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Abstract

The actor model has emerged as a programming paradigm particularly suited to programming

concurrent and distributed systems. Programming languages based on the actor model consist

of lightweight processes which do not communicate using shared memory, relying instead

on explicit message passing. Consequently, programming languages built on the actor model

avoid many of the pitfalls associated with shared memory systems, and can employ design

patterns such as supervision hierarchies to remain operational even in the presence of software

or network errors.

In actor-based systems, communication is key: but how can we verify that applications conform

to their expected communication patterns? In this thesis, we investigate the use of session

types—a type discipline used for codifying communication protocols—to describe and verify

conformance to communication patterns in the actor-based Erlang programming language.

Drawing upon connections between multiparty session types and communicating finite-state

automata [29], and the work on session actors by Neykova and Yoshida [52], we introduce a

framework for creating Erlang/OTP server applications where messages between processes can

be checked dynamically against session types. We discuss issues of failure detection and failure

handling within a session, and describe extensions to the standard presentation of multiparty

session to show how common communication patterns found within Erlang/OTP applications,

such as passing process IDs and making synchronous calls, may be described by session types.

We evaluate the system both empirically and through the implementation of a series of case

studies: a travel booking workflow involving error handling; the adaptation of a freely-available

Erlang DNS server, and a chat server.
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Chapter 1

Introduction

Writing concurrent and distributed software is difficult.

Cliché as it may now be to say it, we live in an era where it is no longer sufficient to write

single-threaded applications. Physical limits on processors require that performance advances

are attained not by adding more transistors or running at a higher clock frequency, but instead

by adding more processors.

Writing a multithreaded application involves thinking about a multitude of issues such as race

conditions and deadlocks, which simply do not occur when writing single-threaded software.

Care has to be taken to identify the appropriate critical sections, the correct concurrency ab-

stractions to use, to ensure that all locks must be released and that there are no circular requests

for locks: the list continues.

And that is just for concurrent systems! The crucial introduction of distribution brings yet more

challenges to the fore: instead of shared memory accesses, data may not be on the same ma-

chine, and accessing the data therefore requires communication. And perhaps most crucially,

failures are not an exceptional case: in large systems, they must be expected, and handled. It is

easy to imagine how a developer may quickly be overwhelmed with low-level details instead

of concentrating on business logic.

1.1 Erlang and the Actor Model

Fortunately, the Erlang programming language [5] has been developed with distribution and

failure handling as a primary concern. Erlang is a dynamically-typed functional programming

language based on the actor model [3]. The actor model was originally designed as a model of

concurrency consisting of single-threaded lightweight processes, or actors. Upon receipt of an

1



2 Chapter 1. Introduction

incoming message, actors can perform three actions: send a finite number of messages to other

actors, spawn a finite number of new actors, and change how to react to subsequent messages.

Importantly, the actor model forbids co-ordination through shared memory: all sharing must

happen using explicit message passing.

At first glance, this style of programming seems cumbersome and inefficient. After all, it

is a substantial departure from the standard style of programming, and message passing will

naturally incur some overheads not present when simply reading from shared memory—but it

is vital not to overlook the benefits that adopting this programming style will yield.

Since actors are single-threaded, and there is no shared memory, locks are no longer necessary:

atomicity is gained for free. Relying purely on communication also makes it easier to structure

applications: instead of needing to consider both the case where data is local and the data is

remote, data accesses can be handled transparently by the runtime system, without needing to

incorporate different programming styles.

1.1.1 Erlang and Fault Tolerance

But Erlang’s real strength comes with its failure handling and fault tolerance mechanisms. In

distributed systems, failures truly are inevitable. Even classifying failures is difficult: is a node

not responding because it is offline semi-permanently, for example due to a power cut, or is it

simply taking too long to respond due to increased load?

Built with highly-reliable distributed applications in mind, Erlang encourages certain patterns

of development. In particular, the most well-known of these is somewhat unintuitive: if a pro-

cess encounters a problem for any reason, let it fail. When designing Erlang applications, pro-

cesses are arranged in structures known as supervision hierarchies. In this model, processes are

either workers, which perform computations, or supervisors, which are responsible for restart-

ing workers should they fail. Designing applications using supervision hierarchies fosters the

design and implementation of highly-resilient and reliable applications: several real-world case

studies may be found in Armstrong’s PhD thesis [4].

1.2 The Challenge: Safe Communication in Erlang Applications?

When moving to the actor model, communication becomes a central actor of the system.

The supervisor pattern allows processes to terminate when errors occur in the logic of the

program: a process terminates, the failure is logged, and a developer can fix the underlying

cause of the fault at a later date. At the same time, it is difficult to check when errors occur in
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the communication patterns described by the program. In spite of communication being central

to Erlang applications, communication patterns are often informally described, and the order

in which messages are sent is not always checked by program logic.

This brings us to a question: is there a way of applying the same ‘let it fail’ methodology to

violations in communication patterns?

1.2.1 Session Types

One possible solution to this challenge is the use of session types [36, 37]. Just as the now

ubiquitous notion of a data type codifies the expected structure of data, resulting in memory

safety, optimisations, and better application structure, session types are a type discipline which

can ensure that applications conform to communication protocols.

As an example, consider the example of a simple calculator server, offering two operations:

addition and negation [31]. The & symbol denotes a type representing the offering of a choice

to the client, ? denotes a type representing receiving a value, and ! denotes a type representing

sending a value.

S = &{Add :?Int.?Int.!Int,

Neg :?Int.!Int}

A client would implement the dual session type:

C =⊕{Add :!Int.!Int.?Int,

Neg :!Int.?Int}

Note here that all receive types have been replaced by send types, and the branching type

& has been replaced by the choice type ⊕. In fact, S and C are dual: duality ensures that

communication between the two is safe.

Decades of research has spawned many advances in the theory and practice of session types.

In particular, Honda et al. [38] extend binary session types to the multiparty setting, where

multiple participants may take part in a session.

Multiparty session types provide strong guarantees on communication safety. In particular,

by allowing local types to be projected from a global view of the system, multiparty session
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types ensure that protocols are free of race conditions (via analysis of causality), and dead-

locks. Local types can then be used to either statically or dynamically check conformance of

an implementation to a protocol.

Alas, the integration of multiparty session types with Erlang applications is nontrivial. For ex-

ample, multiparty session types make assumptions that all participants in a session are available

at the beginning of the session, and are alive until the conclusion of the session: assumptions

which cannot be made due to the ability to pass process IDs between actors, allowing partici-

pants to be introduced midway through the session, and as participants may fail and be restarted

midway through the session.

The question we ask in this thesis is therefore:

Can multiparty session types be used to encode communication patterns in dis-
tributed Erlang/OTP applications, and what benefits are there if they can?

1.3 Contributions

We answer the above question in the affirmative, requiring some extensions to the standard

presentation of multiparty session types.

Concretely, the contributions of this thesis are as follows.

• Drawing inspiration from the session actor framework of Neykova and Yoshida [52],

we describe the design and implementation of a system, monitored-session-erlang, for

ensuring that messages in Erlang/OTP applications conform to protocols specified by

session types.

We make several substantial changes to the original session actor framework which is

presented as a Python framework using AMQP, primarily due to the fact that Erlang is

an actor-based language. By not requiring a middleware layer, we substantially simplify

the mechanism by which actors may be invited to fulfil roles, and allow fully-distributed

communication between actors. Finally, we change the way by which monitor violations

are reported, allowing immediate reporting of failures.

• We identify common Erlang/OTP communication patterns that are not possible to de-

scribe using the standard theory of multiparty session types. In particular, we note the

common pattern of passing process IDs to dynamically introduce processes into a com-

munication session, and motivate the use of subsessions [28]—child sessions spawned by

a parent session—as a solution. We also show the importance of encoding synchronous

calls, reducing the need to transform actor programs into an asynchronous form, and
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statically ruling out cyclic calls.

• Erlang applications are developed in a style where lightweight processes may terminate

upon encountering an error. Consequently, processes cannot be assumed to be alive

throughout the duration of a session, and sessions must incorporate failure detection and

failure handling strategies.

We describe and discuss two methods for failure detection: pull-based, using a two-

phase commit protocol, and push-based, using Erlang’s monitor functionality and FSM

reachability analysis.

We also describe a method for handling both application-level exceptions, and failures

due to processes terminating, based on subsessions. We demonstrate the technique by

implementing a travel booking case study with error handling, specified for the Business

Process Model and Notation1 (BPMN).

• We evaluate the applicability of the framework by investigating two larger case studies:

adapting a freely-available Erlang DNS server to use session types, and the implementa-

tion of a chat server.

• We empirically investigate the performance of the Erlang session actor framework, show-

ing that overheads, while present, are acceptable.

1.4 Structure of the Thesis

The thesis is structured as follows.

In Chapters 2 and 3, we begin by examining the background and related work of both session

types and Erlang applications. In particular, we examine the theory of dynamic monitoring of

session types in some depth, and comment on the guarantees afforded to programs as a result.

In Chapter 4, we describe the design and implementation of a library, monitored-session-erlang,

which allows actor communications to be monitored using multiparty session types. We de-

scribe the similarities to, and differences from, existing work; we discuss Erlang-specific im-

plementation concerns such as the integration with the different layers of communication se-

mantics; we outline the structure of the monitor generation and monitor runtime code, and

describe the API exposed to the user.

