
language features, and show how they may be used to implement a verified version of a nontrivial
protocol type, DNS.

The core DSL implementation is contained within PacketLang.idr, which specifies all of the
core constructs and required syntax rewrite rules. The Packet.idr file contains the logic to marshal
and unmarshal high-level data to its binary representation.

A helper library (bindata. c) is used for bit-level manipulation, although this remains unmodified
from the original version by Edwin Brady.
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7.3.1 PacketLang

The PacketLang DSL consists of a number of constructs. The language itself is specified by induction-
recursion [8], allowing functions on the DSL to be defined at the same time as the DSL itself. In this
case, the mkTy function is used to represent each language construct as a concrete IDRIS type.

By specifying the DSL in this manner, we may create two functions: one to describe the structure
of the packet, and one to describe the data contained in the packet. The data contained in the packet,
since it makes use of the structure in its type, must conform to the packet specification. A mismatch
between the specification and implementation will result in a compile-time type error.

For example, we may define a simple packet description simplePacket consisting of two null-
terminated strings.

simplePacket : PacketlLang
simplePacket = do

cstring

cstring

We may then define an instance of this packet using the mkTy function, which translates the
description into IDRISs types using the simplePacket description we have already defined. This relies
on the use of type-level computation: we construct the IDRris type for the implementation, and then
may type check our implementation against this.

simplePacketInstance : (mkTy simplePacket)
simplePacketInstance = "Hello" ## "World!"

mutual
data PacketLang : Type where
CHUNK : (c : Chunk) -> PacketLang
IF : (test : Bool) ->
(yes : PacketLang) ->
(no : PacketLang) ->
PacketLang
(//) : PacketLang -> PacketlLang -> PacketlLang
LIST : PacketLang -> PacketlLang
LISTN : (n : Nat) -> PacketlLang -> PacketlLang
NULL : PacketLang
(>>=) : (p : PacketLang) -> (mkTy p -> PacketlLang) -> PacketLang

—— Packet language decoding
mkTy : PacketlLang -> Type

mkTy (CHUNK c) = chunkTy c

mkTy (IF x t e) = if x then (mkTy t) else (mkTy e)
mkTy (U // r) = Either (mkTy 1) (mkTy r)

mkTy (LIST x) = List (mkTy x)

mkTy (LISTN n a) = Vect n (mkTy a)

mkTy NULL = ()
mkTy (c >>= k) = (x *xx mkTy (k x))

Figure 7.8: Constructs in the PacketLang DSL
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Figure 7.8 details the core PacketLang language constructs. These are described in more detail
below.

IF
The IF construct takes a Boolean test parameter, along with two PacketlLang descriptions. If
the Boolean test evaluates to true, then the program will attempt to unmarshal the next part
of data according to the first PacketLang argument, but will attempt to unmarshal using the
second PacketLang description should the test evaluate to false.

(77)
The (//) construct denotes choice, and corresponds to the sum type Either. The constructor
takes two arguments, which are possible packet descriptions.

LIST
The LIST construct specifies to a list of arbitrary length, and corresponds to the IDR1s List
type. The construct takes a PacketlLang parameter, which specifies the type of the list.

LISTN
The LISTN construct is a bounded list, containing n values, where n is a natural number specified
in the constructor.

NULL
The NULL construct indicates that nothing should be parsed and no input consumed or written.
It corresponds to the unit type ().

(>>=)
The (>>=) construct denotes sequencing within the language. Since IDRIs makes use of
ad-hoc syntax overloading, overloading the bind function allows us to make use of do-notation
to specify packets. Since some packet specifications may depend on the form of data earlier in
the specification, standard monadic binding syntax allows for fields in the specification to be
given names, and used in later constructions.

The (>>=) construct takes in two arguments: a PacketLang specification p, and a continuation
function k making use of the decoded value of p. The Ibris type corresponding to the binding
construct is a dependent pair or X-type ((x ** mkTy (k x)). This allows the types of later
values to depend on values specified earlier in the packet.

In order to avoid the need to pattern match on multiple nested dependent pairs, we define a
syntax macro (x ## y) which corresponds to the dependent pair (x ** y), but reassigns the
associativity in such a was as to avoid the need to add extra parentheses.

The CHUNK construct specifies a chunk of binary data. The Chunk data type, as shown in Figure
7.9, specifies several different types of binary data. These abstract specifications are mapped to
concrete IDR1S data types through the use of the chunkTy function.

Bit The Bit data type represents an positive integer represented using width bits. Constructing an
instance of this requires a proof that the bit width is nonzero, but for statically-determinable
bit sizes, we may make use of the possibility to specify a default proof to attempt to satisfy this
obligation.

The so type is defined as follows:

data so : Bool -> Type where
oh : so True
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data Chunk : Type where
Bit : (width : Nat) -> so (width > 0) -> Chunk
CBool : Chunk
CString : Chunk
LString : Int -> Chunk
Prop : (P : Proposition) -> Chunk

chunkTy : Chunk -> Type
chunkTy (Bit w p) = Bounded w
chunkTy CString = String
chunkTy (LString i) = String
chunkTy (Prop p) = propTy p
chunkTy (CBool) = Bool

Figure 7.9: The Chunk data type

As there is no constructor which may generate an instance of type so False, it is uninhabited. It
follows, therefore, that if the predicate specified in the type is false, then the type is uninhabited
and no proof exists.

bit : (w : Nat) -> {default tactics { refine oh; solve; }
p:so (w>0)1}
-> Chunk
bit w {p} = Bit w p

In this case, the bit function takes a Nat specifying the bit width, and attempts to discharge
the proof obligation by applying the oh constructor. If the Boolean condition specified in the
type holds, then the proof obligation will be automatically discharged. If the condition can be
statically determined to be false, or there is not enough static information, then this will result
in a compile-time type error.

The corresponding IDRr1s type is Bounded, which is defined as follows:

data Bounded : Nat -> Type where
BInt : (x : Int) ->
(prf : so (x < (pow 2 i))) ->
Bounded i

The Bounded type is parameterised over a Nat, which specifies the maximum number of bits
required to hold a number of that type. For example, if we have a type of Bounded 5, we may
store a value which may be contained in 5 bits (between 0 and 31).

The Bounded type is declared as follows:

data Bounded : Nat -> Type where
BInt : (x : Int) ->
(prf : so (x < (pow 2 i))) ->
Bounded i

Since i is unbound in the type and data constructors, it is implicitly bound to the Nat in the
type constructor, referring to the maximum number of bits bounding the value.
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In order to construct a value of type Bounded i, we must also supply a proof that the given
value will fit in that number of bits. If this is statically determinable, the proof obligation may
be discharged as above. If not, which is more often the case, we may make use of the choose
function defined in the Prelude, which gives takes a Boolean as its argument, returning either
a proof that it is true or a proof that it is not true.

CBool

The CBool data type represents a Boolean value, and is stored as a 1-bit flag within the raw
binary data. The corresponding IDR1s type is Bool. As would be expected, if the flag is set to 1,
then the unmarshalled Boolean value is True and False if not.

This data type was not present in the original version of PacketLang [7], as flags could be
represented as 1-bit bounded integers. Since Boolean flags are heavily used within packets,
however, they have been included as a data type in their own right for ease of use.

CString

The CString data type represents a string of characters of variable length, terminated by a null
character in the binary data. The corresponding IDr1s type is String.

LString

The LString data type represents a string of characters of fixed length. It is important to note
that this length is not written to the packet as it can be determined from the specification. The
corresponding IDRIs type is again String.

Decodable

Prop

36

The Decodable data type represents an integer within a packet description which may be
decoded into a particular data type.

Decodable : (n : Nat) ->
(t : Type) ->

(Bounded n -> Maybe t) ->
(

t -> Bounded n) -> Chunk

The first parameter specifies the number of bits to store the encoded value. The second
parameter specifies the type of the decoded value. The third parameter is a decoding function,
which specifies a partial mapping from the bounded number to its data type representation.
The fourth parameter is a total mapping from the data type to its bounded counterpart.

The corresponding IDRIs type is the type specified by the t parameter.

The Prop data type represents a proposition about the data. This is not written to the packet,
but exists to ensure that data conforms to certain constraints.

Propositions about the data are specified by the Proposition data type.

data Proposition : Type where

P_EQ : DeckEq a => a -> a -> Proposition

P_BOOL : Bool -> Proposition

P_AND : Proposition -> Proposition -> Proposition
P_OR : Proposition -> Proposition -> Proposition

—— Decode propositions into Idris types.
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propTy : Proposition -> Type

propTy (P_EQ x y) = x=y

propTy (P_BOOL b) = so b

propTy (P_AND s t) = Both s t

propTy (P_OR s t) = Either (propTy s) (propTy t)
P_EQ

The P_EQ proposition states that two given values are decidably equal: that is, as well as
determining that two values are equal, we may also provide a proof that this is the case.

In order to do so, we make use of the DecEq type class. Instances of this type class must
implement the decEq function:

class DecEq t where
total decEq : (x1 : t) ->
(x2 : t) ->
Dec (x1 = x2)

The decEq function tests for equality, returning either a proof that the two values are equal,
or a proof that they are not. This proof may then either be used by the user to satisfy a proof
obligation imposed by the proposition, or by the unmarshalling code to prove that the data
satisfies the proposition.

P_BOOL
The P_BOOL proposition states that a given Boolean value is true. This is again done using the
so type, using the oh data constructor if the condition holds.

P_AND
The P_AND proposition states that two other propositions hold.

The implementation of this has been rewritten since the original PacketLang implementation,
and corresponds to an Ipr1s type Both.

data Both : Proposition -> Proposition -> Type where
MkBoth : (propTy a) ->
(propTy b) ->
Both a b

The Both data type is parameterised over two propositions a and b. In order to create a value
of type Both a b, it is necessary to specify proofs that both propositions hold.

P_OR
The P_OR proposition states that either one of two propositions holds. This naturally cor-
responds to the sum type Either, and in order to create a value of type Either a b, it is
necessary to specify either a proof of a using the Left data constructor, or a proof of b using
the Right data constructor.

7.3.2 PacketLang Syntax

In order to make writing PacketLang specifications more user-friendly, we make use of the syntax
rewriting rules provided by Ipris. This results in the grammar of valid PacketlLang expressions
shown in Figure 7.10.

Expressions using these syntax rules are translated through two translation functions S (Figure
7.11), which translates core PacketlLang constructs and binary chunks, and P (Figure 7.3.2), which
translates propositions.
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(pl) == do (ds)

(ds) == (string) < (item) (ds) | (item) (ds) | (item)

(item) ::= bits (nat)

check (bool)

Istring (nat)

cstring

listn (nat) (item)

list (item)

p_if (item) "then’ (item) "else’ (item)
p_either (item) (item)

bool

decodable (nat) (type) (function) (function)

prop (prop)

(prop) ::= prop_bool (bool)

prop_or (prop (prop)) (prop (prop))
prop_and (prop (prop)) (prop (prop))
prop_eq (eq) (eq)

Figure 7.10: Syntax for the PacketLang DSL

S[bitsn] — CHUNK (bit n) (if n > 0)
S[ check b ] — CHUNK (bit n)

S[ cstring | — CHUNK (CString)

S[ lstring n | +— CHUNK (LString n)

S[ bool ] — CHUNK (CBool)

S[null] — CHUNK (NULL)

S[ decodable n ty fnl fn2] +~ CHUNK ((Decodable n ty fnl fn2))
S[listnnt] — LISTN n t

S[ list t] — LIST t

Slp-ifpte] —IFpte

S[ p_either pl p2] — (pl // p2)

S[propp] — CHUNK (Prop P[p])

Figure 7.11: Syntax rewrite rules for the core PacketLang DSL

Pl prop_bool b] — (P_BOOL b)

P prop_or (prop pl) (prop p2) ] > (P_ORP[p1] P[p2])
Pl prop_and (prop pl) (prop p2)] +~— (P_AND P[pl] Plp2])
Pl prop_eq el e2] — (P_EQ pl p2)

Figure 7.12: Syntax rewrite rules for propositions within PacketLang
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7.4 Process Effect

IDRI1S supports message-passing concurrency using the existing System.Concurrency.Raw (using
untyped messages) and System.Concurrency.Process (using channels parameterised over a type).
This works with the help of runtime system support: new VM instances may be spawned, and
messages are sent between them by copying memory regions.

A problem with this in its existing form, however, is that it is incompatible with the Effects
framework, as it works directly on top of the I0 execution context. By implementing the module as
an effect, it allows concurrency within effectful programs.

The Process effect is parameterised over a message type, which is used to communicate between
threads. Handles to processes are represented as raw pointers: since these are inherently unsafe,
they are typically wrapped within a data type. We specify a type ProcPID, parameterised by the
message type.

data ProcPID msg = MkPPid Ptr
We then define a resource, Running, again parameterised over the message type.

data Running : Type -> Type where
MkProc : Running mty

Spawned threads are designed to be used with the Effects framework, and as such we define
a type synonym RunningProcessM which specifies the message type, execution context, input and
output effects of the channel.