In Chapter 5, we describe two common Erlang communication patterns which cannot easily be

expressed using multiparty session types and the standard session actor approach: process ID

1http://www.bpmn.org

http://www.bpmn.org
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passing, and synchronous calls. We describe the two types of communication pattern, motivat-

ing the use of subsessions to handle process ID passing, and describe a modification to Scribble

and the monitoring framework to enable synchronous calls within a message handler.

In Chapter 6, we discuss the failure detection and failure handling mechanisms needed when

we cannot assume that the actors inhabiting each of the roles in a session are available for

the duration of the session. We describe two main failure detection mechanisms: pull-based,

using a two-phase commit technique, and push-based, using the Erlang monitor function along

with monitor reachability analysis. Furthermore, we describe a method based on subsessions

to allow failures to be handled and compensated for, showing how the result of a subsession

may be used to decide how a parent process should proceed.

In Chapter 7, we describe the evaluation of the system. We show how multiparty session

types can be used to encode and monitor conformance to the communication patterns within a

publicly-available DNS server, and a chat server. We subsequently detail an empirical evalua-

tion of the overheads imposed by various aspects of the system.

Chapter 8 concludes, and describes directions for future work.



Chapter 2

Background

2.1 Process Calculi

Process calculi are abstract theoretical models used to describe the behaviour of concurrent

processes. Session types were designed as a typing discipline for process calculi based on the

π-calculus [48]. Building on previous work on CSP [35] and CCS [47], the π-calculus is a

small process calculus based around the idea of mobility: the idea that links between processes

may be sent between processes. These links, known as names, form the basic entity of the

π-calculus: processes use names to interact, and names may be freely sent between processes.

2.2 Session Types

Session types were originally proposed by Honda [36], and later introduced alongside language

primitives [37] to model a series of interactions between two communicating parties.

Session types are named after the notion of a session, which is defined as a series of interac-

tions between two communicating parties, with these interactions taking place over a shared,

private channel. Interaction patterns are specified as session types, which are inhabited by

communication primitives. The original work identifies three such primitives: value passing,

which involves sending and receiving values; channel delegation, which involves sending and

receiving channels; and label branching, which introduces the possibility of flow control by

offering multiple possible continuations of a session.

Session type disciplines ensure that the communication along a session channel is safe: where

one process expects to send, the other expects to receive. Safety relies crucially on the notion

of duality – for example, the dual of a send is a receive, and the dual of offering a selection is

7



8 Chapter 2. Background

P ::= Processes

x̄v.P Output

| x(x).P Input

| P | P Parallel Composition

| if v then P else P Conditional Statement

| 0 Inaction

| (νxx) Scope Restriction

v ::= Values

x Variable

| true

| false

Figure 2.1: Syntax of processes

selecting a branch.

Figures 2.1 —2.5 describe a process calculus and type system for session-typed processes,

described by Vasconcelos [61]1. Processes are similar to that of the π-calculus, providing

the ability to send and receive values on channels, along with standard parallel composition,

conditional statements, and inaction processes. Interestingly, however, scope restriction takes

the form νxx, representing two dual channels, as opposed to a single channel. The type system

includes value types which can be qualified as linear, meaning that they must be used exactly

once, or unlimited, meaning that they may be used an unlimited number of times. Linearity is

important as channels must not be duplicated, as the duplication of channels will result in the

loss of safety guarantees.

Linearity is enforced through the use of context split and context update operations: the context

split operation Γ = Γ1 ◦Γ2 non-deterministically splits a context Γ into two separate contexts

Γ1 and Γ2, where the sets of values with linear types in Γ1 and Γ2 are pairwise distinct. The

context update operation Γ+ x : T = Γ ensures that a value x with a linear type T may only be

added to a context Γ if x does not already exist in Γ.

Structural congruence and the reduction rules are largely standard, but reflect the fact that

restriction is over two dual channel endpoints x and y instead of a single channel type. The [T-

RES] rule ensures that two channel endpoints x and y are dual, and the [T-PAR] rule ensures that

no values with a linear type appear in parallel processes. The [T-IN] rule splits the context into

two contexts Γ1 and Γ2, checking the channel type in Γ1 and the continuation in Γ2, ensuring

1Note that this is not the original system described by Honda et al. [37], but is a later, more concise presentation,
shown here for simplicity.
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q ::= Qualifiers

| lin Linear

| un Unrestricted

p ::= Prefixes

| ?T.T Receive

| !T.T Send

T ::=

| bool Boolean

| end Termination

| qp Qualified Prefix

Γ ::= /0 | Γ,x : T Contexts

q?T.U = q!T.U

q!T.U = q?T.U

end = end

Figure 2.2: Syntax of, and duality relation on, types

Structural Congruence, P≡ P

P | Q≡ Q | P (P | Q) | R≡ P | (Q | R) P | 0≡ P

(νxy)P | Q≡ (νxy)(P | Q) (νxy)0≡ 0 (νwx)(νyz)P≡ (νyz)(νwx)P

Reduction Rules, P−→ P′

R-COM

(νxy)(x̄v.P | y(z).Q | R)−→ (νxy)(P | Q[v/z] | R)

R-IFT

if true then P else Q−→ P

R-IFF

if false then P else Q−→ Q

R-RES

P−→ Q

(νxy)P−→ (νxy)Q

R-PAR

P−→ Q

P | R−→ Q | R

R-STRUCT

P≡ P′ P′ −→ Q′ Q′ ≡ Q

P−→ Q

Figure 2.3: Structural Congruences and Reduction Rules for Processes
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Context split, Γ = Γ◦Γ

/0 = /0◦ /0

Γ1 ◦Γ2 = Γ un(T)

Γ,x : T = (Γ1,x : T)◦ (Γ2,x : T)

Γ = Γ1 ◦Γ2

Γ,x : lin p = (Γ1, x : lin p)◦Γ2

Γ = Γ1 ◦Γ2

Γx : lin p = Γ1 ◦ (Γ2,x : lin p)

Context update, Γ+ x : T = Γ

x : U /∈ Γ

Γ+ x : T = Γ,x : T

un(T)

(Γ,x : T)+ x : T = (Γ,x : T)

Figure 2.4: Operations on contexts

Typing rules for values, Γ ` v : T

T-TRUE

un(Γ)

Γ ` true : bool

T-FALSE

un(Γ)

Γ ` false : bool

T-VAR

un(Γ)

Γ,x : T ` x : T

Typing rules for processes, Γ ` P

T-INACT

un(Γ)

Γ ` 0

T-PAR

Γ1 ` P Γ2 ` Q

Γ1 ◦Γ2 ` P | Q

T-RES

Γ,x : T,y : T ` P

Γ ` (νxy)P

T-IF

Γ1 ` v : bool Γ2 ` P Γ2 ` Q

Γ1 ◦Γ2 ` if v then P else Q

T-IN

Γ1 ` x : q?T.U (Γ2 + x : U),y : T ` P

Γ1 ◦Γ2 ` x(y).P

T-OUT

Γ1 ` x : q!T.U Γ2 ` v : T Γ3 + x : U ` P

Γ1 ◦Γ2 ◦Γ3 ` x[v].P

Figure 2.5: Typing rules for processes
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that the channel is typable in the continuation after the input capability has been expended. The

case for [T-OUT] is similar.

Later work by Kobayashi [41], advocated and expanded upon by Dardha et al. [27], shows

that the π-calculus with session types can be represented in the linear π-calculus [42]—that

is, the π-calculus in which each channel must be used exactly once—with variant types. This

technique can be used when implementing session-typed languages, or to reason about session-

typed languages using a lower-level core calculus.

2.2.1 Multiparty Session Types

Originally, session types were designed to encapsulate a series of interactions between two

participants. Describing interactions between multiple parties using binary session types is far

from natural, prone to deadlocks, and cannot capture the interleavings of the session types,

losing important information.

Honda et al. [38] describe a session-typed process calculus involving multiple participants,

with a global type specifying the sequence of interactions between the participants. Global

types can be projected to a local type, which is the global type from the perspective of a single

participant.

G ::= p→Π : 〈S〉.G′ Send message

| p→Π : 〈{li : Gi}i∈I〉 Send branch selection

| µt.G Recursion

| t Recursion variable

| end End

S ::= bool |int |... Ground types

Figure 2.6: Syntax of global types

Figure 2.6 shows the syntax of global types, as described by Bettini et al. [9]2. In particular,

p→Π : 〈U〉.G′ denotes a send operation from a participant p to a set of participants contained

in Π, with the protocol continuing as G′; and p→ Π : 〈{li : Gi}i∈I〉 denotes the selection of a

branch by p, communicating the choice to all participants Π, with the protocol proceeding as

the selected branch.

Multiparty session types work under the assumption of ordered message delivery on a channel,

but without any guarantees of ordering between channels. In order to provide this, the system

2Note that this is not the syntax of global types given by Honda et al. [38]: in particular, global types are pre-
sented without reference to channels. Such a presentation does not decrease expressivity—see [9]. The presentation
given by Bettini et al. [9] is the de-facto standard presentation of multiparty session types used in the literature.
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requires analysis of causality: for example, the protocol

A→ B〈bool〉.end

C→ B〈bool〉.end

would not be permitted as there is no causal ordering between the receipt of messages m and n

by participant B.

Multiparty session types ensure that if all participants satisfy their local types, then the system

satisfies the global type. The paper also proves subject reduction and local progress: local

progress states that a process will always be able to reduce further (unless it is the inactive

process) unless a deadlock has been caused due to interleaving with other protocols.