RunningProcessM : (mTy : Type) ->
(m : Type -> Type) ->
List EFFECT ->
List EFFECT ->
Type
RunningProcessM mty m effs effs' =
Eff m () ((PROCESS (Running mty)) :: effs)
(\_ => (PROCESS (Running mty)) :: effs')

The effect itself consists of operations for sending and receiving messages, checking whether
messages have been received, and getting the local process ID. These are implemented by making
calls to the functions within System.Concurrency.Raw, which in turn make calls to the runtime
system.

Spawning a new thread involves specifying a message type, a function of type RunningProcessM,
and an initial environment for the effects used within the thread. The handler function then spawns
a new thread using the fork function, using the runInit function to run the effect.

handle MkProc (Spawn ty proc env) k = do
ptr <- fork (runInit (MkProc :: env) proc)
k (MkPPid ptr) MkProc

39



7. DESIGN

40

data Process : Effect where

Spawn : (mty : Type) ->
RunningProcessM mty IO effs effs' ->
Env I0 effs ->
{ (Running mty') } Process (ProcPID mty)

— Returns true if there's a message waiting in this process' mailbox,
— false if not

HasMessageWaiting : { (Running mty) } Process Bool

—— Sends a message to a given process

SendMessage : ProcPID mty -> mty -> { (Running mty) } Process ()
—— Receives a message from a given process

RecvMessage : { (Running mty) } Process mty

RecvMessageAddr : { (Running mty) } Process (ProcPID mty, mty)
—— Gets local PID

GetID : { (Running mty) } Process (ProcPID mty)

Figure 7.13: The Process Effect



CHAPTER 8

Implementation

In Chapter 7, we detailed the design of the network library and its components. In this chapter, we
detail the implementation: the data structures, design patterns and algorithms used, the implementa-
tion challenges and their solutions, and examine example applications.

8.1 Socket Library

As described in Section 7.2.1, the socket library is implemented as a thin wrapper over the C sockets
library in order to maximise flexibility for developers whilst still providing high-level, functional
bindings. In order to implement this, we must have a method of executing native code: this is
provided by the Ipr1s foreign function interface (FFI).

8.1.1 Socket creation

The C sockets API is a standard abstraction over network functionality. A socket in this case is a
handle which may be used in subsequent network operations. It is firstly necessary to initialise a
socket by using the socket function call:

int socket(int domain, int type, int protocol);

The domain parameter denotes the address family of the socket. In practice, this corresponds
as to whether the socket should be an IPv4 or IPv6 socket. In some circumstances, this may be left
unspecified.

The type parameter specifies the type of socket to create. In practice, this specifies whether to
create a stream (TCP) socket, or a datagram (UDP) socket. The protocol parameter specifies the
protocol to be used. Generally this can simply be set to zero.

This functionality is exposed within Ibr1s through the following function declaration:

socket : SocketFamily ->
SocketType ->
ProtocolNumber ->
I0 (Either SocketError Socket)

In this code SocketFamily and SocketType are ADTs which specify the address family and
socket type respectively. ProtocolNumber is a type synonym for Int.

The return type of this is either a SocketError, which is a type synonym for Int, or a Socket
record.
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Later operations may need to make use of the parameters used when constructing this socket,
and as such these are stored alongside the socket descriptor in the Socket record. This is defined as
follows:

record Socket : Type where

MkSocket : (descriptor : SocketDescriptor) ->
(family : SocketFamily) ->
(socketType : SocketType) ->
(protocolNumber : ProtocolNumber) ->
Socket

This also proveds a level of encapsulation over the SocketDescriptor field, which is simply a
type synonym for Int.

Since the function call does not require any complex arguments or special setup, meaning that
we may simply translate the ADT representations of the address family and socket type into their
corresponding integer codes, and make a foreign function call:

socket : SocketFamily ->
SocketType ->
ProtocolNumber ->
I0 (Either SocketError Socket)
socket sf st pn = do
socket_res <- mkForeign (FFun "socket" [FInt, FInt, FInt] FInt)
(toCode sf) (toCode st) pn

if socket_res == -1 then —— error
map Left getErrno
else

return $ Right (MkSocket socket_res sf st pn)

A common approach to reporting errors in C is to return —1, and set a variable called errno with
an integer detailing the error that has occurred. In order to check whether an error occurred, we
must therefore check whether or not the result of a socket function is —1, and if so, retrieve the value
of errno.

This is simply implemented by writing an accessor function in the C helper library, and making a
foreign function call.

int idrnet_errno() {
return errno;

}

getErrno : I0 Int
getErrno = mkForeign (FFun "idrnet_errno" [] FInt)

If successful, the return value of the socket function call will refer to the descriptor of the
newly-created socket, which may then be used to construct a Socket instance.

8.1.2 Socket Binding

In order to listen for connections (in the case of TCP sockets) or data (UDP sockets), it is necessary to
first bind to an address and port.
The C socket function bind is defined as follows:

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);
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The function requires a socket descriptor, a struct sockaddr pointer detailing the address and
port to which the socket should be bound, and an integer detailing the length of the given struct
sockaddr. Since the IDRr1s FFI does not provide an easy method to marshal a C structure, this
functionality is delegated to the C helper library.

The helper function idrnet_bind requires a socket descriptor, the address family, socket type, a
string detailing the remote host, and a port. Firstly, a struct sockaddr is populated through a call
to getaddrinfo(). If this succeeds, then the socket is bound using the populated structure. If either
stage of this computation fails, then —1 is returned and errno is set by the failing function. It is also
important to free the struct sockaddr that has been allocated at this point.

8.1.3 Listening on a Socket
To listen on a socket, we make use of the listen() function, which is defined as follows:
int listen(int sockfd, int backlog);

The listen() function requires a socket descriptor and a backlog parameter, which defines the
maximum number of queued connections to accept prior to refusing additional connections.

Since both parameters are primitives, we may call the function directly, without the need to use
the C helper library. The Ipr1is wrapper function simply makes the call, retrieving an error number if
necessary.

8.1.4 Accepting Clients
A listening stream socket may accept sockets through the use of the accept () function.
int accept(int sockfd, struct sockaddr xaddr, socklen_t *xaddrlen);

The accept () function requires the socket descriptor of the listening socket, a pointer to a struct
sockaddr to populate, and a pointer to a socklen_t to which the length of the populated structure
will be written.

The type of the Ibr1s accept binding is:

accept : Socket -> I0 (Either SocketError (Socket, SocketAddress))

In order to implement this, it is necessary to make multiple FFI calls, since we need both the
foreign socket descriptor and the remote socket address.

Accepting a client therefore involves firstly allocating enough memory to store the address
information about the remote host, which is achieved though a call to idrnet_create_sockaddr().
This is then used as an argument to the idrnet_accept() function.

int idrnet_accept(int sockfd, voidx sockaddr);

This function takes as its arguments the socket descriptor of the listening socket, and a pointer
to the memory we previously allocated. The C helper library then passes these arguments to the
underlying accept function, which returns either a new socket descriptor for the newly-accepted
client, or —1 if an error has occurred.

We then check whether an error occurred, freeing all allocated memory and returning the error
value if so. If not, then the final step is to unmarshal the socket address from the populated struct
sockaddr.

In order to do this, we use two further helper functions, idrnet_sockaddr_family() to retrieve
the address family, and idrnet_sockaddr_ipv4() to retrieve a string representation of an IPv4
address. This may then be parsed into a SocketAddress structure.
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8.1.5 Sending Data
8.1.5.1 Stream Sockets

Sending data with stream sockets assumes that a connection has already been set up between two
hosts. For this reason, it is not necessary to specify the remote host in the send call.

int send(int sockfd, const void *msg, int len, int flags);

As parameters, the send function takes a socket descriptor, a pointer to a buffer containing the
data to send, the length of the buffer, and an integer containing any flags.

The send binding defined within the IdrisNet.Socket library takes a Socket record, and a
string to send over the network. This suffices for simple types of packets, especially those based on
textual data such as HTTP.

In addition to the send binding, we also provide a second function, sendBuf, which allows users
to specify a pointer to the buffer to be sent. We make use of this when implementing the PacketLang
DSL, the implementation of which is discussed in Section 8.4.

8.1.5.2 Datagram Sockets

Datagram sockets such as those used with UDP behave differently, as they do not require a connection
to have been established prior to data being sent. Sending data using datagram sockets is instead
done through the use of the sendTo function, which additionally requires some additional parameters
specifying the destination address.

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *xto, socklen_t tolen);

In order to send data using this function, it is firstly necessary to create a struct sockaddr
structure. The IDpRr1s binding to this function is defined as follows:

sendTo : Socket ->
SocketAddress ->
Port ->
String -> IO (Either SocketError BytelLength)

To help marshal arguments from IDR1s structures to the required C arguments, we define a
function idrnet_sendto in the C helper library.

int idrnet_sendto(int sockfd, charx data,
charx host, int port, int family)

The file descriptor, string data and port may be used directly in the FFI call, and it is trivial
to output a textual representation of the SocketAddress and SocketFamily arguments. The C
helper library then uses these arguments to populate a struct sockaddr structure through a call to
getaddrinfo, which may then be passed to the sendto function.

The sendToBuf function allows developers to specify a pointer to the data they wish to send, as
with the sendBuf function.

8.1.6 Receiving Data
8.1.6.1 Stream Sockets
Receiving data is done through the use of the recv function.

int recv(int sockfd, void xbuf, int len, int flags);
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The recv function takes as its arguments a socket descriptor, a pointer to a buffer into which
the received data should be stored, the length of the buffer, and an integer detailing any flags. If
successful, the function will return the number of bytes read into the buffer. If the remote socket has
been closed by the remote host, then calls to recv will return 0.

In order to both retrieve the received data and ascertain the result of the operation, we define the
structure idrnet_recv_result, which stores the result and a pointer to the received data, and the
helper operation idrnet_recv.

typedef struct idrnet_recv_result {
int result;
void* payload;

} idrnet_recv_result;

voidx* idrnet_recv(int sockfd, int len);

The idrnet_recv function returns a pointer to a idrnet_recv_result struct. The result of the
call and the retrieved data may be accessed using the idrnet_get_recv_res and idrnet_get_recv_payload
functions. After the required data has been extracted from the structure, it is freed using the
idrnet_free_recv_struct function.

8.1.6.2 Datagram Sockets

As with sending data, datagram sockets do not require a pre-established connection to receive data.
Instead, datagram sockets must bind to a socket and through a call to the recvfrom function, receive
data and populate a struct sockaddr detailing the address information of the remote host from
which the data was received.

As would be expected, the recvfrom function in C takes the same arguments as the recv function,
but also requires a pointer to a struct sockaddr to be populated, along with a pointer to an integer
into which the length of the populated structure will be stored.

int recvfrom(int sockfd, void xbuf, int len, unsigned int flags,
struct sockaddr xfrom, int xfromlen);

At the IDR1s level, we wish to return either an error if any operation failed, or a 3-tuple detailing
the address information of the remote host, the received data, and the length of the received data.

recvFrom : Socket ->
ByteLength ->
I0 (Either SocketError
(UDPAddrInfo, String, BytelLength))

To implement this functionality, we firstly define a structure to hold the result of the recvfrom
operation, the received data, and a pointer to a struct sockaddr detailing the address of the remote
host.

typedef struct idrnet_recvfrom_result {
int result;
void*x payload;
struct sockaddr_storagex remote_addr;
} idrnet_recvfrom_result;

We then define a function in the C helper library, idrnet_recvfrom(), which takes in the socket
descriptor of a bound datagram socket and the length of data to be received, which returns a pointer
toa idrnet_recvfrom_result structure.
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voidx idrnet_recvfrom(int sockfd, int len)

Internally, this function allocates memory for struct sockaddr and idrnet_recvfrom_result
structures and clears the allocated memory. It also allocates a buffer into which the retrieved data
will be stored, clears this, and performs the underlying call to recvfrom(). The buffer is also
null-terminated so that it may be safely sent over the FFIL. The result, populated struct sockaddr
structure, and pointer to the data buffer are all stored in the allocated idrnet_recvfrom_result
structure and a pointer to this is returned. These can then be retrieved using accessor functions.

8.2 TCP Library

The dependently-typed TCP bindings are implemented through the use of the Effects library.
Implementing an effect using this approach can be broken down into three steps: writing an abstract
effect, which specifies the operations, their pre- and postconditions, and return types; writing handler
functions which handle the abstract effect within an execution context; and finally writing wrapper
functions which effectively “promote” an abstract effectual operation into a concrete operation which
may be used within effectual programs.

In this section, we detail the implementation of the TCPClient and TCPServer effects. Whereas
Section 7.2.3 details the design of the effects: that is, the state transitions and the safety guarantees
that are given, this section instead concentrates on how these are implemented, paying specific
attention to the handler functions.

8.2.1 Client

The TCPClient effect involves three possible states: uninitialised (signified by the unit resource ());
ClientConnected, signifying that a connection has been successfully established to a remote host;
and ErrorState, denoting that a fatal error has occurred during a socket operation and therefore
the socket may not be used for further operations. These are concretely implemented as two ADTs,
with constructors containing the Socket record.

data ClientConnected : Type where
CC : Socket -> ClientConnected

data ErrorState : Type where
ES : Socket -> ErrorState

The Socket record, detailing the socket used in the current connection, is stored in these resources
so that it may later be used by effectual operations. It is important to note that this is completely
hidden from the developer: at no point will they have to manually specify the socket to be used.
The socket is also retained by the ErrorState state, so that the resources may be released by the
Finalise operation.

After specifying the abstract TCPClient effect as in Section 7.2.3.1, it is necessary to promote
this to a concrete effect: that is, one which may be used in effectual operations and may optionally
carry a resource. This is achieved by defining a type constructor TCPCLIENT which is of kind
Type -> EFFECT, where EFFECT is a type with a constructor MKETf, and Type is the type of a
resource. MKEff takes as its arguments the type of a resource, and an abstract effect.

TCPCLIENT : Type -> EFFECT
TCPCLIENT t = MKEff t TCPClient

In order to handle failure, the Effects library allows state transitions to be predicated on the
result of the previous operation. For example, for the Connect operation, we wish to remain in the
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uninitialised state if the connection is unsuccessful, and transition into the ClientConnected state if
the connection was successfully established. Let us revisit the definition of the Connect operation.

data TCPClient : Effect where
Connect : SocketAddress ->
Port -> {() ==> interpConnectRes result}
TCPClient (SocketOperationRes Socket)

Looking at each part of this operation in turn, we see that it firstly takes two arguments
SocketAddress and Port, specifying the remote host to which a connection should be attempted.
More importantly, we then see the type of the effect. Breaking this down, we firstly specify the pre-
and post-conditions:

{() ==> interpConnectRes result}

This specifies that in order to perform this operation, we must firstly be in the uninitialised state.
The result of the operation is bound to the variable result, which is used to calculate the state
after the operation. We then specify the type of the effect, TCPClient, and the type of the result
(SocketOperationRes Socket).

The interpConnectRes may then use this to calculate the type of the output resource.

interpConnectRes : SocketOperationRes a -> Type
interpConnectRes (OperationSuccess _) = ClientConnected
interpConnectRes _ = ()

We use the same technique to encode the result of other socket operations which require a
connection and may fail, through the interpOperationRes function.

interpOperationRes : SocketOperationRes a -> Type
interpOperationRes (OperationSuccess _) = ClientConnected
interpOperationRes (FatalError _) = ErrorState
interpOperationRes (RecoverableError _) = ClientConnected
interpOperationRes ConnectionClosed = ()

The next step is to write handler functions for each of the operations, which specify how the
abstract effect is handled within the underlying execution context. Since we wish to make calls to
the socket library, we must use an execution context which supports this, such as I0.

Most of the program logic is present in the IdrisNet.Socket module. The job of the effect
handlers in this case is firstly to call the socket library with the correct parameters: for example,
AF_INET and SOCK_STREAM for a TCP socket using IPv4, and secondly to interpret the results of the
socket functions and perform the correct state transitions.

To specify handlers for an effect, we create an instance of the multi-parameter Handler type class,
which is parameterised over the abstract effect and the execution context.

We look firstly at the handler for the Connect operation.

instance Handler TCPClient IO where
handle () (Connect sa port) k = do
sock_res <- socket AF_INET Stream 0
case sock_res of
Left err => k (FatalError err) ()
Right sock => do
conn_res <- connect sock sa port
if (conn_res == 0) then —— Success
k (OperationSuccess sock) (CC sock)
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else do
close sock
k (FatalError conn_res) ()

To handle an effect, we specify a function handle, taking the current resource, the operation, and
a continuation function k as its arguments. Recalling the type of the Connect operation, we may
pattern match to ascertain the SocketAddress parameter sa and the port, and use this in further
calls. Since we are running within the I0 context, we may make calls to the Network.Socket library
within the handler function.

We firstly attempt to create a new socket, through the use of the socket function. If unsuccessful,
then this will return an error value using the Left constructor. If this is the case, then we fail with a
fatal error and specify an empty resource by passing these as arguments to the continuation function.

If the function call was successful, then a populated Socket record will be returned using the
Right constructor. We then use this socket to try and connect to the remote host. If this is successful,
then we return OperationSuccess and update the resource to ClientConnected, using the CC
constructor. If not, then the socket is closed, FatalError is returned, and the resource remains
uninitialised.

The remaining operations follow the same pattern: they make calls to the Network.Socket
library, interpret the results, and update the resource as appropriate.

The final stage of implementing the effect involves defining simple wrapper functions around the
operations, allowing them to be used in effectful programs. For example, we define the wrapper
around the Connect operation:

tcpConnect : SocketAddress ->
Port ->
{ [TCPCLIENT ()] ==> [TCPCLIENT (interpConnectRes result)] }
Eff I0 (SocketOperationRes Socket)

tcpConnect sa port = (Connect sa port)

The type declaration for the tcpConnect function is almost identical to that of the abstract
Connect operation, except that it is of type Eff, and specifies the execution context and a list of
concrete effects and their associated resources.

8.2.2 Server

The TCPServer effect has a slightly more complex resource usage protocol, in that a server socket
may be uninitialised, bound, listening, or in an error state, but these are implemented in the same
manner as the TCP client effect.

Of particular note is the method by which we handle new clients. Recall that when accepting a
client, we must specify a function of type ClientProgram.

ClientProgram : Type -> Type
ClientProgram t = {[TCPSERVERCLIENT (ClientConnected)] ==>
[TCPSERVERCLIENT ()]} Eff IO t

A function of type ClientProgram operates on the socket opened by accepting a client, and must
close all open resources when it finishes execution. In order to implement this functionality from
within the handler for the Accept operation, we call the runInit function from within the handler
function.

handle (SL sock) (Accept prog) k = do
accept_res <- accept sock
case accept_res of
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Left err => do
if err == EAGAIN then
k (RecoverableError err) (SL sock)
else
k (FatalError err) (SE sock)
Right (client_sock, addr) => do
res <- runInit [(CC client_sock addr)] prog
k (OperationSuccess res) (SL sock)

The runInit function takes an initial environment, and runs an effectful program. In this case,
we initialise the environment with the client socket and remote address, and run the given program.
After this function has finished executing, the remainder of the server program executes.

8.3 UDP Library

Both the UDP server and client effects are implemented in exactly the same fashion as above,
but instead initialise the socket with the Datagram socket type, and make use of the sendto and
recvfrom functions instead of send and recv.

8.4 Packet DSL

As described in Section 7.3, the core DSL constructs are implemented through the use of induction-
recursion in order to simultaneously define the data type and functions on the data type.

The mkTy function translates between DSL constructs and their corresponding IDR1s types. We
similarly use type-level computation in the form of the chunkTy function translate between Chunk
declarations and their corresponding types, and propTy to translate propositions.

8.4.1 Calculating Packet Length

Calculating the length of a packet is achieved using the bitLength function, which takes as its
arguments the PacketLang description and its corresponding data.

bitLength (CHUNK c) x = chunkLength ¢ x

bitLength (IF True yes _) x = bitlLength yes x
bitLength (IF False _ no) x = bitlLength no x

bitLength (y // z) x = either (\l_x => bitLength y 1_x)

(\r_x => bitLength z r_x) x
bitLength (LIST pl) x = listLength pl x
bitLength (LISTN n pl) x = vectLength pl x
bitLength NULL _ =0
bitLength (c >>= k) (a ** b) = bitLength c a + bitLength (k a) b

To calculate the length of a IF construct, we match on the Boolean predicate: if this holds, then
we calculate the length of the argument based on the first packet description, whereas if it does not,
we calculate the length based on the second description.

To calculate the length of the // construct, we match on the constructor of the data, x using the
either function to get the packet specification, which is then used to calculate the length of the data.

Calculating the length of a LIST and LISTN constructs involves recursively calculating the sum of
the lengths of each element, using the pl description.

The binding construct (>>=) involves sequencing multiple constructs together. The binding
construct involves a packet language description ¢ and a continuation function k. Recall that the
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continuation function takes the value associated with ¢ as its argument, allowing it to be used in
further computations within the packet specification. The data associated with a binding construct is
a dependent pair consisting of the data corresponding to ¢, a; and the remaining data in the packet,
b. We firstly calculate the length of a, and secondly calculate the length of b by providing a as an
argument to the continuation function.

To calculate the length of a binary chunk, we make use of the chunkLength function.

chunkLength : (c : Chunk) -> chunkTy c -> Length
chunkLength (Bit w p) _ = natToInt w

chunkLength CBool _ =1

chunkLength CString str = 8 * ((strLen str) + 1)
chunkLength (LString len) str = 8 * len
chunkLength (Decodable n _ _ _) _ = natToInt n
chunkLength (Prop _) p =0

The length of a fixed-width number is the width. This is stored in the Bit chunk as a natural
number, and is converted using the natToInt function. The same applies for a decodable type,
which is stored as a fixed-width number. The length of a Boolean flag is one bit. The length of a
fixed-width string is the number of bytes required to hold the string, multiplied by 8 to get the length
in bits. The length of a null-terminated string is the length of the string, plus an extra character for
the null terminator, multiplied again by 8. As propositions are not written to the packet, they have a
length of zero.

8.4.2 Marshalling Data

The code to marshal and unmarshal data is contained within the IdrisNet.Packet library. The
first step is to create FFI calls to the bindata C helper library, which allows us to create a packet by
allocating a region of memory; set a byte at a given position; set a series of bits at a given position;
and write a string.

foreignCreatePacket : Int -> IO BufPtr

foreignSetByte : BufPtr -> Position -> ByteData -> IO ()
foreignSetBits : BufPtr -> Position -> Position -> ByteData -> I0 ()
foreignSetString : BufPtr -> Position -> String -> Int -> Char -> I0 ()

We next define a top-level function marshal, which takes a PacketlLang description and a
corresponding implementation, returning a tuple of type I0 (BufPtr, Length), where the result
of type BufPtr is a pointer (wrapped to add a layer of type-safety) to the raw packet in memory,
and Length is the length of the written packet.

marshal : (pl : PacketLang) -> (mkTy pl) -> IO (BufPtr, Length)

This function firstly uses bitLength to calculate the required buffer size, makes the FFI call to create
the packet buffer in memory, and calls the internal marshal’ function.

The internal marshal’ function requires an argument of type ActivePacket, which details the
maximum length of the packet and the current position to which data should be written. The result
is the length of data that was written: this may then be used to determine the position that the next
piece of data should be written.

data ActivePacket : Type where
ActivePacketRes : BufPtr -> BytePos -> Length -> ActivePacket

marshal' : ActivePacket -> (pl : PacketlLang) -> mkTy pl -> IO Length
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The rules for marshalling data according to PacketLang constructs are similar to those used to
calculate the length of a packet. To marshal an IF construct, we check the predicate of the construct,
marshalling according to the first given packet description if it holds and according to the second if
it does not. Marshalling the (//) construct involves again matching on the type of data using the
either function, marshalling according to the first packet description if the data was constructed
with the Left constructor, and according to the second packet description if the data was constructed
with the Right constructor.

Marshalling lists and vectors involves writing each item in turn, through the use of the marshallList
and marshalVect functions.

Recall once more the form of the binding construct (>>=), which takes a packet language
description c and a continuation function k, with an associated data value (a ** b), where a is the
data corresponding to c and b is the remaining data in the packet.

marshal' ap (c >>= k) (a *x b) = do
len <- marshal' ap c x
let (ActivePacketRes pckt pos p_len) = ap
let ap2 = (ActivePacketRes pckt (pos + len) p_len)
len2 <- marshal' ap2 (k x) y
return $ len + len2

To handle this, we firstly marshal b according to the PacketlLang specification a and record the
length. We then marshal the rest of the packet, applying x to the continuation function k to allow it
to be used in the rest of the specification. Finally, we return the sum of the data lengths.

8.4.2.1 Marshalling Chunks

Marshalling actual chunks of binary data is achieved through the use of the marshalChunk function.

marshalChunk : ActivePacket -> (c : Chunk) -> (chunkTy c) -> IO Length
marshalChunk (ActivePacketRes pckt pos p_len) (Bit w p) (BInt dat p2) = do
let len = chunkLength (Bit w p) (BInt dat p2)
foreignSetBits pckt pos (pos + (natToInt w) -
return len
marshalChunk (ActivePacketRes pckt pos p_len) CBool b = do
let bit = if b then 1 else 0
foreignSetBits pckt pos pos bit
return (chunkLength CBool b)

1) dat

To marshal a bounded integer, we call the foreignSetBits function, which makes an FFI call to
the underlying setPacketBits function. The function requires four arguments: the packet, the start
index, the end index, and the bits to set (encoded as an integer). As a Boolean value is a special case
of this, the same function is used. The same technique is used to marshal a Decodable chunk, after
applying the encoding function.