Bettini et al. [9] and Coppo et al. [25] consider the property of global progress. Global progress

ensures that protocols remain deadlock-free even in the presence of interleaving amongst mul-

tiple multiparty sessions using an interaction typing system.

2.2.2 The Scribble Protocol Description Language

Building upon the theoretical foundations of multiparty session types, the Scribble protocol

description language is a domain-specific language for describing and validating protocols.

Scribble abstracts over concrete participants by making use of the idea of a role: an abstract

description of a participant’s behaviour within a session.

Scribble implements validation and projection functionality: that is, it is possible to ensure

that the written protocol forms a valid multiparty session type by checking conditions such as

causality, and if so, can project the global types to local types for each role.

The canonical example of multiparty session types is that of the Two-Buyer Protocol, shown

in Figure 2.7.

Figure 2.7: Two-Buyer Protocol [38]
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The two-buyer protocol is a simplification of a financial protocol. In the two-buyer protocol,

there are three roles: two buyers, and a seller. The aim of the protocol is to buy an expensive

item, by undertaking the following steps:

• Buyer 1 requests the price of an item from the seller

• The seller sends the price of the item to Buyer 1 and Buyer 2

• Buyer 1 sends Buyer 2 the amount that Buyer 2 should pay

• Buyer 2 can choose to:

– Accept the offer, at which point it sends a delivery address to the seller and receives

a delivery date

– Reject the offer, and await another offer from Buyer 1

– End the protocol

In Scribble, this protocol would be written as follows:

global protocol TwoBuyer(role Buyer1, role Buyer2, role Seller) {

title(String) from Buyer1 to Seller;

price(Currency) from Seller to Buyer1, Buyer2;

rec loop {

share(Currency) from Buyer1 to Buyer2;

choice at Buyer2 {

accept() from Buyer2 to Buyer1;

deliveryAddress(String) from Buyer2 to Seller;

deliveryDate(Date) from Seller to Buyer2;

} or {

reject() from Buyer2 to Buyer1;

continue loop;

} or {

quit() from Buyer2 to Buyer1, Seller;

}

}

}

We begin by defining the protocol header, including the protocol name and the names of all of

the roles which take part in the protocol. Roles are assumed to all be associated with endpoints

upon initiation of the protocol.

An interaction takes the form MessageLabel(PayloadTypes) from Sender to Receivers. A mes-

sage may only have one message name and one sender, but it may have multiple payload types

and multiple receivers. That is, in keeping with the semantics of multiparty session types,

Scribble supports multicast. One notable absence, however, is that of channel delegation, since

Scribble does not incorporate the notion of a channel.
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2.2.3 Connections with Linear Logic

Linear logic is a substructural logic which forbids contraction (where additional propositions

may be added to the hypotheses or conclusion of a sequent), and weakening (where two equal

members on the same side of a sequent may be replaced by a single member), and has been

used within type systems on account of its treatment of resources. This lends itself well to

the treatment of channels within session-typed process calculi: in his original exposition of

linear logic, Girard [33] speculated about the use of linear logic to reason about concurrency.

Abramsky [1] and Bellin and Scott [7] both provide insights into how linear logic propositions

may be interpreted as processes in process calculi.

Caires and Pfenning [16] provide a session typing system for the π-calculus that corresponds

with dual-intuitionistic linear logic , showing that the connectives within linear logic are suf-

ficiently expressive to capture communication primitives present within session typing disci-

plines for the π-calculus. Communication corresponds directly to cut elimination.

2.2.4 Linear Functional Languages

Session-typed languages must necessarily incorporate some form of linearity tracking in order

to provide guarantees of session fidelity. Linearity tracking can either be achieved either using

a linear type system, or techniques such as parameterised monads [6], as demonstrated by

Pucella and Tov [57] and Sackman and Eisenbach [58].

Gay and Vasconcelos [32] describe an asynchronous session-typed functional language based

on the linear λ calculus. The language incorporates a fixpoint operator for recursion, supports

subtyping, and uses session types to prove an upper bound on the size of the buffers used for

asynchronous communication. Channels are treated as linear, with a receive operation returning

a pair of the received value and a new copy of the channel.

The work of Caires and Pfenning [16] and Gay and Vasconcelos [32] are connected by Wadler

[62]. Wadler defines a process calculus CP with session types based on classical linear logic

(note that this is different to the presentation of Caires and Pfenning [16], who use an intuition-

istic presentation), and a linear functional language GV based on that of Gay and Vasconcelos

[32], and defines a translation from GV to CP.

Lindley and Morris [46] describe an extended language, also called GV, and give the language

a separate small-step operational semantics based on the linear λ-calculus. The work, building

on a previous paper [45], addresses the unidirectional nature of the translation by providing

semantics-preserving translations both from GV to CP and CP to GV.
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2.2.5 Connections with Communicating Finite-State Automata

A separate line of work shows how it is possible to generate a monitor based on a communicat-

ing finite state machines (CFSMs) [15], and use the CFSM for lightweight runtime monitoring.

Although errors are caught only when they occur, as opposed to statically at compile time, run-

time monitoring of session types is useful in a variety of circumstances. In particular, runtime

monitoring of session types is useful when working with a dynamically-checked type system,

when only parts of the system have been written in statically-typed languages, or in order to

dynamically enforce assertions on the data [11]. Runtime monitoring is the approach taken in

this thesis, as Erlang has a (largely) dynamically-checked type system3.

Formally, a CFSM is described by a 5-tuple M = (Q,C,q0,A,δ). This formal definition is

taken from the work of Deniélou and Yoshida [29].

Definition 1 (CFSM). Let P be a set of process identifiers.

• Q defines a finite set of states

• C = {pq ∈ P 2 | p 6= q} defines a set of channels

• q0 ∈ Q is the initial state

• A is a finite alphabet of messages

• δ⊆ Q× (C× !,?×A)×Q is a finite set of transitions.

Informally, a CFSM is a finite state machine where transitions are predicated on communication

actions with other CFSMs over a finite set of channels. An example CFSM system is shown in

Figure 2.8: CFSM A sends a message Tick to CFSM B, and both move from state 1 to state 2.

Afterwards, CFSM B sends a message Tock to CFSM A, and both return to state 1.

Operations such as checking for deadlock-freedom are largely intractable for general CFSMs

[15]. Deniélou and Yoshida [29] introduce a multiparty session calculus with fork and joining

operations and a projection algorithm to local types, and an algorithm to translate local types

to CFSMs. The fork and join operations are added to the calculus in place of the standard

branching operations to guard against state explosion.

The resulting class of CFSM, known as Multiparty Session Automata, enjoy the properties

of deadlock-freedom, communication safety, progress, and liveness by construction. The al-

gorithm for constructing CFSMs from the multiparty session calculus described in the paper

3Without extensions, the basic type system of Erlang is dynamically-checked. However, tools such as Dialyzer
(http://www.erlang.org/doc/man/dialyzer.html) use techniques such as success typing [44] to add some static type-
checking functionality.

http://www.erlang.org/doc/man/dialyzer.html
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1

2

AB!TickBA?Tock

1

2

AB?TickBA!Tock

A B

Figure 2.8: Example CFSM System

is polynomial when parallel composition is not included, and exponential in the number of

parallel states when parallel composition is added.

2.2.6 Theory of Runtime Monitoring of Session Types

Work by Chen et al. [21] and Bocchi et al. [12] provide the theoretical basis for monitoring

conformance to session types.

Bocchi et al. [12] define a monitored session calculus with monitors as a first-class construct

in the process calculus itself. The process calculus is based upon multiparty session types with

assertions introduced for design-by-contract development using session types [11].

The formal monitoring framework itself is based around the concept of a network. In this

context, a network is a set of concrete endpoints, or principals, along with a global transport.

A global transport consists of a global message queue and routing table, mapping abstract roles

to their concrete implementations.

The formalism consists of three separate components: a reduction-based semantics for dynamic

networks without monitoring, a labelled transition relation over specifications, and a semantics

of monitored networks. The key to the monitoring formalism is that monitors are first class

entities within the formalism, and that reductions in the semantics of monitored networks are

predicated on the labels emitted by the specification LTS.

The semantics of monitored networks are rejection-based: should a principal attempt to send a

message which does not match the specification, the message is not delivered.

As a result of this mechanism, the paper proves that monitored networks enjoy safety and

transparency properties. Safety properties ensure that the network behaves in accordance with
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the global specification, and transparency properties ensure that a monitored network behaves

exactly the same as an equivalent unmonitored network which conforms to the specification.

Session fidelity proves that safety and transparency hold under reduction.

2.3 The Actor Model

The actor model was initially devised by Hewitt et al. [34] and later expanded upon by Agha

[3] in the context of modelling communication and concurrency in distributed systems.

Definition 2 (Actor [3]). Actors are computational agents which map each incoming

communication to a 3-tuple consisting of

1. A finite set of communications sent to other actors;

2. A new behaviour (which will govern the response to the next communication

processed); and,

3. A finite set of new actors created.

In essence, an actor is an entity which, when processing a message, can perform three actions:

create a finite set of new actors, send a finite set of messages to other actors, and change how it

will react to further messages. Communication in the actor model is necessarily asynchronous.

In order to implement asynchronous communication, each actor has a unique, unforgeable mail

address, and a message queue known as a mailbox.

As previously described, the actor model forms the conceptual basis for the Erlang program-

ming language, where actors are implemented as lightweight processes. The mail address of

an Erlang actor is a unique process ID.

2.4 Erlang

Erlang [5] is a programming language for concurrent and distributed systems, based on the

actor model. Erlang’s programming model involves many lightweight processes which may

communicate only through explicit message passing. Processes are not implemented as native

threads, but instead scheduled by the Erlang runtime system.

The design decisions to make lightweight processes central to the Erlang programming model,

along with only allowing inter-process communication through explicit message passing, has

several ramifications: in particular, a failure in one process is isolated from another, inspiring
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a method of development where Erlang applications may fail and be restarted should they

encounter a fault from which it is not possible to recover.

Listing 2.1: Erlang Communication Example

receiver() ->

receive

{hello, Pid} ->

Pid ! hi,

receiver();

{_X, Pid} ->

Pid ! greetings,

receiver()

end.

main() ->

ReceiverPid = spawn(?MODULE, receiver, []),

ReceiverPid ! {hello, self()},

receive

X -> io:format("Received: ~p~n", [X])

end.

Listing 2.1 shows a simple Erlang application, demonstrating the three core communication

primitives: spawn spawns a new actor, the Pid ! Msg primitive sends a message Msg an actor

with a PID Pid, and the receive primitive searches the mailbox for messages which match the

given patterns.

In this case, when the main function is invoked, the application spawns a new actor which

executes the receiver function, and then sends a message hello to the receiver, providing the

local PID. The receiver then receives the message from the mailbox, and sends the message hi

back to the sender. Finally, the original actor receives the message from the receiver, and prints

its contents—in this case, hi—to the console.

2.4.1 Erlang Design Philosophy

In addition to the actor-based approach to language design, Erlang is renowned for its approach

to developing reliable, distributed, fault-tolerant systems.

Armstrong’s PhD thesis [4] provides an excellent exposition of the requirements of distributed

systems which must be highly reliable, even in the presence of errors in the software. In

particular, such systems must be fault-tolerant, meaning that faults should be expected, and the

software should be able to recover from, and compensate for, such faults. Additionally, such

systems must be concurrent, meaning that they should be able to handle many simultaneous

connections.
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Armstrong describes Erlang as a concurrency-oriented programming language (COPL): a lan-

guage with concurrency as a central concern in a language. A central idea in concurrency-

oriented languages is the notion of a process. A process in a concurrency-oriented language,

however, is different to the the concept of an operating system process. Operating system pro-

cesses are generally heavyweight, themselves containing an address space, sets of resources,

and owning child threads. Lightweight processes are instead scheduled by the runtime system

of the language, allowing orders of magnitude more processes to be spawned.

In addition, a further concern is that of failure isolation. The idea behind failure isolation is

that a failure in one process should not affect the operation of another process. Introducing

the concept of isolation immediately introduces a number of additional constraints, the most

notable of which is that communication using shared memory must be forbidden, as processes

should be assumed to be totally independent.

Armed with lightweight isolated processes, asynchronous messages, distribution, and detection

of when a process fails, Armstrong motivates the central ideology of Erlang: ‘let it fail’.

Let it Fail

Before delving too deeply into the ‘let it fail’ philosophy, it is necessary to note that not all

exceptions have to be treated as fatal. As an example, attempting to open a nonexistent file

throws an exception. In some scenarios, this is indeed fatal – for example, if the file is a vital

configuration file needed to set up the systems. Consider, however, the case of a file server

which takes a file name from the user, and returns the contents of a file. In such a case, it would

be better to catch the exception, and report the error to the user.

In the remainder of this section, we concentrate on the case where an error is uncorrectable –

that is, there is no procedure for correcting the error in the component.

Failure detection is an important feature of a concurrency-oriented programming language.

Erlang provides two native methods of failure detection: links, which are bidirectional, and

monitors, which are unidirectional.

Consider the case where we have two processes A and B, with PIDs PID1 and PID2 respectively.

Suppose A wishes to be notified when B terminates. By calling monitor(PID2) from A, B

becomes monitored.

A Bmonitor(PID2)
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Now suppose B terminates. Since A has monitored B, A gets a notification of the form

{'EXIT', PID2, Reason} from the VM, notifying it that B has terminated.

A B{ EXIT , PID2, Reason}

A natural question that may arise at this point is “what about if B was on a remote node, and

the connection was severed, and therefore could not send a notification that it has terminated?”.

At this point, it is instructive to realise the distinction between processes running on the same

VM, and those running on a different VM: that is, in a distributed setting.

Erlang treats the scenarios differently: should a process terminate on the same VM, the VM

can reliably insert the ’EXIT’ notification into the mailbox of the monitoring process. Should a

process terminate on a different VM, but with the VM still available, a message can be reliably

sent between the VMs, and dispatched to the monitoring process. The final case requires

somewhat more thought – what if the process is on a VM, and the VM becomes unreachable?

By establishing a distributed monitor, a TCP connection is set up between the two VMs. Should

the TCP connection be closed, the closed connection can be detected by the monitoring VM,

which may then insert a message into the queue of the monitoring process.

Reliable failure detection enables the characteristic failure handling mechanism of Erlang: that

of supervision hierarchies. In this model, processes are arranged into trees of workers and

supervisors. Workers are processes which perform tasks, whereas supervisors are processes

which monitor workers. Should a worker fail, a its supervisor is notified, and can take corrective

action.

A

CB

D E

Figure 2.9: An Erlang supervision hierarchy
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Consider the diagram in Figure 2.9. This basic supervision tree consists of a root supervisor A

which supervises a supervisor B and a worker C, and workers D and E which are supervised by

B. Should a process fail, its supervisor is notified. The supervisor can then take compensatory

action, which may involve restarting the child process.

If a process is part of a supervision hierarchy, it is therefore an acceptable course of action to

crash whenever an uncorrectable error occurs, as the supervisor may then restart the process,

preserving the functionality of the application.

2.4.2 OTP Behaviours

A supervisor is an instance of an OTP Behaviour: a set of application templates which abstract

out common patterns of developing Erlang applications. OTP behaviours require developers to

implement callback functions, which contain application-specific logic, but abstract out lower-

level behaviour. In the case of a supervisor behaviour, for example, a user simply needs to

implement a single callback, init, which returns information about the child processes to be

supervised, and upon failure, which processes should be restarted.

Another well-used OTP behaviour is a generic server, or gen_server. At its essence, gen_server

is a stateful event loop which receives a message from the mailbox, executes a callback in user

code, and performs an action and updates the state as a result. The OTP gen_server behaviour

is a mature, full-featured system, allowing both asynchronous and synchronous messages.

Listing 2.2 shows the essence of a server behaviour. This simple server behaviour abstracts

away from the raw communication primitives, and allows some state to be retained and updated

as a result of processing messages. Abstracting the functionality in this way results in a higher

level of code re-use and abstraction.

Listing 2.2: Simple Generic Server Behaviour

-module(simple_gen_server).

-export([behaviour_info/1]).

-export([server_startup/2, event_loop/1]).

-export([start/2, send/2]).

-record(simple_gen_server_state, {user_state, module}).

behaviour_info(callbacks) -> [{init, 1}, {handle_msg, 2}];

behaviour_info(_Other) -> undefined.

server_startup(Module, Args) ->

StartupRes = Module:init(Args),

case StartupRes of

{ok, UserState} ->

State = #simple_gen_server_state{user_state=UserState,
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module=Module},

event_loop(State);

{stop, Reason} ->

exit(Reason)

end.

event_loop(GenServerState) ->

Module = GenServerState#simple_gen_server_state.module,

UserState = GenServerState#simple_gen_server_state.user_state,

receive

Msg ->

Res = Module:handle_msg(Msg, UserState),

case Res of

{ok, NewUserState} ->

NewState = GenServerState#simple_gen_server_state{user_state=NewUserState},

event_loop(NewState);

{stop, Reason} ->

exit(Reason)

end

end.

start(Module, Args) ->

spawn(simple_gen_server, server_startup, [Module, Args]).

send(Pid, Msg) ->

Pid ! Msg,

ok.

In order to use the behaviour, a user simply needs to implement the two callbacks expected by

the behaviour:

• init/1: Called to initialise the server. Returns either {ok, State} if initialised success-

fully, where State is the state of the server, or {stop, Reason} if not.

• handle_msg/2: Called when a message has been received. Returns either {ok, NewState}

if initialised successfully, replacing the old state with NewState, or {stop, Reason} if the

server should terminate.

As a small example, consider a simple integer counter. We wish to either increment the value,

or retrieve the current value. This may be implemented as shown in Listing 2.3.

Listing 2.3: Simple Counter Server

-module(server_impl).

-export([init/1, handle_msg/2]).

-export([increment_count/1, get_count/2]).

%%% Callbacks %%%

init(_Args) -> {ok, 0}.

handle_msg(increment_count, Count) ->
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{ok, Count + 1};

handle_msg({get_count, Pid}, Count) ->

simple_gen_server:send(Pid, Count),

{ok, Count};

handle_msg(Other, _) ->

error_logger:error_msg("Unhandled message: ~p~n", [Other]),

{stop, undefined_msg}.

%%% API %%%

increment_count(Pid) ->

simple_gen_server:send(Pid, increment_count).

get_count(Pid, ReturnPid) ->

simple_gen_server:send(Pid, {get_count, ReturnPid}).

Here we can see that the init function initialises the state with 0, and the handle_msg function

handles two different types of messages. In particular, the increment_count message incre-

ments the current counter (i.e. the server state), and the get_count message results in the current

counter value being returned to the caller. It is regarded as good practice to abstract the mes-

sages sent to the server as API calls.
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Related Work

In this chapter, we review work relevant to exception handling within session types, and discuss

ways in which behavioural types including session types have been integrated with the actor

model.