Marshalling strings is achieved through a call to the foreignSetString function, which calls
setPacketString in the C library. This function requires five arguments: the packet, the start
index, the string, the length, and a termination character. The same technique may be used for both
null-terminated and bounded strings.

8.4.3 Unmarshalling Data

To unmarshal data, we define a function unmarshal which takes as its arguments a packet language
description, a pointer to a data buffer, and the length of the packet.
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unmarshal : (pl : PacketlLang) ->
BufPtr ->
Length ->
I0 (Maybe (mkTy pl, BytelLength))

Parsing may fail, which is encapsulated through the use of the Maybe type. We name the packet
description p1, and use this in the return type. The function, as with marshalling, constructs an
ActivePacket instance, and calls the inner unmarshal’ function.

8.4.3.1 Unmarshalling PacketLang constructs

IF
To unmarshal according to the IF construct, we evaluate the Boolean predicate which will
either be a constant or be determined by data that has been previously unmarshalled. If this
evaluates to true, then we attempt to unmarshal the next section with the first given packet
description. If it evaluates to false, then we attempt to unmarshal the next section with the
second packet description.

(77)
To unmarshal according to the (//) construct, we firstly try and unmarshal the next section
using the first given PacketlLang description. If this succeeds, then we return the unmarshalled
data wrapped in the Left constructor, indicating that the first description was used. If it fails,
then we attempt to unmarshal with the second packet description. If this succeeds, we return
the unmarshalled data wrapped in the Right constructor.

LIST
In order to unmarshal according to the LIST construct, we repeatedly attempt to unmarshal
data using the given packet description until either we encounter data that fails to parse, or
we reach the end of the packet. This functionality is implemented using the unmarshallist
function:

unmarshallList : ActivePacket ->
(pl : PacketLang) ->
(List (mkTy pl), Length)
unmarshalList (ActivePacketRes pckt pos p_len) pl =
case (unmarshal' (ActivePacketRes pckt pos p_len) pl) of
Just (item, len) =>
let (rest, rest_len) =
unmarshallList (ActivePacketRes pckt (pos + len) p_len) pl in
(item :: rest, len + rest_len)
Nothing => return ([], 0)

We firstly attempt to unmarshal a piece of data using the packet description. If this succeeds,
then we offset the location by the length of the parsed data, and parse the rest of the list. If not,
then this is the base case and the empty list cell is returned, along with a length of zero. We
then build the list recursively.

LISTN
Unmarshalling a list with a fixed length is simply achieved by attempting to unmarshal exactly the
given number of data items, and putting these into a list. If parsing data fails at any point, then the
LISTN parse fails and Nothing is returned.
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(>>=)
Unmarshalling the binding operation works by firstly attempting to unmarshal data using the packet
language description c. If this is successful, we attempt to unmarshal the remainder of the data
through the use of the continuation function k, passing the unmarshalled value as an argument,
thereby allowing it to be used in further computations. If both of these unmarshalling operations
are successful, we return them in a dependent pair alongside the combined length. If either fail, the
entire parse fails and we return Nothing.

unmarshal' (ActivePacketRes pckt pos p_len) (c >>= k) = do
(res, res_len) <- unmarshal' (ActivePacketRes pckt pos p_len) c
(res2, res2_len) <-
unmarshal' (ActivePacketRes pckt (pos + res_len) p_len) (k res)
return ((res *x res2), res_len + res2_len)

8.4.3.2 Unmarshalling Chunks
Bit
To unmarshal a bounded integer, we firstly check to see whether the requested range of bits is

within the total length of the packet. If so, we call the foreignGetBits function, which is an
FFI call to the getPacketBits function in the bindata library.

CBool
Unmarshalling a Boolean value is a specialisation of the above procedure: we retrieve the value
of the bit at the current position, returning True if it is 1, and False otherwise.

Decodable
To unmarshal a Decodable value, we read in the integer using the foreignGetBits function,
and decode using the specified decoding function. If this decoding function succeeds, then the
value is extracted from the Just constructor and returned. If not, parsing fails.

CString
The process of unmarshalling a null-terminated string involves recursively unmarshalling a
byte at a time, until a null byte is reached. We define two functions: one an outer function
unmarshalCString, and one an inner function unmarshalCString’.

unmarshalCString : ActivePacket -> I0 (Maybe (String, Length))

unmarshalCString' : ActivePacket ->
Int ->
I0 (Maybe (List Char, Length))

The inner unmarshalCString’ function firstly checks to see whether the next character is
within the bounds of the packet. If so, then it retrieves the byte using the getPacketBits
function, translating the byte into an IDR1s character using the inbuilt chr function. This
character is then prepended onto the rest of the string, which is recursively calculated. If a null
character is encountered, this is treated as the end of the string and an empty list is returned.

The unmarshalCString function calls the inner function, and translates the list of characters to
a more efficient String type.

LString
Unmarshalling a string with a pre-specified length works in a similar way, but instead of
recursively retrieving each character until a null terminator is found, we retrieve the set number
of characters after checking that the string is within the range of the packet.
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8.4.3.3 Unmarshalling Propositions

P_EQ

Recall that the arguments of a P_EQ proposition must be members of the DecEq class, which
allows us to check whether or not the arguments are decidably equal: that is, we may construct a
proof of their equality.

To gain this proof (or ascertain that such a proof cannot be constructed), we use the decEq
function included in the IDpris prelude. This function returns a value of type Dec, which has
two constructors: Yes, indicating that the proposition in the type must hold, and No, indicating
that the proposition cannot hold. To construct a value of Yes, we must specify a proof that the
proposition holds, whereas to construct a value of No, we must specify a contradiction.

class DecEq t where
total decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)

data Dec : Type -> Type where
Yes : {A : Type} -> (prf : A) -> Dec A
No : {A : Type} -> (contra : A -> _|_) -> Dec A

By matching on the result of the decEq function, we may extract the equality proof if the result
is a value constructed using the Yes constructor, whereas we return Nothing if the value is
constructed using the No constructor.

P_BOOL

The P_BOOL proposition specifies that a given Boolean value must be true. This is translated
into the so type, which we may only construct using oh if the proposition holds. To construct
such a proof dynamically, we use the choose function from the prelude which returns either a
proof that a Boolean is true, or a proof that it is not. If it is, then we match on Left to get the
proof to return, returning Nothing if not.

P_AND

P_OR

8.5

The P_AND proposition indicates that two given propositions must hold. To construct such a
proof, we firstly recursively evaluate the results of both propositions, and if they both hold,
then we may construct a value of the Both type by providing both proofs.

The P_OR proposition indicates that at least one of two given propositions must hold. To
construct this proof, we firstly evaluate the first proposition: if this holds, then we return this
proof using the Left constructor. If it does not, we attempt to evaluate the second proposition.
If this holds, then we return it using the Right constructor. If neither hold, then the P_OR
proposition does not hold and we return Nothing.

Example Programs

In this section, we discuss how the different components of the system may be combined to create
example programs. We begin with a simple example, a TCP client / server system where the client
reads in input, sends it to the server, and waits for the server to repeat the data back.

We then examine two larger case studies: a PacketlLang encoding of DNS packets, and a
networked Pong game.
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8.5.1 Echo Client / Server
8.5.1.1 Server
We firstly begin by defining a function, setupServer, which binds to, and listens on, a server socket.

setupServer : Maybe SocketAddress -> Port -> Bool ->
{ [TCPSERVER (), STDIO] } Eff IO ()
setupServer sa port do_fork = do
putStr "Binding\n"
OperationSuccess _ <- bind sa port

| RecoverableError _ => return ()

| FatalError err => do
putStr ("Error binding: " ++ (show err) ++ "\n")
return ()

| ConnectionClosed => return ()
putStr "Bound\n"
OperationSuccess _ <- listen

| RecoverableError err => do

putStr ("Recoverable error: " ++ (show err))
closeBound

| FatalError err => do
putStr ("Error binding: " ++ show err)
finaliseServer

| ConnectionClosed => return ()
putStr "Listening\n"
if do_fork then forkServerLoop else serverLoop

Note that in the type declaration, we make use of two effects: TCPSERVER (), indicating that we
wish to use the TCPSERVER effect, and STDIO, indicating that we wish to communicate with standard
input and standard output. Since the associated resource with TCPSERVER is uninitialised both at the
start and end of execution, this means that all resources that are opened along any execution path
must also be closed.

In this function, we firstly attempt to bind to the given socket address and port by calling the
bind operation. If this is successful (indicated by a return value of OperationSuccess), we then
attempt to listen on the socket. If this also succeeds, then we proceed into the main server loop.
Failures are handled by printing a message detailing the notion of the failure, and, if resources have
been acquired by the point of failure, releasing the resources.

The next step is to define a client acceptance loop, serverLoop, which accepts clients as they
arrive.

serverLoop : { [TCPSERVER (ServerListening), STDIO] ==>
[TCPSERVER (), STDIO] } Eff IO ()
serverLoop = do
OperationSuccess _ <- accept receive

| RecoverableError _ => serverLoop
| FatalError err => do putStr ("Error accepting: " ++ (show err))
finaliseServer
| ConnectionClosed => return ()
serverLoop
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This function simply calls the accept operation using the receive function as the program to
execute. Once again, if failures occur then any associated resources must be released, as specified by
the type signature.

The receive function is merely a wrapper to introduce the STDIO effect. The main logic is then
defined in the receive’ function, which reads from the TCP socket, and if successful, writes the
same string back. If an error occurs, or the connection is closed, then the client socket is closed.

receive' : { [STDIO, TCPSERVERCLIENT ClientConnected] ==>
[STDIO, TCPSERVERCLIENT ()] } Eff IO ()

receive' = do
—— Receive
OperationSuccess (str, len) <- tcpRecv 1024
| RecoverableError _ => receive'
| FatalError err => do putStr ("Error receiving: " ++ (show err))
tcpFinalise
| ConnectionClosed => return ()
—— Echo
OperationSuccess _ <- tcpSend str
| RecoverableError err => do putStr ("Error sending: " ++ (show err))
tcpClose
| FatalError err => do putStr ("Error sending: " ++ (show err))
tcpFinalise
| ConnectionClosed => return ()
receive'

Finally, the main entry point of the application runs the setupServer effect with the required
arguments.

main : I0 ()
main = run (setupServer Nothing 1234 False)

8.5.2 Client

The client program is constructed in a similar manner: we firstly define a function echoClient to
attempt a connection using the tcpConnect function. If this succeeds, then we call a second function,
clientLoop, which retrieves input from a user, sends it to the server, and awaits and prints a the
response.

The code is very similar to that of the server.

8.5.3 DNS

The DNS packet system is of interest for several reasons: there are several invariants within the
packet that may be encoded using PacketLang; there are several points at which data in DNS packets
depends on previous values; and the compression system presents interesting challenges in packet
decoding.

While we implement some of the (backwards-compatible) changes implemented in subsequent
revisions of DNS, we concentrate mainly on the standard as defined in RFC 1035 [28]. The ASCII
diagrams that follow are taken from this RFC unless otherwise specified.
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8.5.3.1 Packet Specification

DNS Packets
All DNS queries and responses make use of the same general packet structure, shown in Figure 8.1

e +

| Header |

R +

| Question | the question for the name server
e +

| Answer | RRs answering the question
R +

| Authority | RRs pointing toward an authority
T +

| Additional | RRs holding additional information
e +

Figure 8.1: High-Level Overview of DNS Packets

Each packet begins with a Header section which details metadata regarding the rest of the packet.
Secondly, in the case of query packets, there may be one or more entries in the Question section,
which detail the type and data of the requests to be sent to the server. The final three fields have a
common format: that of a Resource Record (RR).

Header Section
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Figure 8.2: DNS Header Section

The header section shown in section 8.2 is as defined in RFC 2535 [9]: it supersedes that of the
original RFC1035 implementation by adding two extra flags in place of a previously reserved space.

The header section begins with a 16-bit unique identifier for the DNS request. The QR bit is unset
if the message is a query, and set if it is a response. The OPCODE field is a 4-bit number which details
the sort of query (for example, standard or inverse). The Z bit must be set to zero, and the RCODE
field specifies a response code detailing possible error codes.
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Additionally the header consists of four 16-bit integers QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT
detailing the number of questions, answers, name servers and additional records respectively.

To encode the header and the outer DNS packet structure in PacketlLang, we change the
interpretation of the header somewhat, and separate the record counts into the outer structure.
By doing this, we may more easily link the counts and the number of records to parse within the
structure.

dns : PacketlLang

dns = with PacketlLang do
header <- dnsHeader
gdcount <- bits 16
ancount <- bits 16
nscount <- bits 16
arcount <- bits 16
questions <- listn (intToNat $ val qdcount) dnsQuestion
answers <- listn (intToNat $ val ancount) dnsRR
authorities <- listn (intToNat $ val nscount) dnsRR
listn (intToNat $ val arcount) dnsRR

Figure 8.3: PacketLang representation of the outer DNS packet structure

Figure 8.3 shows the PacketlLang specification of a DNS packet.

We begin by specifying a dnsHeader implementation, followed by the four 16-bit integers
specifying the number of records in each of the sections. Since we may bind the values of these due
to the use of induction-recursion within the DSL definition, we may therefore use these values in
specifying the lengths of the fields. This ensures that the number of records within each section is
the same as the number of records specified within the packet. We must use the val and intToNat
functions to translate the bounded integer definitions into natural number representations for use
within the listn constructor.

The identifier and each Boolean flag are coded using the bits and bool constructs. The DNS
RFC demands that the reserved Z flag is zero: we encode this within the specification by inserting a
Boolean proposition check (not z) which ensures that this is the case. This means that it is not
possible to create a packet in which this invariant does not hold.

We also wish to ensure that only valid DNS opcodes and responses are used. It is also useful to
unmarshal these to an IDRr1s data type. We specify these invariants using the decodable construct,
which takes as its arguments the length of the integer representation, the data type to which the
encoded data should be unmarshalled, and decoding and encoding functions. Since there exists a
total surjective mapping from data type constructors to bounded integer representations, it can be
guaranteed that packets constructed using the given specification cannot specify an out-of-range
value for the OPCODE or RCODE fields.

Question Section

Each DNS question section consists of three components: a variable-length section detailing a
domain name, and two 16-bit integers detailing a question type and question class.

A DNS domain name is represented as a series of length-indexed strings, terminated by a null
byte. Additionally, the DNS specification defines a compression scheme which may be used on a
domain name, in which a pointer to a previous location in the packet may be used. More specifically,
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dnsHeader : PacketlLang
dnsHeader =
with PacketlLang do
ident <- bits 16
qr <- bool
opcode <- decodable 4 DNSHdrOpcode
dnsCodeToOpcode dnsOpcodeToCode

aa <- bool
tc <- bool
rd <- bool
ra <- bool
Z <- bool

check (not z)

ans_auth <- bool

auth_acceptable <- bool

decodable 4 DNSResponse
dnsCodeToResponse dnsResponseToCode

Figure 8.4: PacketlLang representation of a DNS Header
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Figure 8.5: DNS Question Structure
a DNS domain field can be defined as either a reference, or a series of length-indexed strings

terminated either by a null terminator or a reference. The distinction is made between a reference
and a string length marker by setting the highest two bits.

Figure 8.6 shows how the DNS domain representation scheme may be represented in PacketLang.

We define a function tagCheck which checks whether the two bits are set to a given value, returning
the bits and two equality proofs if so. To decode a DNS label, we firstly check whether or not the
first two bits are unset. If so, then the remaining 6 bits of the octet will determine the number of
characters in the string segment. If this is null, then we have reached the end of the domain and stop
parsing.

With this, the remainder of the DNS question section is easy to encode, as shown in Figure
8.5.3.1.

We specify that a dnsQuestion consists of a dnsDomain and two 16-bit integers that may be
encoded and decoded into DNSQType and DNSQClass instances respectively. Once again this provides
us with guarantees that no invalid types or classes may be encoded into the packet, and if a packet is
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tagCheck : Int -> PacketlLang
tagCheck i = do tagl <- bits 1
tag2 <- bits 1
let vl = val tagl
let v2 = val tag2
prop (prop_eq vl i)
prop (prop_eq v2 i)

dnsReference : PacketlLang
dnsReference = do tagCheck 1
bits 14

dnsLabel = do tagCheck 0
len <- bits 6
let vl = (val len)
prf <- check (vl /= 0)
listn (intToNat vl) (bits 8)

dnsLabels : PacketlLang
dnsLabels do list dnsLabel
nullterm // dnsReference

dnsDomain : PacketlLang
dnsDomain = dnsReference // dnsLabels

Figure 8.6: PacketLang specification of DNS domains

dnsQuestion : PacketlLang

dnsQuestion = do
dnsDomain
decodable 16 DNSQType dnsCodeToQType dnsQTypeToCode
decodable 16 DNSQClass dnsCodeToQClass dnsQClassToCode

Figure 8.7: PacketLang specification of DNS Question segment

to successfully parse, these must be correct.

Resource Record Section
Resource records encode the data associated with a response. These may be direct answers to a
query, data about a nameserver, or records containing additional information.

A resource record is specified in RFC1035 as shown in Figure 8.8.

The NAME field once again contains the DNS representation of a domain name as described in
the above scheme. The TYPE and CLASS fields specify the type and class of the resource record, and
therefore determine the form of the payload in the RDATA field. The TTL field is a 32-bit integer
detailing the validity of the data, and the RDLENGTH field specifies the length of the payload.

Figure 8.9 details the PacketLang specification for DNS resource records. We firstly specify the
DNS domain, and use the decodable construct to encode the TYPE and CLASS fields.

We then make use of an additional function, dnsPayloadLang, to calculate (based on the values
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Figure 8.8: DNS Resource Record Structure

dnsRR : PacketlLang
dnsRR = with PacketLang do
domain <- dnsDomain
ty <- decodable 16 DNSType dnsCodeToType' dnsTypeToCode'
cls <- decodable 16 DNSClass dnsCodeToClass' dnsClassToCode'
ttl <- bits 32
len <- bits 16 — Length in octets of next field
let pl_lang = dnsPayloadlLang ty cls
pl_data <- pl_lang
let data_len = (bitLength pl_lang pl_data) “div’ 8
prop (prop_eq (val len) data_len)

Figure 8.9: PacketlLang specification for a DNS Resource Record
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of the type and class) the specification to use to unmarshal the RDATA section. We also require a
proof that the length of the encoded payload is equal to the value given in the len field.

dnsPayloadLang : DNSType -> DNSClass -> PacketlLang
dnsPayloadLang DNSTypeA DNSClassIN = dnsIP
dnsPayloadLang DNSTypeAAAA DNSClassIN = null
dnsPayloadLang DNSTypeNS DNSClassIN = dnsDomain
dnsPayloadLang DNSTypeCNAME DNSClassIN = dnsDomain
dnsPayloadLang _ _ = null

Although we do not support the full range of DNS payloads, the A (IPv4 address), SOA (start
of authority), NS (nameserver) and CNAME (canonical name) suffice to demonstrate the required
concepts.

8.5.3.2 Packet Parser Implementation

Although the above PacketlLang specifications precisely dictate the structure and invariants of
packets, they remain at a fairly low level of abstraction: at this stage, if a packet successfully parses
then we know that it is valid and that all proof obligations have been satisfied, but the proofs are
likely of little use to users, and the data is not presented in a form in which it may be easily used.
Finally, it remains necessary to decode the references in the packet to their corresponding expanded
definitions.

As well as presenting the decoded data in a more accessible fashion, we do not wish for the
representation of the data to be less precise.

We firstly define a data type DNSPacket to represent a top-level decoded DNS packet. This retains
the correspondence between the count fields and the number of records in each section.

record DNSPacket : Type where
MKDNS :

(dnsPcktHeader : DNSHeader) ->
(dnsPcktQDCount : Nat) ->
(dnsPcktANCount : Nat) ->
(dnsPcktNSCount : Nat) ->
(dnsPcktARCount : Nat) ->
(dnsPcktQuestions : Vect dnsPcktQDCount DNSQuestion) ->
(dnsPcktAnswers : Vect dnsPcktANCount DNSRecord) ->
(dnsPcktAuthorities : Vect dnsPcktNSCount DNSRecord) ->
(dnsPcktAdditionals : Vect dnsPcktARCount DNSRecord) ->
DNSPacket

We may then also define a data type, DNSHeader, to represent a DNS header. Note that there is
no need to use dependent types in this section to represent the correspondence between the decoded
integer values for opcodes and response codes and their higher level representations, as the decoding
has been performed when unmarshalling the Decodable construct.

record DNSHeader : Type where
MkDNSHeader :
(dnsHdrId : Int) ->
(dnsHdrIsQuery : Bool) ->
(dnsHdrOpcode : DNSHdrOpcode) ->
(dnsHdrIsAuthority : Bool) ->
(dnsHdrIsTruncated : Bool) ->
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(dnsHdrRecursionDesired : Bool) ->
(dnsHdrRecursionAvailable : Bool) ->
(dnsAnswerAuthenticated : Bool) ->
(dnsNonAuthAcceptable : Bool) ->
(dnsHdrResponse : DNSResponse) ->
DNSHeader

In a similar vein, it is trivial to represent the DNS question segment.

data DNSQuestion : Type where
MkDNSQuestion :
(dnsQNames : List DomainFragment) ->
(dnsQQType : DNSQType) ->
(dnsQQClass : DNSQClass) ->
DNSQuestion

It is slightly more complex, however, to represent the resource records, as we must statically
represent the dependency between the type and class fields and the payload: that is, it should not be
possible to construct a DNSRecord instance with a payload that does not match the type and class
fields.

data DNSRecord : Type where
MKDNSRecord :

(dnsRRName : List DomainFragment) ->
(dnsRRType : DNSType) ->
(dnsRRClass : DNSClass) ->
(dnsRRTTL : Int) ->
(dnsRRRel : DNSPayloadRel dnsRRType dnsRRClass pl_ty) ->
(dnsRRPayload : DNSPayload pl_ty) ->
DNSRecord

This invariant may be encoded using several design patterns often used when programming with
dependent types. We firstly define a data type DNSPayloadType, which details the different types of
payload.

data DNSPayloadType = DNSIPv4
| DNSIPv6
| DNSDomain
| DNSSOA

We then define a generalised algebraic data type parameterised over each payload type.

data DNSPayload : DNSPayloadType -> Type where
DNSIPv4Payload : SocketAddress -> DNSPayload DNSIPv4
DNSIPv6Payload : SocketAddress -> DNSPayload DNSIPv6
DNSDomainPayload : List DomainFragment -> DNSPayload DNSDomain
DNSSOAPayload : DNSSoA -> DNSPayload DNSSOA

Recall the type of the dnsRRPayload field in DNSRecord:
dnsRRPayload : DNSPayload pl_ty

In this case, pl_ty is a value of type DNSPayloadType, and its value is calculated from the
dnsRRType and dnsRRClass fields.
We firstly calculate the payload type using the payloadType function:
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payloadType : DNSType -> DNSClass -> Either DNSParseError DNSPayloadType
payloadType DNSTypeA DNSClassIN = Right DNSIPv4

payloadType DNSTypeAAAA DNSClassIN = Right DNSIPv6

payloadType DNSTypeNS DNSClassIN = Right DNSDomain

payloadType DNSTypeCNAME DNSClassIN = Right DNSDomain

payloadType DNSTypeSOA DNSClassIN = Right DNSSOA

payloadType _ _ = Left PayloadUnimplemented

Once this is calculated, we must then find a way of linking the three values at the type level so
that they may be used to calculate other types. In order to do this, we create a relation between the
three types by specifying another GADT, DNSPayloadRel. This is parameterised over a type, class,
and payload type, and the constructors indicate the allowed combinations.

data DNSPayloadRel : DNSType -> DNSClass -> DNSPayloadType -> Type where
DNSPayloadRelIP : DNSPayloadRel DNSTypeA DNSClassIN DNSIPv4
DNSPayloadRelIP6 : DNSPayloadRel DNSTypeAAAA DNSClassIN DNSIPv6
DNSPayloadRelCNAME : DNSPayloadRel DNSTypeCNAME DNSClassIN DNSDomain
DNSPayloadRelNS : DNSPayloadRel DNSTypeNS DNSClassIN DNSDomain
DNSPayloadRelSOA : DNSPayloadRel DNSTypeSOA DNSClassIN DNSSOA

For example, the DNSPayloadRelIP relation may be used to state that a record of type DNSTypeA
and class DNSClassIN will have a payload type of DNSIPv4.

By providing a covering function, we may specify a type, class, and payload type and from this
retrieve a relation, should one exist.

getPayloadRel : (pl_ty : DNSPayloadType) ->

(ty : DNSType) ->

(cls : DNSClass) ->

Either DNSParseError (DNSPayloadRel ty cls pl_ty)
getPayloadRel DNSIPv4 DNSTypeA DNSClassIN = Right DNSPayloadRelIP
getPayloadRel DNSIPv6 DNSTypeAAAA DNSClassIN = Right DNSPayloadRelIP6
getPayloadRel DNSDomain DNSTypeCNAME DNSClassIN = Right DNSPayloadRelCNAME
getPayloadRel DNSDomain DNSTypeNS DNSClassIN = Right DNSPayloadRelNS
getPayloadRel DNSSOA DNSTypeSOA DNSClassIN = Right DNSPayloadRelSOA
getPayloadRel _ _ _ = Left PayloadUnimplemented

By then providing the relation, we may specialise the pl_ty variable within the type, refining the
dnsRRPayload field.