3.1 Exceptions and Non-Standard Control Flow

There has been some work on non-standard flow within session typing systems, some of which

can be useful in modelling exceptions.

We discuss four main pieces of work: Structured Interactional Exceptions [18], a method by

which processes can move to a session-typed exception handler in a co-ordinated manner;

Global Escape in Multiparty Sessions [17], a similar idea implemented in a multiparty session

calculus; Affine Sessions [50], where session types are based on affine logic and hence can be

aborted at any time; and Practical Interruptible Conversations [40], where control flow can be

interrupted by an incoming message.

3.1.1 Structured Interactional Exceptions and Global Escape

The first main work on handling non-standard control flow in session types was the notion of

structured interactional exceptions [18]. In this system, replicated channels or access points

are extended to a tuple of a default process, and an exception handler. A throw process is

introduced, which denotes a process that is throwing an exception. The operational semantics

of the system allow nested exceptions, ensuring that communicating peers at a given exception

level all transfer into the correct exception handling process.

25



26 Chapter 3. Related Work

More technically, the semantics of structured interactional exceptions rely crucially on the no-

tion of a meta-reduction: a set of reduction rules to handle exceptions by erasing the remaining

actions in the default process, and propagating exception messages to communicating peers in

the same exception level. Further exceptions may not be thrown in an exception handler.

The system does not support channel delegation, and the throw process cannot be parameterised

by exception types such as those in Java. Referring to the system as purely an exception han-

dling system could be seen as a misnomer: while exceptions do require the sort of structured,

co-ordinated transition to an exception handler as described in the paper, the technique seems

to be more general, allowing the structured escape between multiple processes communicating

with a shared service.

Capecchi et al. [17] extend structured interactional exceptions to the multiparty setting: the

calculus described allows asynchronous exceptions to be propagated amongst a subset of the

participants in the interaction. Interactional exceptions are not available in any implementation.

3.1.2 Affine Sessions

As discussed in Section 2.2.3, session types rely crucially on the notion of linearity – that

session channels should be used exactly once. Incorporating linearity ensures that there are no

race conditions, and that previous references to a linear channel cannot be used again.

Affine logic, on the other hand, still forbids contraction but allows weakening. Mostrous and

Vasconcelos [50] describe a session calculus based on affine logic with explicit weakening in

order to model computations which may be cancelled at any point during the session, hence ex-

hibiting at most the behaviour prescribed by their session type. Explicit weakening is modelled

using a cancellation operator a , read as “cancel a”.

Interestingly, in addition to allowing sessions which may be aborted at any time to be modelled,

the cancellation operator can be used to model exceptions. In order to do this, a do..catch con-

struct is added to the language, which attempts to execute a process, and if it is aborted, instead

executes the instruction handler. The calculus is stratified into prefixes ρ, denoting commu-

nication actions, and the remainder of the processes. Importantly, do..catch blocks cannot

be placed around processes executing in parallel, making them address a different problem to

interactional exceptions.

One elegant result of the proposed system is that the type of a process which throws and handles

an exception is exactly the same a a process without any exception handling.

The semantics of session cancellation require default actions to be performed in order to resolve

nondeterminism, for example when cancelling a branching operation: this may not be desired



3.1. Exceptions and Non-Standard Control Flow 27

behaviour. The typing rules are presented in a style not amenable to an algorithmic type checker

implementation: the presentation requires a non-deterministic context splitting operation to

partition a context into two disjoint halves. Without an algorithmic interpretation of the typing

rules, it is difficult to implement the system in practice.

3.1.3 Practical Interruptible Conversations

The Scribble protocol description language incorporates a mechanism for non-standard control

flows, where blocks can be interrupted by incoming messages, causing the current interruptible

scope to be exited. As an example, consider the following protocol, which repeatedly sends a

message X from role A to role B.

global protocol Example(role A, role B) {

rec loop {

X() from A to B;

continue loop;

}

}

Now, suppose that after a certain amount of time, role C wishes to advance the protocol. It then

sends a message Y , which interrupts the protocol. At this point, A can then send a message Z to

B instead. This is accomplished by using an interruptible..with construct: the interruptible

block specifies a protocol which can be interrupted, and the with block specifies a set of mes-

sages that can interrupt the block.

global protocol Example(role A, role B, role C) {

interruptible {

rec loop {

X() from A to B;

continue loop;

}

} with {

Y() by C;

}

Z() from A to B;

}

Interruptible conversations are implemented in the Scribble validation and projection routines.

Runtime support for interruptible conversations is included in the SPY Session Python frame-

work [53]. Interruptible conversations are designed for dynamically monitored systems as op-

posed to statically-typed systems. Writing exception-handling code with interruptible blocks

is one possible use of the construct, but this is not its purpose.
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We take inspiration from some of these mechanisms, but design our failure handling mecha-

nism to handle both application-level exceptions, and failures caused due to the termination of

participants, by modularly partitioning protocols into possibly-failing subprotocols [28]. Fur-

ther details can be found in Chapter 6.

3.1.4 Verification of Erlang Applications

Existing work has been undertaken on the verification of distributed Erlang applications, in-

cluding their communication behaviour, but take different approaches.

McErlang [30] is a model checker for Erlang. Model checking enumerates the state space

of an application, and exhaustively explores this to ensure that properties hold throughout any

possible execution of the program. In McErlang, properties can be specified as Linear Temporal

Logic (LTL) formulae, which is a rich and expressive temporal logic. Using LTL propositions,

detailed and complex propositions can be checked, which are not limited to communication

patterns.

This increase in expressivity comes at a cost. Session types are specialised to checking commu-

nication protocols, and consequently it is easier to express protocols using session types than

LTL formulae. Secondly, and more importantly, model checking is an expensive operation,

and state explosion is a concern. One method employed by users of McErlang, as detailed by

Castro et al. [20], is to restrict model checking of the application to certain smaller scenarios.

This alleviates the issue of state explosion, but can be time-consuming. Session types can only

express communication behaviour, but if messages are what needs to be verified, then session

types are arguably a better option as protocols can be more concisely expressed and efficiently

verified.

Nyström [56] uses static analysis to extract process supervision structures from source code,

using the static analysis to identify possible errors within the structures. In order to do so, the

author formalises the operational semantics for a fragment of Erlang. The purpose of the work

focuses on finding problems with supervision structures as opposed to verifying communica-

tion patterns.

Colombo et al. [24] describe a runtime monitoring system for Erlang, based on the Larva [23]

monitoring system for Java. ELarva makes use of Erlang’s inbuilt tracing system, intercepting

traces and validating the traces using monitoring processes. In order to specify a monitor, a

user makes use of a lightweight DSL based on the handling of Erlang events, which is subse-

quently compiled into an FSM. Each monitor is spawned as a process, and the ELarva runtime

delegates events to the appropriate monitor. As with McErlang, ELarva is not specialised for

checking well-formedness and conformance to protocols, and thus can verify more properties.
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The drawback, however, is that it is more difficult to express communication protocols, as the

protocols must be manually translated into FSMs. Additionally, without session types, we can-

not rely on the theoretical monitoring guarantees such as those given by Bocchi et al. [12], and

we lose the guarantees provided by projecting a global type into endpoint types. Furthermore,

monitoring is asynchronous and based on dynamically-generated traces, so there is no way of

intercepting and not delivering a message which does not conform to the session type.

3.2 Session Types for Actor Systems

Mostrous and Vasconcelos [49] describe a term language, operational semantics, and type dis-

cipline for a minimal session-typed fragment of Erlang. The technique relies on the idea of

correlation sets, where unique identifiers for sending and receiving messages are incorporated

in session messages. The type system guarantees that sessions are completed, and that all sent

messages can be received. The typing scheme described in the paper is presented using a non-

deterministic context splitting operation, which is not amenable to an algorithmic implemen-

tation. Additionally, the system only supports binary sessions, not considering the multiparty

setting.

Crafa [26] introduces an actor-based process calculus AC, along with a behavioural type sys-

tem which statically guarantees deadlock freedom, and that all messages will eventually be

processed. The actor-based process calculus contains a construct react, which waits until a

message matching a specification arrives in the actor mailbox, a construct for spawning actors,

and a construct for sending messages to actors. Consequently, the calculus remains close to the

formal definition of an actor.

3.2.1 Multiparty Session Actors

The conceptual framework upon which we base this work is that of multiparty session actors

[52]. In this work, Neykova and Yoshida describe the design and implementation of a system

allowing actor programs using the Cell1 actor framework for the Celery2 distributed task pro-

cessing system to be monitored using multiparty session types. Session types are written in the

Scribble protocol description language, with the generated monitors used to monitor incoming

and outgoing session messages.

A key insight of the work is that actors should not be restricted to fulfilling a single role in a

single protocol, but instead should be able to fulfil multiple roles in multiple different proto-

1https://github.com/celery/cell
2http://www.celeryproject.org/

https://github.com/celery/cell
http://www.celeryproject.org/
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cols. Consequently, actors may simultaneously partake in multiple protocols, with interleaved

execution between the two roles driven by the reception and handling of messages. Actors

therefore become ‘containers’ for message handlers, and the monitors governing incoming and

outgoing messages.

Consider the simple ‘Hello, World!’ Scribble protocol described in Listing 3.1, where role

GreetingGiver sends a message hello, and role GreetingReceiver responds with world.