(dnsRRRel : DNSPayloadRel dnsRRType dnsRRClass pl_ty) ->
(dnsRRPayload : DNSPayload pl_ty) ->

Given this specialisation, only certain DNSPayload constructors may be used, meaning that we
have additional guarantees about the nature of the values of the payload: it is not possible to construct
a value of type DNSPayload DNSDomain using an IPv4 address, for example!.

With the packet specifications and these higher-level data types defined, the process of translating
between the two is relatively mechanical, so we omit most of the process here.

IThe current implementation does not, however, use a parameterised GADT representation of socket addresses. This
means that it is possible to create an instance of DNSPayload IPv6 using an IPv4 address, for example: this is more a
limitation of the socket library than the approach we use for DNS payloads, however.
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Some techniques worth mentioning, however, are firstly the process of constructing a bounded
integer: for example, in order to encode a header identifier, we must ensure that the identifier fits
into 16 bits. To do this, we use the isBounded function, which tries to create a proof that the given
value fits into the given number of bits, and if so, this is used in the BInt constructor. If not, then the
operation fails with an encoding error.

isBounded : (bound : Nat) ->
Nat ->
Either DNSEncodeError (Bounded bound)
isBounded b n =
case choose (i_n < (pow 2 b)) of
Left yes => Right (BInt i_n yes)
Right _ => Left $ OutOfBoundsError b n
where i_n : Int
i_n = natTolInt n

The other important implementation detail is the decoding of references. References are extracted
from the raw packet as bounded integers, and must be decoded into meaningful domains. This
process is achieved by specifying an effect, DNSParser, which has a cache of previously-decoded
references. When a reference is encountered, then the cache is firstly checked to see if it contains the
reference and its associated decoded value. If so, then this is returned. If not, then the reference is
parsed and the value cached.

This does, however, break some abstractions: in order to perform this, we must retain a pointer
to the packet buffer, which is not optimal, and repeat lookups that we have already done. This is a
limitation of the language as it stands, and we discuss this further in Section 9.

8.6 Putting it all together: Networked Pong

So far, we have seen how resource-dependent algebraic effects may be used to handle side effects
within programs in a composable way; how effects may be used to enforce resource usage protocols
in networked applications; how message-passing concurrency may be used within the Effects
framework; and how an embedded domain-specific language may be used to marshal and unmarshal
packet data.

This case study involves combining all of these components to create a larger application: a
networked version of the popular Pong video game released by Atari in 1972. The game involves
two players (or a player and a computer-controlled Al) each of whom control a paddle, hitting a ball
back and forth.

To implement Pong, we require several different effects:

* SDL? to draw graphics and handle user input.

* State to maintain the game state, such as the position of the ball and paddles.
e UDP Client to make UDP requests to the other client.

* UDP Server to receive UDP packets from the other client.

® Process to spawn a thread to receive update packets.

® StdIO to print messages to the console.

Zhttps://github.com/edwinb/SDL-1idris

65


https://github.com/edwinb/SDL-idris

8. IMPLEMENTATION

Additionally, we make use of PacketLang to specify the structure of the packets that are sent
between the clients.

We begin by defining a type synonym, Pong, which details a program making use of these effects.
Note that UDPSERVER is not included here, as it is used in the spawned thread as opposed to the
main thread.

Pong : Type -> Type -> Type
Pong s t = { [ SDL s
, STATE GameState
, STDIO
, UDPCLIENT
, PROCESS (Running GameMessage)] } Eff IO t

PongRunning : Type -> Type
PongRunning t = Pong SDLSurface t

The type constructor takes two parameters: the resource type of the SDL effect, denoting whether
the graphics library has been initialised or not, and the return type of the function. We additionally
define another type synonym, PongRunning, which specifies that the SDL library has been initialised.

The architecture of the application involves one peer which acts as a server, and sets and transmits
the motion of the ball. The position and velocity of the ball is transmitted every time it changes
direction, and its position is then updated locally. Both peers communicate the motion of their
respective paddles by sending a UDP packet upon the start and end of paddle motion.

We set up the UDP server by spawning a new thread, using the GameMessage data type to
communicate between threads.

setupUDP : Port -> PongRunning ()

setupUDP p = with Effects do
pid <- getPID
spawn GameMessage (networkHandlerThread p pid) [(), ()]
eventLoop

The networkHandlerThread function takes as its arguments the port on which to listen, and the
process ID of the main thread. Once this is spawned, it attempts to bind to the given port and listen
for status update messages. If messages are received and successfully unmarshalled, then they are
decoded into a GameMessage using the mkMessage function, and communicated to the main thread.

networkHandlerThread : Port ->
(mthread : ProcPID GameMessage) ->
RunningProcess
GameMessage IO [UDPSERVER (), STDIO]
networkHandlerThread p pid = with Effects do
putStr $ "Binding to port " ++ (show p) ++ "\n"
UDPSuccess _ <- udpBind Nothing p
| UDPFailure err => do putStr $ "Error binding: " ++ (show err) ++ "\n"
return ()
| UDPRecoverableError err => return ()
networkHandlerThread' pid

networkHandlerThread' : (mthread : ProcPID GameMessage) ->
RunningProcessM GameMessage I0
[UDPSERVER UDPBound, STDIO]
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[UDPSERVER (), STDIO]
networkHandlerThread' pid = with Effects do
UDPSuccess (_, Just (pckt, _)) <- IdrisNet.UDP.UDPServer.udpReadPacket statusUpdate 256
| UDPSuccess (_, Nothing) => do putStr "Error decoding status packet\n"
networkHandlerThread' pid
| UDPFailure err => do IdrisNet.UDP.UDPServer.udpFinalise
return ()
| UDPRecoverableError err => do IdrisNet.UDP.UDPServer.udpClose
return ()
let msg = mkMessage pckt
sendMessage pid msg
networkHandlerThread' pid

The main event loop of the game is as follows.

eventLoop : PongRunning ()

eventLoop = do
st <- get
handleNetworkEvents
continue <- handleKeyEvents !poll
updateRemotePaddlePos
paddle_updated <- updatelLocalPaddlePos
when paddle_updated (sendPaddleUpdate >>= \_ => return ())
if (isServer st) then serverEvents else updateBallPos
draw
when continue eventLoop

Firstly, handleNetworkEvents is invoked, which checks whether there are any messages queued
to be handled. If so, then the messages are handled by making any necessary changes to the state.
Secondly, poll is used to check to see whether the user has entered any input, and if so, this is
handled within the handleKeyEvents function which updates the game state. The paddles are then
updated, based on whether the up or down keys are pressed for each client. If the up or down keys
have been pressed, meaning that the paddle has changed direction, a packet is then sent to relay this
information to the remote client. The ball position is then updated, either by performing the relevant
collision checks and notifying the remote client of any changes, or by updating based on the current
velocities of the ball.

These functions all use different subsets of the available effects, but this is all handled automatic-
ally, without any need to lift any operations.
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CHAPTER 9

Evaluation

In this chapter, we evaluate the outcomes of the report to our original aims, and compare and
contrast to existing related work.

As discussed in Chapter 2, the objectives specified in the initial objectives document served
as possible avenues of exploration, and as such it soon became apparent that many of them were
unachievable in the time available.

Nonetheless, I believe that all of the revised objectives have been met successfully, and in doing
so, I believe the work has provided insights into how dependent types may be used in network
applications. We now examine the revised objectives, and discuss how they have been addressed
within this work.

Bindings to the C sockets library
This has been achieved by the Network.Sockets library. Using the IDr1s FFI and a C helper
library, high-level bindings to the C sockets library have been created. These have overcome the
limitations of the FFI only being able to return simple values at a time, and the limited set of
data types which may be sent, and provide a sufficient level of abstraction to allow developers
to work with this library in idiomatic code.

While most of the basic functionality has been implemented, some more advanced features
such as setting socket options has not. As this is not the central focus of the project, we leave
this to future work, should such functionality be required.

Verified bindings to TCP and UDP sockets

Using the Network.Socket library as a base, and making use of recent research on the Effects
framework, this goal has been achieved by the Network.TCP.TCPClient, Network.TCP.TCPServer,
Network.UDP.UDPClient, and Network.UDP.UDPServer modules. Achieving this goal was a
result of analysing the possible failure cases of such sockets, and modelling these as states
within an algebraic effect. As such, we have stated and proved several safety guarantees given

by these modules, and shown how they guard against mistakes commonly made by application
developers.

I believe that there are two main areas for improvement in this area. Firstly, in particular
with the TCP effects, I believe that the operations should make more use of a stream-based
abstraction instead of simply sending and receiving strings. Ideally, the user would not
have to specify a buffer size parameter, and this would be handled as part of the abstraction.
Implementation-wise, this would require keeping track of state within the effect, and reading
strings terminated by newlines, for example.
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The second area for improvement lies with the verbosity of having to handle possible failure
cases. In an ideal case, there would be some mechanism of functional exception handling
that would work with possibly-failing effects, which would assume successful execution, and
handle the different types of failures separately. This would lose us guarantees about exactly
which pieces of code had been executed, however. The new version of Effects has made
handling failures much easier, and the inline guarded failure handling syntax has made code
much more pleasant to write. While some extra code overhead is to be expected for verified
code, I believe we can still do better.

The PacketLang DSL

In my mind, this is the major achievement of this project. Due to the rapid development of
Ipr1s, the code used for PacketLang was obsolete and not easily fixable, and as such was
completely rewritten. In doing this, we have shown that the underlying theoretical concepts
present in the original paper were sound in that the redesigned language (including substantial
rewrites to the internals of the compiler) posed no barriers to the reimplementation of the DSL.

Additionally, newer language features such as type classes have aided in the reimplementation
of the language, adding additional power.

The next logical step with regard to PacketLang is to provide a formal translation to the Data
Definition Calculus [11], as described in Section 3.2.2.2. The DDC provides a strong underlying
formalism for data description languages, and a formal translation to this calculus would likely
yield dividends in terms of reasoning about its expressiveness.

PacketLang differs from PacketTypes [27], DataScript [1], PADS [10] and Protege [39] in that it
is an embedded domain specific language, and does not require an external compiler or type
system. In this sense, we may make use of the powerful type system provided by Ipr1s without
needing to implement something externally. These systems aim primarily to generate code for
other languages to make use of otherwise unstructured data. Our approach differs in that it has
more of a focus on verification: we aim to guarantee statically that if a packet implementation
does not conform to a specification, then the program will not compile.

Through a literature survey and the results of implementing a more significant case study, we
have identified two notable deficiencies in PacketLang. The first is that there is little scope for
error reporting: a packet either parses or it fails, without any facility to report errors.

The other limitation of PacketLang is more technical: it is currently not possible to recursively
nest PacketLang descriptions. To understand this, it is important to note that non-total
expressions are not reduced by the type-checker, in order to preserve decidability of type-
checking. Of course, in order to construct instances of, and match on, packets, we need packet
specifications to reduce.

Example Applications, including DNS and Pong

While small-scale, the example applications demonstrate how the verified bindings may be
used, and demonstrate that all work as intended. The end-result was more than satisfactory:
using PacketlLang, we implemented a verified version of DNS, encoding invariants within
the packet description itself. We could therefore guarantee that any packet implementation
accepted by the type checker was a valid DNS packet. Similarly, we could guarantee that if
a packet parsed successfully, it contained valid data. We also introduced higher-level data
structures to allow users to more easily construct DNS packets and work with DNS data,
using dependently-typed programming patterns such as relations and GADTs to preserve the
guarantees given in the specification and the higher-level data structures.

The encoding and decoding of DNS into higher-level data structures has been much simplified
through the introduction of the decodable construct: before its introduction, a multitude of



different proofs were required in order to state seemingly obvious facts: in one instance, the
code before the introduction of this construct was roughly 120 lines of inelegant boilerplate
code which existed purely to appease the type checker. After the introduction of this construct,
it was possible to reduce this to around 15 lines.

This emphasises the research nature of this project: at one point, a conclusion of this work
would have been that PacketLang was not adequate for specifying more complex packet
structures, whereas an additional chunk type made a huge difference to the expressiveness of
the language.

Of course, limitations still exist. The biggest problem is that decoding packets remains
inherently stateless, which led us to need to retain the pointer to the raw packet and re-
parse parts of the packet in order to decode references. The biggest challenge comes with
implementing this in a sufficiently generic way: while it would be simpler, and tempting, to
reimplement PacketLang in a manner which would easily support DNS, this would not be
general. In particular, after reimplementing and using the language, perhaps the best way
of achieving this would be to shift the focus of PacketLang from being purely declarative,
instead adding constructs for control purposes such as storing a value in a user-specified state,
or providing the ability for users to specify functions to be executed by the marshalling and
unmarshalling code.

The Pong case study highlights in particular the composable nature of effects: a monad
transformer with this number of inner monads would be far too complex to use effectively,
whereas it is achieved trivially using effects. Additionally, the Pong example serves as a
demonstration that the networking and concurrency effects may be easily integrated into a
larger application, and that even with simpler packets, PacketLang can help with transferring
structured data.
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CHAPTER 1 0

Conclusion

10.1 Key Achievements

This project has investigated how dependent types may be used in the domain of network program-
ming. Moving on from the traditional usage of dependent types for the purposes of theorem proving,
we have seen how IDRIs may be used to implement programs, and how the additional expressiveness
of dependent types may be used to increase confidence in the safety of applications.

At a basic level, we have implemented a socket library that may be used by IDRr1s developers to
create networked applications. This has been accepted into the main IDr1s distribution, which is an
open-source project.

Building on this, we have implemented TCP and UDP bindings which statically enforce resource
usage protocols, preventing incorrect usage and handle leaks. In addition to allowing resource usage
protocols to be enforced, these also allow for effects to more finely specified, resulting in greater
safety and modularity than similar libraries in other purely functional languages.

We have also reimplemented an embedded domain-specific language to precisely specify the
structure of packets, along with invariants about the data therein. By encoding invariants within the
packet language description itself, we may statically guarantee that it is impossible to erroneously
construct a packet which does not conform to the specification.

Through the implementation of a larger case study of DNS, we have identified ways in which
dependently-typed programming patterns may be used to great effect in representing data and
maintaining a congruence between lower-level precise representations and equally expressive higher-
level data types. The implementation of this larger case study has also led directly to improvements
to the DSL as it was originally presented.

The implementation of a networked Pong game serves to underline the composability of effects,
and how they may be used to structure programs. The example shows that the different contributions
of the project may all be combined to make a larger application, and that dependently-typed
languages can be used to develop larger programs involving networking and concurrency.

10.2 Current Drawbacks

At the same time, the implementation of DNS has uncovered areas which require suboptimal
workarounds to provide some required functionality, such as decoding references. Whilst it is still
possible to decode references by retaining and passing a pointer to the packet buffer, in an ideal
world this would not be necessary, and we have discussed possible ways in which this limitation
may be ameliorated.
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Additional concerns pertain to the amount of additional code required to handle failing cases
within the effectual TCP and UDP bindings. Recent syntax improvements have ameliorated this to
an extent by allowing failure cases to be handled inline instead of requiring nested case statements,
but a degree of boilerplate still remains.

10.3 Future Work

Practical dependently-typed programming is an extremely young field, and there are many different
avenues left to explore. Of particular interest would be the application of a DSL like PacketLang to
specify transport-level protocols using raw sockets. This would allow the precise specification and
verification of new network protocols and abstractions.

Further to specifying the composition of individual packets, it would be extremely interesting to
see how dependently-typed techniques could be used to specify properties about the communication
between systems, building upon the extensive existing base of literature on session types [14, 15, 13,
16]. Indeed, current work by Brady'! implements some of this theoretical work in the context of a
dependently-typed EDSL.

Session types are a very topical area of research: delving more deeply into the formal foundation
behind session types, correspondences between the traditional presentation of session types as a
linear language and linear logic have recently been proven [37, 23], leading to opportunities to
formally prove properties such as deadlock-freedom within protocols.

Other directions may involve more elegant functional abstractions over underlying socket opera-
tions: one such abstraction would involve abstract channels being established, with the method of
communication specified through the implementation of an effect handler.

10.4 Concluding Remarks

Dependent types provide a huge amount of expressive power, allowing for far more detailed
reasoning to take place about programs. With recent developments, dependently-typed programming
is not only becoming more powerful but more accessible: by investigating how dependent types may
be used for network programming, we hope to have demonstrated how developers may benefit from
these techniques to develop more precise and safe applications.

Thttp://www.github.com/edwinb/Protocols
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APPENDIX A

Testing Summary

A1 TCP

Connecting to an available remote server

Expected A connection should be established, and the client should transition into the
ClientConnected state.

Result (Demonstrated in the echo client) — success

Attempting to connect to an unavailable remote server

Expected The connection attempt should fail, and the client should remain in the uninitialised
state.

Result (Demonstrated by running the echo client without the echo server) — success

Sending and receiving string data over a connected socket

Expected The string should be sent from the client and received by the server.

Result (Demonstrated by the echo client) — success

Attempting to send string data when the server has closed the connection

Expected The send operation should fail, and the client should transition to the ErrorState
state.

Result (Demonstrated by running the echo client and server, then terminating the server) —
success

Attempting to receive string data when the client has closed the connection
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Expected The receive operation should fail, and the server should transition to the ErrorState

state.

Result (Demonstrated by running the echo client and server, then terminating the server) —
success

Sending and receiving PacketLang data

Expected The packet should be received by the remote server.

Result (Demonstrated by the packet program) — success

Binding to an available address and port

Expected The operation should succeed, and the server should transition into the ServerBound
state.

Result (Demonstrated by the echo server) — success

Attempting to bind to an unavailable addressand port

Expected The operation should fail, and the server should transition into the ErrorState
state.

Result (Demonstrated by attempting to bind the echo server to a nonexistent address and
port) — Error 13 (Permission Denied) shown; success.

A2 UDP

Binding to an available address and port

Expected The operation should succeed, and the server should transition into the UDPBound

state.

Result (Demonstrated by the Pong server) — success

Attempting to bind to an unavailable and port

Expected The operation should fail, and the server should transition into the ErrorState

state.

Result (Demonstrated by attempting to bind the echo server to a nonexistent address and
port) — Error 13 (Permission Denied) shown; success.

Sending string data to a nonexistent host
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Expected The operation should succeed, as datagram sockets do not guarantee safe delivery.

Result (Demonstrated by the UDPClientTest program) — success

Sending and receiving data using datagram sockets

Expected The data should be received and displayed on the server.

Result (Demonstrated by the UDPServerTest program when sent a packet by the UDPClientTest
program) — success

Sending and receiving PacketLang data

Expected The same packet should be received by the server that is sent by the client.

Result (Demonstrated by Pong) — success

A.3 PacketLang

Tests for the PacketLang DSL may be found in the examples/packet/test directory.

IF
Packet specification:

ifTest : PacketlLang
ifTest = with PacketLang do
flag <- bool
p_if flag then cstring else bits 8

Packet instances:

ifTestInstl : (mkTy ifTest)
ifTestInstl = (True ## "Flag was set")

ifTestInst2 : (mkTy ifTest)
ifTestInst2 = (False ## (BInt 100 oh))

Output function:

showIfTest : (mkTy ifTest) -> String
showIfTest (True ## str) = "True, str: "++ str
showIfTest (False ## (BInt x oh)) = "False, int: "++ (show Xx)

Expected The first instance should print "True, str: Flag was set", and the second instance
should print "False, 100".
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Result Success

Packet specification:

eitherTest : PacketlLang
eitherTest = innerTestlLangl // innerTestlLang2
where innerTestLangl : PacketLang

innerTestLangl = do
cstring
cstring
innerTestLang2 : PacketLang
innerTestlLang2 = bits 8

Packet instances:

eitherTestInstl : (mkTy eitherTest)
eitherTestInstl (Left ("hello" ## "world"))

eitherTestInst2 : (mkTy eitherTest)
eitherTestInst2 (Right (BInt 21 oh))

Output function:

showEitherTest : (mkTy eitherTest) -> String
showEitherTest (Left (sl ## s2)) = "Left, sl: " 4+ sl ++ ", s2: " ++ s2
showEitherTest (Right (BInt x oh)) = "Right, int: " ++ (show x)

Expected The first instance should print “Left, s1: hello, s2: world”, and the second instance
should print “Right, int: 21”.

Result Success

(Note: The LIST constructor is greedy, and as such will accept anything that it matches. For
this reason, we use a slightly more complex packet specification in this test, to ensure that the
data that follows is not subsumed).

Packet specification:

innerListStruct : PacketlLang
innerListStruct = do

bl <- (bits 8)

check ((val bl) < 10)

listTest : PacketlLang

listTest = with PacketlLang do
list innerListStruct
cstring

Packet instance:
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listTestInst : (mkTy listTest)
listTestInst = ([((BInt 1 oh) ## oh),
((BInt 2 oh) ## oh), ((BInt 3 oh) ## oh)] ## "hello")

Output function:

showListTest : (mkTy listTest) -> String
showListTest (xs ## (BInt n oh)) =
"List: " ++ (show xs) ++ ", int: " ++ (show n)

Expected “List: [1,2,3,], s: hello”

Result Success

LISTN
Packet specification:

listNTest : PacketlLang
listNTest = with PacketlLang do
listn 5 cstring
bits 8

Packet instance:

listNTestInst : (mkTy listNTest)
listNTestInst = (["This", "is", "another",
"PacketLang", "test"] ## (BInt 5 oh))

Output function:

showListNTest : (mkTy listNTest) -> String
showListNTest (xs ## (BInt n oh)) = "ListN: " ++
(show xs) ++ ", int: " ++ (show n)

Expected “ListN: ['This", "is", "another", "PacketLang", "test"], int: 5”

Result Success

P_EQ
Packet specification:

eqTest : PacketlLang
eqTest = with PacketLang do
x1 <- bits 8
X2 <- bits 8
prop (prop_eq (val x1) (val x2))

Packet instance:

eqTestInst : (mkTy eqTest)
eqTestInst = ((BInt 5 oh) ## (BInt 5 oh) ## refl)
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Output function:

showEqTest : (mkTy eqTest) -> String
showEqTest (n ## m ## p) =
"Intl: " ++ (show $ val n) ++ ", " ++ "Int2" ++ (show $ val m) ++ ", refl"

Expected “Intl: 5, Int2: 5, refl’

Result Success

P_BOOL
Packet specification:

boolTest : PacketLang
boolTest = with PacketLang do
bl <- bool
check bl

Packet instance:

boolTestInst : (mkTy boolTest)
boolTestInst = (True ## oh)

Output function:

showBoolTest : (mkTy boolTest) -> String
showBoolTest (b ## oh) = "Bool test, " ++ (show b)

Expected “Bool test, True”

Result Success

AND
Packet specification:

andTest : PacketlLang
andTest = with PacketlLang do
bl <- bool
b2 <- bool
prop (prop_and (prop_bool bl) (prop_bool b2))

Packet instance:

andTestInst : (mkTy andTest)
andTestInst = (True ## True ## (MkBoth oh oh))

Output function:

showAndTest : (mkTy andTest) -> String
showAndTest (True ## True ## oh) = "And test passed"
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Expected “And test passed”

Result Success

OR
Packet specification:
orTest : PacketlLang
orTest = with PacketLang do
bl <- bool
b2 <- bool
prop (prop_or (prop_bool bl) (prop_bool b2))
Packet instance:
orTestInstl : (mkTy orTest)
orTestInstl = (True ## False ## (Left oh))
orTestInst2 : (mkTy orTest)
orTestInst2 = (False ## True ## (Right oh))
Output function:
showOrTest : (mkTy orTest) -> String
showOrTest (bl ## b2 ## (Left oh)) = "Left, bl: "
++ (show bl) ++ ", right: " ++ (show b2)
showOrTest (bl ## b2 ## (Right oh)) = "Right, bl: "
++ (show bl) ++ ", right: " ++ (show b2)
Expected For the first instance, “Left, bl: True, right: False”. For the second instance, “Right,
b1: False, b2: True”.
Result Success
A.4 DNS

Decoding the result of a DNS request, where the DNS request contains references

Expected The packet to be fully decoded, with references resolved

Result Using a packet capture known to contain backreferences:
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0000 00 30 1b 46 bc fa ©0 11 93 25 32 4b 08 00 45 00 BaF 0. 2K0E,

0010 08 fc 9f 8b @0 00 3f 11 2a 9e 8a fb ce ©2 8a Tb

0020 cc ce 80 35 df fc @0 e8 9e ©7 72 03 81 80 0O 01 - Fafniana

0030 00 03 00 04 00 04 06 67 6T 6f 67 6C 65 B2 63 6T
B840 02 75 6b @8 60 01 88 01 <@ Bc 0O B1 00 91 B8 0O .uk.
0050 01 2c 00 ©4 ad c2 29 b7 <@ Oc 00 ©1 00 ©1 80 00 o
0060 01 2c 00 ©4 ad c2 29 b8 <0 Oc 00 B1 0O 91 BO 0O vaan
0070 01 2c 00 04 ad c2 29 bf @ Bc 0O 02 60 B1 88 0O vy
0080 e9 7e 00 10 03 6e 73 34 06 67 6T 6 67 6C 65 03 F T
030 63 6T 6d @0 cO Oc B8O 02 08 01 @0 B0 eI 7e 0O ©6  com.