Listing 3.1: "Hello world" Scribble protocol

global protocol HelloWorld(role GreetingGiver, role GreetingReceiver) {

hello() from GreetingGiver to GreetingReceiver;

world() from GreetingReceiver to GreetingGiver;

}

Python session actors use decorators to register actors for protocols and roles. Python classes

are annotated with @protocol decorators to register the actor as able to partake in a protocol,

and message handlers are annotated with @role decorators. As a minimal example, consider

the Greeter class in Listing 3.2, which can fulfil both ‘GreetingGiver’ and ‘GreetingReceiver’

roles.

Listing 3.2: Python Session Actor implementation of Hello World protocol

greeting_giver = "GreetingGiver"

greeting_receiver = "GreetingReceiver"

HelloWorld = "HelloWorld"

c = 'c'

c1 = 'c1'

@protocol(c, HelloWorld, greeting_giver, greeting_receiver)

@protocol(c1, HelloWorld, greeting_receiver, greeting_giver)

class Greeter(SessionActor):

@role(c1, greeting_sender)

def hello(self):

print "Hello"

c1.greeting_giver.send.world()

@role(c, greeting_giver):

def world(self):

print "World"

@role(c, greeting_giver)

def join(self):

c.greeting_receiver.send.hello()

The @protocol decorator takes the form @protocol(key, protocol_name, role, other_roles), where

key is a key representing the pairing between a protocol name and a role. A @role decorator
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takes the form @role(key, sender_role), where key is the key specifying a protocol-role map-

ping defined in a @protocol decorator, and sender_role is the name of the role sending the

message.

It is instructive to distil the mappings provided by the annotations. A @protocol annotation

serves the dual purpose of registering an actor to partake in a protocol, and providing a mapping

Key 7→ (Protocol,Role) to be used within message handlers. A @role annotation maps a role

within a protocol to a message handler.

Actors in the session actor framework may only partake in a single session instance: that is,

an actor may only fulfil the GreetingGiver role in a single session. This restriction is too strong

for server applications, which are the focus of this thesis: server applications must have the

ability to interact concurrently with multiple client instances, which may be at different points

within the protocol. Consequently, in the present work, we generalise multiparty session actors

to allow actors to partake in multiple session instances.

The multiparty session actor framework includes a method by which actors with the ability

to fulfil a role may be invited to fulfil the role, without a user providing a concrete endpoint

identifier. The actor-role invitation workflow is further discussed and contrasted to the imple-

mentation in monitored-session-erlang in Section 4.6.1.

Erlang is a substantially different setting to Python. As a functional programming language,

Erlang disallows mutable state, and due to the language’s foundation on the actor model, must

communicate purely through message passing. Consequently, various design decisions must

be made which differ substantially from the Python setting. Finally, as Erlang is itself based on

the actor model, we do not use AMQP and the associated abstractions provided by the AMQP

framework.





Chapter 4

Monitored Session Erlang: Design and

Implementation

Integrating multiparty session types and Erlang/OTP applications is challenging. How do we

encapsulate the notion of a session? Can actors partake in multiple sessions at once? How do

we map actors to the sessions they may take part in? How is the monitoring performed?

In this chapter, we detail the design and implementation of the monitored-session-erlang sys-

tem. Inspired by the system implemented by Neykova and Yoshida [52], we show how Erlang

actors, based on the gen_server behaviour, may partake in sessions. We show how monitors are

generated from Scribble local projections, how actor instances are invited to fulfil roles, and

how users may respond to session lifecycle events, such as when a session is started or ended.

We also show that monitoring is orthogonal to the supervision hierarchies used within the

application: a user does not need to change the supervision hierarchy of an application in order

to use monitored-session-erlang.

4.1 Monitored Session Erlang by Example

We illustrate the framework by example, implementing the Two-Buyer protocol described in

Section 2.2.2 as an Erlang session actor. Recall that the two-buyer protocol is a simplification

of a financial protocol, where two participants arrange to buy an item, arranging the cost to be

shared.

Listing 4.1 shows the global protocol for the two buyer protocol, and Listings 4.2, 4.2, and 4.4

show the local projections at Buyer 1, Buyer 2, and the seller respectively.

33
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Listing 4.1: Global protocol for the two-buyer protocol

global protocol TwoBuyers(role A, role B, role S) {

title(String) from A to S;

quote(Integer) from S to A, B;

rec loop {

share(Integer) from A to B;

choice at B {

accept(String) from B to A, S;

date(String) from S to B;

} or {

retry() from B to A, S;

continue loop;

} or {

quit() from B to A, S;

}

}

}

Listing 4.2: Local projection of the two-buyer protocol at buyer 1

local protocol TwoBuyers at A(role A,role B,role S) {

title(String) to S;

quote(Integer) from S;

rec loop {

share(Integer) to B;

choice at B {

accept(String) from B;

} or {

retry() from B;

continue loop;

} or {

quit() from B;

}

}

}

Listing 4.3: Local projection of the two-buyer protocol at buyer 2

local protocol TwoBuyers at B(role A,role B,role S) {

quote(Integer) from S;

rec loop {

share(Integer) from A;

choice at B {

accept(String) to A,S;

date(String) from S;

} or {

retry() to A,S;

continue loop;

} or {

quit() to A,S;

}

}

}
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Listing 4.4: Local projection of the two-buyer protocol at the seller

local protocol TwoBuyers at S(role A,role B,role S) {

title(String) from A;

quote(Integer) to A,B;

rec loop {

choice at B {

accept(String) from B;

date(String) to B;

} or {

retry() from B;

continue loop;

} or {

quit() from B;

}

}

}

We require three session actors: buyer1, buyer2, and seller.

In monitored-session-erlang, an actor can fulfil a number of roles in a number of protocols. The

first stage of writing a monitored-session-erlang program, therefore, is to create a configuration

file, in this case two_buyer_conf, registering each actor type for the roles they may play in the

protocol.

-module(two_buyer_conf).

-export([config/0]).

config() ->

[{buyer1, [{"TwoBuyers", ["A"]}]},

{buyer2, [{"TwoBuyers", ["B"]}]},

{seller, [{"TwoBuyers", ["S"]}]}].

The configuration file registers the actor buyer1 to play role A (Buyer 1) in the TwoBuyers proto-

col, and does similar registrations for buyer2 and seller.

The next stage is to implement the logic for each actor. We begin with buyer1, and shall describe

each section of the actor in turn.

Each session actor implements the ssa_gen_server behaviour. The ssactor_init function is

called when the actor is started, and provides two arguments: a list of arguments specified

by the user, and the PID of the monitor. When buyer1 is started, it initiates a the TwoBuyers

protocol, using the conversation:start_conversation API function, taking role A. The return

value of ssactor_init is the state of the actor: in this case, no state is required, so the no_state

atom is returned.

-module(buyer1).

-behaviour(ssa_gen_server).
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-compile(export_all).

ssactor_init(_Args, Monitor) ->

% Start the conversation

io:format("Starting conversation in buyer1.~n", []),

conversation:start_conversation(Monitor, "TwoBuyers", "A"),

no_state.

The next four callbacks, ssactor_join, ssactor_conversation_established, and ssactor_conversation_ended,

handle lifecycle events of the session.

The ssactor_join callback is called whenever an actor is invited to join a session; in this imple-

mentation, the actor always accepts.

The ssactor_conversation_established function is called when all participants have accepted

invitations to join the session, and communication may begin. The callback provides 5 argu-

ments: a protocol name, role name, session ID, conversation key, and the state of the session.

Once ssactor_conversation_established callback has been invoked, it is possible to begin send-

ing session messages using the conversation:send call. In this case, buyer1, acting as role A,

sends a message of type title with a payload of Learn You Some Erlang.

The ssactor_conversation_error function is called when it was not possible to establish a ses-

sion, and finally the ssactor_conversation_ended is called whenever an established session ends.

In the implementation, neither are important in this case: we simply log their occurrence.

ssactor_join(_, _, _, State) -> {accept, State}.

ssactor_conversation_established("TwoBuyers", "A", _CID, ConvKey, State) ->

conversation:send(ConvKey, ["S"], "title", [], ["Learn You Some Erlang"]),

{ok, State}.

ssactor_conversation_error(_PN, _RN, Error, State) ->

actor_logger:err(buyer1, "Could not establish conversation: ~p~n", [Error]),

{ok, State}.

ssactor_conversation_ended(CID, _Reason, State) ->

actor_logger:info(buyer1, "Conversation ~p ended.~n", [CID]),

{ok, State}.

The ssactor_handle_message callback provides 8 arguments: the protocol name, role name, ses-

sion ID, role of the sender, message name, payload, state, and a ConvKey. A ConvKey can be

treated as an opaque value which allows messages to be checked against the correct monitor;

further details may be found in Section 4.4.1. Much like with the standard handle_cast and

handle_call callbacks in the gen_server behaviour, it is possible to pattern match on the argu-

ments in order to determine which handler to invoke. In this instance, the main determining

factor in which handler to invoke is the message name.
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As per the protocol, when the buyer receives a quote from the seller, it sends the share which it

expects the second buyer to pay to buyer 2: in this setting, the buyer splits the price evenly. In

order to send to buyer 2, the user calls conversation:send, providing the ConvKey bound in the

function header. In terms of sending messages, this is the last message the buyer needs to send:

while the handlers for other messages must be present, they simply log that the messages were

received.

ssactor_handle_message("TwoBuyers", "A", _, SenderRole, "quote", [QuoteInt], State,

ConvKey) ->

actor_logger:info(buyer1, "Received quote of ~p from ~s", [QuoteInt, SenderRole]),

conversation:send(ConvKey, ["B"], "share", [], [QuoteInt div 2]),

{ok, State};

ssactor_handle_message("TwoBuyers", "A", _, SenderRole, "accept", [Address], State,
_ConvKey) ->

actor_logger:info(buyer1, "~s accepted quote; received address (~p)", [SenderRole,

Address]),

{ok, State};

ssactor_handle_message("TwoBuyers", "A", _, SenderRole, "retry", _, State, _ConvKey) ->

actor_logger:info(buyer1, "~s wants to retry", [SenderRole]),

{ok, State};

ssactor_handle_message("TwoBuyers", "A", _, SenderRole, "quit", _, State, _ConvKey) ->

actor_logger:info(buyer1, "~s wants to quit", [SenderRole]),

{ok, State};

ssactor_handle_message("TwoBuyers", "A", _CID, _SenderRole, Op, Payload, State, _ConvKey)

->

actor_logger:err(buyer1, "Unhandled message: (~s, ~w)", [Op, Payload]),

{ok, State}.

The remaining functions are not used in this simple example as they refer to more advanced

features of monitored-session-erlang described in Chapters 5 and 6. Additionally, we do not

make use of any of the standard gen_server callbacks as we only use session messages.

ssactor_call(_, _, _, _, _, _, _, _) -> {stop, unexpected_session_call, State}.

ssactor_become(_, _, _, ConvKey, _) -> {stop, unexpected_become, State}.

ssactor_subsession_complete(_, _, State, _) -> {stop, unexpected_become, State}.

ssactor_subsession_failed(_, _, State, _) -> {ok, State}.

ssactor_subsession_setup_failed(_, _, State, _) -> {ok, State}.

handle_call(_, _, State) -> {stop, unexpected_call, State}.

handle_cast(_, State) -> {stop, unexpected_cast, State}.

handle_info(_, State) -> {stop, unexpected_info, State}.

code_change(_, State, _) -> {ok, State}.

terminate(_, _) -> ok.

Finally, the message handler for the second buyer is as follows:

ssactor_handle_message("TwoBuyers", "B", _CID, SenderRole, "quote", [QuoteInt], _State,
_ConvKey) ->
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actor_logger:info(buyer2, "Received quote of ~p from ~s", [QuoteInt, SenderRole]),

{ok, no_state};

ssactor_handle_message("TwoBuyers", "B", _CID, SenderRole, "share", [Share], _State,

ConvKey) ->

actor_logger:info(buyer2, "Received share quote (~p) from ~s", [Share, SenderRole]),

if Share >= ?PRICE_THRESHOLD ->

% Nah, we aint paying that

actor_logger:info(buyer2, "Rejected share quote (threshold ~p)", [?PRICE_THRESHOLD

]),

conversation:send(ConvKey, ["A", "S"], "quit", [], []);

Share < ?PRICE_THRESHOLD ->

% We can afford it: accept, send address to buyer2 and server,

% and retrieve the delivery date from the server

actor_logger:info(buyer2, "Accepted share quote (threshold ~p)", [?PRICE_THRESHOLD

]),

conversation:send(ConvKey, ["A", "S"], "accept",

[], ["Informatics Forum"])

end,

{ok, no_state};

ssactor_handle_message("TwoBuyers", "B", _CID, SenderRole, "date", [DeliveryDate], _State

, _ConvKey) ->

actor_logger:info(buyer2, "Received delivery date of ~s from ~s", [DeliveryDate,

SenderRole]),

conversation:end_conversation(ConvKey, normal),

{ok, no_state};

ssactor_handle_message("TwoBuyers", "B", _CID, _SenderRole, Op, Payload, _State, ConvKey)

->

actor_logger:err(buyer2, "Unhandled message: (~s, ~w)", [Op, Payload]),

{ok, no_state}.

Upon receiving the share which buyer 1 expects buyer 2 to pay, the second buyer checks

whether the price is below a given threshold. If so, the buyer sends an accept message, specify-

ing the delivery address. If not, then it sends a quit message. Finally, upon receiving a delivery

date, the protocol has ended, and so is terminated using the conversation:end_conversation

function. The implementation of the seller actor is similar.

4.2 System Overview

The aim of the library is to make use of the theory of multiparty session types to ensure that

protocols are safe, and to provide guarantees about the behaviour of the application should

messages conform to the session type.

The Scribble protocol description language [39] is a high-level domain-specific language (DSL)

used for the specification of protocols, using the theory of multiparty session types. The

scribble-java project1 is a set of tools for the Java programming language. The Scribble

1http://www.github.com/scribble/scribble-java

http://www.github.com/scribble/scribble-java
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toolchain provides a parser, a tool for validating the well-formedness of protocols, a tool for

projecting global types to local types, a tool for validating traces against a session type, and a

Java monitoring implementation.

Global Protocol Local Protocols Monitors

Validation

and

Projection

Monitor

Generation

Scribble is used as the language to describe protocols as it is a well-maintained framework

implementing the theory of multiparty session types, and the scribble-java toolchain can be

thought of as a trusted base on which to write protocols. The disadvantage of this approach

is that users are required to also install the scribble-java tools, although this should not be an

issue in practice.

As a high-level overview, the system works as follows, and as shown in Figure 4.1:

• The monitored-session-erlang implementation is provided with local projections of pro-

tocols, which are parsed and transformed into CFSM-based monitors using the algorithm

described by Deniélou and Yoshida [29].

• Erlang session actors are Erlang actors which can fulfil multiple roles in multiple proto-

cols. A configuration file defines which roles, in which protocols, actors may fulfil.

• A session initiator begins a session, which is registered for the role. At this point, eligible

actors are invited to fulfil the roles. When all roles are fulfilled, the participants of the

session are notified that the session has been initiated successfully. Conversely, if it is not

possible to fulfil all of the roles (for example, if all actors eligible to fulfil a role decline

the invitation, or there are no actors registered to fulfil the role), then all actors registered

in the session are notified of the failure.

• Session messages are sent using the session API, and processed by session actors. All

communication using the session API is mediated by monitors, and messages which do

not conform to the protocol are rejected, with an exception thrown in the sender.

• Due to the supervision tree structure within the Erlang applications, we cannot assume

that participants are alive for the duration of the session. Consequently, we provide

failure detection mechanisms, which detect when participants have terminated and the

session can no longer safely proceed: this is particularly important due to the multi-

casting capabilities of multiparty session types, as we wish to provide atomic multicast

capabilities.
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Figure 4.1: Overview of monitored-session-erlang system

• When the session is over (or an actor ends it prematurely due to an error), a participant

calls a function which notifies other participants in the session that the session has ended.

Importantly, we view the session system as largely, but not completely, orthogonal to supervi-

sion tree structures. Erlang developers may write and structure their applications as they would

normally, using the well-defined and tested Erlang development methodologies. The reason the

two are not completely orthogonal is that exceptions, for example an exception raised when a

monitor rejects an outgoing message, may (if uncaught) result in a process being terminated.

The approach of throwing an exception in the actor is consistent with Armstrong’s methodol-

ogy for developing applications in the presence of possible software errors. Once the error is

detected, we know that the actor has deviated from the desired communication protocol, and

therefore has deviated from its specification. Consequently, the error should be logged, and the

actor should terminate and be restarted by its supervisor.

4.3 System Structure

Figure 4.2 shows the supervision hierarchy for the monitored-session-erlang runtime. Two

worker processes, protocol_registry and actor_registry, are used for session initiation, and
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conversation_runtime_sup

conversation_instance_sup protocol_registry actor_registry

CID 1 ... CID n

Figure 4.2: Supervision tree of monitored-session-erlang system

record the process IDs of active session actor instances. Both processes are restarted should

they fail. The conversation_instance_sup process is a supervisor for conversation_instance

processes, which are spawned upon the creation of a session, and handle session-specific ac-

tions. It is worth noting that if a conversationInstance process terminates, it is not restarted

by conversation_instance_sup: the purpose of the supervisor is to add structure to the runtime

processes.

4.4 Erlang Session Actors

The core concept in the system is the idea of an Erlang session actor. In keeping with the work

of Neykova and Yoshida [52], we maintain the idea that actors can fulfil roles in multiple pro-

tocols, with the session actor behaviour ‘demultiplexing’ messages received from the mailbox

as they are processed.

At its essence, an Erlang session actor consists of:

• A process ID P

• A mailbox M

• Actor State State

• A lookup table of monitors M : (RoleName × SessionID) 7→ Monitor

• A handler function

H : (MessageName × Payload × RoleName × SessionID × State) 7→ (SentMessages × State)

As always, Erlang actors are uniquely identified by a process ID, and have a mailbox, which

is an ordered queue of incoming messages. In addition, Erlang session actors provide two
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additional pieces of functionality: a monitor lookup table, which maps roles and session IDs to

monitors, and a handler function, which specifies the function to run when handling a message.

A monitor may be uniquely identified by a pair of a role name and a session ID.

User Logic Process

Monitor:

Session 1, Role  Buyer 

Monitor:

Session 2, Role  Warehouse 

User Logic Process Monitor Process

Message( Buyer , SID 1,  buy )

Message
( Buyer , SID 1,  buy )

.

.

.

Figure 4.3: Erlang Session Actors

Figure 4.3 shows the design of Erlang session actors. Of particular importance is the concept

that the monitoring process is external to the session actor process implementing the user ap-

plication code, and that all communication to and from the user session actor process is fully

mediated by the monitor process.