00a0 03 6e 73 33 cO 5e cO BC ©O B2 OO0 01 OO B0 €9 Te MS3. ™00 cananas =
00b0 08 86 03 6e 73 31 cB 5e <O Oc 0O B2 00 91 8O 0O AL -7

00CcO €9 7e 00 06 03 6e 73 32 <O 5e cO 76 00 ©1 €0 01 V=i
o0de 00 83 8d de 00 04 d8 ef 24 Ba cO 5a 00 91 80 01
©0e0 00 83 8d de 0 04 d8 ef 26 Ba c@ 9a 00 91 80 01
0070 00 03 8d de 00 04 d8 ef 22 Oa cO 88 00 ©1 80 01
9180 08 83 8d de 00 04 d8 ef 28 Oa

Sending this to a server application (DNSParserTest2) decodes the result as would be expected:

Decoded successfully! DNS Packet:
Header: DNS Header

ID : 29187

Is query? : True

Opcode : QUERY

Is authority? : False

Is truncated? : False

Is recursion desired? : True

Is recursion available? : True
Is answer authenticated? : False
Is non-authenticated data acceptable? : False
Response : No error

QD Count:
AN Count:
NS Count:
AR Count:
Questions: [DNS Question:

DNS QNames:

["google", "co", "uk"]

DNS QType:

A

DNS QClass:

IN

|

Answers: [DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 300

DNS RR Payload: IPv4: 173.194.41.183
, DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: A

DNS RR Class: IN

D W R
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DNS RR TTL: 300

DNS RR Payload: IPv4: 173.194.41.184
, DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 300

DNS RR Payload: IPv4: 173.194.41.191
1

Authorities: [DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 59774

DNS RR Payload: Domain: ["ns4", "google",
, DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 59774

DNS RR Payload: Domain: ["ns3", "google",
, DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 59774

DNS RR Payload: Domain: ["nsl1l", "google",
, DNS Record:

DNS RR Name: ["google", "co", "uk"]
DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 59774

DNS RR Payload: Domain: ["ns2", "google",
|

Additionals: [DNS Record:

DNS RR Name: ["ns3", "google", "com"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 232926

DNS RR Payload: IPv4: 216.239.36.10

, DNS Record:

DNS RR Name: ["ns4", "google", "com"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 232926

DNS RR Payload: IPv4: 216.239.38.10

, DNS Record:

DNS RR Name: ["ns2", "google", "com"]
DNS RR Type: A

"COm"]

llcomll]

llcomu]

llcomll]

83



A. TESTING SUMMARY

DNS RR Class: IN

DNS RR TTL: 232926

DNS RR Payload: IPv4: 216.239.34.10

, DNS Record:

DNS RR Name: ["nsl1l", "google", "com"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 232926

DNS RR Payload: IPv4: 216.239.32.10

]

Success.

Making a request for the A record of an available domain

Expected A decoded DNS request, showing that the operation was successful and detailing
the A record.

Result
(Making a request for www.simonjf.com using the DNSParserTest program) Success.

Header: DNS Header

ID : 1337

Is query? : True

Opcode : QUERY

Is authority? : False

Is truncated? : False

Is recursion desired? : True

Is recursion available? : True
Is answer authenticated? : False
Is non-authenticated data acceptable? : False
Response : No error

QD Count:
AN Count:
NS Count:
AR Count:
Questions: [DNS Question:

DNS QNames:

["www", "simonjf", "com"]

DNS QType:

A

DNS QClass:

IN

1

Answers: [DNS Record:

DNS RR Name: ["www", "simonjf", "com"]

N NN =
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DNS RR Type: CNAME

DNS RR Class: IN

DNS RR TTL: 3130

DNS RR Payload: Domain: ["simonjf", "com"]

, DNS Record:

DNS RR Name: ["simonjf", "com"]

DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 3130

DNS RR Payload: IPv4: 146.185.136.196

|

Authorities: [DNS Record:

DNS RR Name: ["simonjf", "com"]

DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 157159

DNS RR Payload: Domain: ["ns38", "domaincontrol", "com"]
, DNS Record:

DNS RR Name: ["simonjf", "com"]

DNS RR Type: NA

DNS RR Class: IN

DNS RR TTL: 157159

DNS RR Payload: Domain: ["ns37", "domaincontrol", "com"]
|

Additionals: [DNS Record:

DNS RR Name: ["ns37", "domaincontrol", "com"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 115236

DNS RR Payload: IPv4: 216.69.185.19

, DNS Record:

DNS RR Name: ["ns38", "domaincontrol", "com"]
DNS RR Type: A

DNS RR Class: IN

DNS RR TTL: 115236

DNS RR Payload: IPv4: 208.109.255.19

|

Making a request for the A record of a nonexistent domain

Expected A decoded DNS request, showing that there was an error and specifying a SOA

record showing the authoritative name server which determined that the address did not exist.

Result

Decoded successfully! DNS Packet:
Header: DNS Header
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ID : 1337

Is query? : True

Opcode : QUERY

Is authority? : False

Is truncated? : False

Is recursion desired? : True

Is recursion available? : True

Is answer authenticated? : False

Is non-authenticated data acceptable? : False
Response : Name error

QD Count:
AN Count:
NS Count:
AR Count:
Questions: [DNS Question:

DNS QNames:

["pines"]

DNS QType:

A

DNS QClass:

IN

1

Answers: []

Authorities: [DNS Record:

DNS RR Name: []

DNS RR Type: SOA

DNS RR Class: IN

DNS RR TTL: 5189

DNS RR Payload: SOA: DNS Start of Authority:
MName: ["a", "root-servers", "net"]

RName: ["nstld", "verisign-grs", "com"]
Serial: 2014040301

Refresh: 1800

Retry: 900

Expire: 604800

Minimum: 86400

O = O

]
Additionals: []

Success.



APPENDIX B

Status Report

The socket library provides the required functionality for using TCP and UDP. It does not yet provide
more advanced functionality such as support for setting more complex socket options. Additionally,
IPv6 is not yet supported.

The TCP and UDP bindings work as intended, and can send both string data and data en-
coded using PacketLang over the network. Future work here would involve making more elegant
abstractions, for example using streams for TCP sockets.

The PacketLang DSL works correctly, and allows for specifications to be written, and for data to
be read and written according to these specifications. Future work would investigate whether it is
possible to do recursive definitions, and implement better error reporting and other constructs.

DNS supports a reasonable subset of the available types, however future work would extend this
further. the data received, and the length of the data.
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APPENDIX C

User Manual

C.1 Installation and Usage

To install the library, you will most likely need the latest Git HEAD version of Ipr1s. You can get this
by cloning http://www.github.com/idris-lang/Idris-dev.
Once Ipris is installed, the library may be installed by running idris -install idrisnet.ipkg.
To use the library, it is also necessary to include the -p effects and -p network flags when
compiling.

C.2 Socket Library

Listing C.1: IdrisNet.Socket API

socket : SocketFamily ->
SocketType ->
ProtocolNumber ->
I0 (Either SocketError Socket)

close : Socket -> IO ()
bind : Socket -> (Maybe SocketAddress) -> Port -> I0 Int
connect : Socket -> SocketAddress -> Port -> I0 Int
listen : Socket -> I0 Int
send : Socket -> String -> IO (Either SocketError BytelLength)
recv : Socket -> Int -> I0 (Either SocketError (String, Bytelength))
sendBuf : Socket -> Ptr -> Int -> I0 (Either SocketError BytelLength)
recvBuf : Socket -> Ptr -> Int -> I0 (Either SocketError BytelLength)
accept : Socket -> IO (Either SocketError (Socket, SocketAddress))
sendTo : Socket -> SocketAddress -> Port ->

String -> IO (Either SocketError BytelLength)
sendToBuf : Socket -> SocketAddress -> Port ->

BufPtr -> ByteLength -> I0 (Either SocketError BytelLength)
recvFrom : Socket -> BytelLength ->

IO (Either SocketError (UDPAddrInfo, String, BytelLength))
recvFromBuf : Socket -> BufPtr -> BytelLength ->

I0 (Either SocketError (UDPAddrInfo, BytelLength))
accept : Socket -> I0 (Either SocketError (Socket, SocketAddress))
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Listing C.1 shows the IdrisNet.Socket APL
C.2.1 Socket Creation

To create a socket, use the socket function, specifying a SocketFamily, SocketType and protocol
number.
Values of type SocketFamily may be constructed using the following constructors:

data SocketType = NotASocket —— Not a socket, used in certain operations
| Stream —— TCP
| Datagram —— UDP
| RawSocket —— Raw sockets.

Values of type SocketType may be constructed using the following constructors:

data SocketFamily = AF_UNSPEC — Unspecified
| AF_INET — IP / UDP etc. IPv4
| AF_INET6 — IP / UDP etc. IPv6

C.2.2 Closing a Socket

Simply call close with the socket you wish to close.

C.2.3 Binding

To bind, call the bind function. If you wish to specify the address to which to bind, specify this
wrapped in the Just constructor. If Nothing is specified, then the library will automatically bind on
an available local address.

C.2.4 Listening

Call listen with the socket on which you wish to listen.

C.2.5 Accepting Clients

To accept a client, call accept on a listening socket. This will either return the newly-created socket
and an associated socket address, or an error.

C.2.6 Sending Data

To send string data on a connected stream socket, call send with the socket and string as arguments.
To send string data on a datagram socket, call sendTo with the socket address and port as arguments.
Socket addresses are specified using the SocketAddress data type:

data SocketAddress = IPv4Addr Int Int Int Int
| Hostname String

To send data from a buffer, use the sendBuf and sendToBuf functions.

C.2.7 Receiving Data

To receive data into a buffer, use the recvBuf and recvFromBuf functions.
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C.3 TCP Client

C.3.1 Connecting

To connect to a remote host, use the tcpConnect function, specifying the SocketAddress and port
to use.
It is then necessary to check for failure as so:

OperationSuccess _ <- tcpConnect sa p

| RecoverableError err => ... — A recoverable error (() state)
| FatalError err => ... — A fatal error (() state)
| ConnectionClosed => ... — (() state)

. — The rest of the program, in the \texttt{ClientConnected} state.

C.3.2 Sending and Receiving Data

To send string data, use the tcpSend function, specifying the string to send. To send a PacketLang
packet, use the tcpWritePacket function, specifying the PacketlLang specification and a concrete
instance of the packet.

To receive string data, use the tcpRecv function, specifying the buffer size. To receive a
PacketLang packet, use the tcpReadPacket function, specifying the PacketLang description and
the buffer size.

You must check for failure after each operation, as described above.

C.4 TCP Server

C.4.1 Binding

To bind to a socket address and port, use the bind function, specifying an address if needed. If not,
specify Nothing and the address will be chosen automatically.

C.4.2 Accepting Clients

To accept a new client, you will need to create a function of type ClientProgram, which will run
using the newly-acquired socket. Pass this as an argument to the accept function. It is then possible
to communicate with this socket using the functions described above.

ClientProgram : Type -> Type
ClientProgram t = {[TCPSERVERCLIENT (ClientConnected)] ==>
[TCPSERVERCLIENT ()1} Eff IO t

C.4.3 Closing the Server Socket

To close a bound socket, use the closeBound function. To close a listening socket, use the
closelListening function. To close a socket in an error state, use the finaliseServer function.

C.5 UDP Client

To send data using the UDP client effect, simply use the udpWriteString and udpWritePacket
functions.
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The udpWriteString function takes the remote address, port, and string to send as its arguments.
The udpWritePacket function takes the remote address, port, a PacketLang description and an
instance of that packet.

C.6 UDP Server

In order to send and receive data using a UDP server socket, it is first necessary to bind to a local
address and port. This is done using the udpBind function, which takes a Maybe SocketAddress
and port number as its arguments.

It is then necessary to check that the operation succeeded, as with TCP.

Once the socket has been successfully bound, it is then possible to use the udpWriteString and
udpWritePacket functions to write strings and PacketLang packets respectively, and udpReadString
and udpReadPacket to read data. These functions return, if successful, a tuple of the address in-
formation of the remote client, the data received, and the length of the data.

C.7 PacketLang

To specify a PacketLang specification, make a function of type PacketLang. You may then construct
a specification according to the grammar in Section 7.3.2.
An example would be:

helloWorld : PacketLang
helloWorld = do
cstring
cstring

To specify an implementation, make a function of type mkTy pl, where pl is the name of the
PacketLang specification. To continue the helloWorld example:

helloWorldInst : (mkTy helloWorld)
helloWorldInst = ("hello" ## "world")

Separate data items using the ## operator.
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