4.4.1 External Monitoring Process

The design decision to have a separate monitoring process instead of having a single process

handling both monitors and application logic was made for several reasons. Firstly, and most

importantly, by keeping the monitor as a separate process, we allow messages to be sent at

any point during the handler, while eliminating the need for linearity tracking. Consider the

following example:

ssactor_handle_message("PerformExpensiveComputation", "A", _, _, "quote", [Quote], State,

Monitor) ->

Monitor1 = conversation:send("B", "ComputationStarted", [], Monitor),

Result = do_expensive_computation(),

Monitor2 = conversation:send("B", "ComputationFinished", [Result], Monitor1),

{ok, Monitor2, State}.

In this example, an actor plays role A in a protocol PerformExpensiveComputation. As the

protocol name suggests, the code sends a message to another actor B to signify that the compu-

tation has started, and a message ComputationFinished along with the result at the end of the
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computation. In this example, the conversation:send function sends a message, and returns a

new monitor when finished.

The problem here is that there is nothing stopping us using Monitor or Monitor1 multiple times,

which would allow messages to be sent multiple times—ergo violating session fidelity. In a

functional language without mutable state, some form linearity tracking would be required.

The other method of sending messages involves not sending the messages inline, but only at

the end of the computation.

ssactor_handle_message("PerformExpensiveComputation", "A", _, _, "quote", [Quote], State)

->

Result = do_expensive_computation(),

{ok, [{"ComputationStarted", []}, {"ComputationFinished", [Result]}], State}.

The issue with this approach is that the framework becomes too restrictive on when messages

may be sent. In this example, the ComputationStarted message becomes meaningless, as it is

not delivered until after the computation has finished executing.

The problem can be alleviated by having an external monitoring process. Instead of providing

a concrete monitor to the user, or requiring all messages to be sent at the end of a message

handler, we instead provide users with a conversation key, or ConvKey:

Definition 3 (Conversation Key). A conversation key is a 3-tuple (M,R,S), where

M is the process ID of the monitor, R is the name of the role that the participant is

playing in the session, and S is the process ID of the conversation_instance process

for the session.

To the user, a ConvKey is intended to be an opaque, abstract value. Passing the value along with

any send operations allows the appropriate monitor to be found, in order to check the outgoing

message and update the monitor state. Since the monitor state will be updated as a result of the

message being sent, there is no requirement for linearity tracking.

The final iteration of the above example is as follows:

ssactor_handle_message("PerformExpensiveComputation", "A", _, _, "quote", [Quote], State,

ConvKey) ->

conversation:send("B", "ComputationStarted", [], ConvKey),

Result = do_expensive_computation(),

conversation:send("B", "ComputationFinished", [Result], ConvKey),

{ok, State}.

It is worth noting here that the update in the state of the monitor is hidden from the user, and

that messages are still free to be sent at any point in the session.



44 Chapter 4. Monitored Session Erlang: Design and Implementation
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Figure 4.4: Session lifecycle, and associated callbacks

A further reason for adding a separate monitoring process instead of performing monitoring in

the same process is that of concurrency: as actors are single-threaded, the use of a single mon-

itoring process would mean that accepting or rejecting incoming messages could only happen

when the actor process is not running application logic. This would hamper the efficiency of

synchronous error reporting.

Finally, it is worth noting that a failure in either the monitor process or the user logic process

means that the other process (the monitor process in the case of a user logic process failure, or

the user logic process in the case of a monitor process failure) cannot function. Consequently,

the processes are bidirectionally linked, and a failure in one will result in the termination of the

other.

4.4.2 The ssa_gen_server Behaviour

The core target for the monitored-session-erlang library is Erlang/OTP server applications,

hence we target a higher level of abstraction than the standard Erlang send and receive primi-

tives. Instead, we build work on top of the Erlang/OTP generic server, or gen_server behaviour.

The idea behind abstracting out common functionality in Erlang behaviours, in particular an

analysis of a skeleton gen_server, is described further in Section 2.4.2.

The ssa_gen_server behaviour is a generic server behaviour which provides functionality for

session communication. In particular, in addition to the standard gen_server callbacks such as

handle_call and handle_cast, we require several further callback which are called at various

points within the session lifecycle (shown in Figure 4.4): for example, upon setup, message

receipt, and teardown of the session. More detailed information on the callbacks may be found

in Appendix A.

Unlike standard gen_server implementations, the PID of the ssa_gen_server process is not pub-

licly known. Recall that Erlang session actors are in fact a pair of processes: a monitoring

process (actor_monitor), and the process which implements the user logic (ssa_gen_server).

Spawning a session actor spawns an actor_monitor which subsequently spawns the ssa_gen_server

instance, and it is the PID of the actor_monitor instance that is returned. This allows session
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messages to be checked by the appropriate monitor prior to reaching user code.

4.5 Messaging Semantics

Communication in systems with multiparty session types is asynchronous: upon sending a

message, a process does not need to wait for the message to be received before proceeding

with the remainder of the session. This is achieved by associating queues with each process:

when a message is sent to a process, it is appended to the queue, whereas receiving a message

reads a value from the queue. In order for such a strategy to be safe, however, it is assumed

that asynchronous messages are not re-ordered in transit: that is, that messages are received

in the order in which they are sent. Such an assumption is made possible in practice through

transport-layer protocols such as TCP.

Thankfully, the semantics of Erlang message-passing have been well-studied, mostly in the

context of the McErlang [30] model checking system. Erlang semantics can be stratified into

three main layers: functional, which describe the semantics of the value language; single-node,

which govern communications within a VM; and distributed, which describe communications

between Erlang nodes.

In particular, the distributed semantics are described by Claessen and Svensson [22] and later

refined and expanded upon by Svensson and Fredlund [59]. Single-node semantics place

stronger guarantees on message ordering, since message delivery is instantaneous: when a

process A sends a message m to process B on the same VM, the VM can place m in the mailbox

of B as part of the send operation.

In a setting with multiple nodes, however, communication must take place, and the guarantee

of instantaneous delivery cannot be made. Importantly, however, messages sent from A to B re-

main ordered, but ordering cannot be guaranteed if messages take different routes. Thankfully,

however, multiparty session types are based on exactly this assumption, ruling out protocols

which could cause race conditions through the use of causality analysis.

An issue with the standard gen_server OTP behaviour, upon which we base our session actor

implementation, is that messages may be reordered when two nodes connect for the first time.

This is alleviated through the use of the gen_server2 behaviour2, a drop-in replacement which

fixes the reordering issue.

2https://github.com/rabbitmq/rabbitmq-server/blob/master/src/gen_server2.erl

https://github.com/rabbitmq/rabbitmq-server/blob/master/src/gen_server2.erl
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4.6 Sessions

4.6.1 Session Initiation

In order to start a session, it is necessary to find actors to fulfil all roles in the protocol. This is

the actor-role instantiation problem, detailed by Neykova and Yoshida [52].

In the work on multiparty session actors by Neykova and Yoshida [52], the problem is ad-

dressed by an actor-role invitation workflow, based on AMQP exchanges. Briefly, AMQP

(Advanced Message Queueing Protocol) is a protocol for message queues, enabling ordered

delivery of messages. AMQP introduces the idea of an exchange, which can distribute mes-

sages to other entities. There are multiple types of exchanges: direct exchanges, which send

a message directly to a subscriber with a given key; broadcast exchanges, which deliver a

message to all subscribers; and round-robin exchanges, which maintain a circular queue of

messages and deliver a message to a subscriber and advance their point in the queue.

The actor discovery workflow in the Python implementation of multiparty session actors in-

volves creating AMQP round-robin exchanges per type of actor, and AMQP broadcast ex-

changes per type of protocol. Upon session initiation, a new exchange is created with a unique

session ID. Next, the protocol exchange sends an invitation to actors which may fulfil the roles.

Finally, should an actor accept the invitation, the actor binds itself to the protocol instance

exchange to receive all messages addressed to a certain role. When sending a message, the

message is sent to the protocol instance exchange, which delivers to the actor registered to

receive the message.

Erlang provides native actor functionality, so we do not use AMQP. Our implementation of

the actor-role invitation makes substantial simplifications over that presented by Neykova and

Yoshida [52]. In particular, we require two registries: protocol_registry, which associates

protocol names with (Role, Monitor) pairs, and an actor_registry, which associates active

session actors with the roles they may fulfil. More concretely, the actor_registry is a map

Protocol Name 7→ (Role 7→ Actor PID).

When a session actor is spawned, it is registered by the actor_registry process, which allows

it to be invited to roles. When a session actor process terminates, it is deregistered.

The procedure for initiating a session (shown in Figure 4.5) is as follows:

1. A session actor—the session initiator—requests that a session is initiated. specifying a

protocol name, and the role it wishes to take in the protocol.

2. A conversation_instance process is spawned to co-ordinate session actions.
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Figure 4.5: Actor-Role Invitation Workflow for monitored-session-erlang

3. The conversation_instance process contacts the protocol_registry process to retrieve the

list of roles and monitors used in the process, and contacts the actor_registry process to

retrieve the list of actor process IDs which may fulfil the roles in the session.

4. For each role in turn, conversation_instance process invites eligible actors to fulfil the

role.

• If all roles have been fulfilled, then the setup is complete, each actor is notified, and

the ssactor_conversation_established callback is called in each participant.

• If it is not possible to fulfil a role, for example because no session actor which can

fulfil the role is active, or all active session actors have declined the invitation to ful-

fil the role, then the invitation process is aborted. All actors already invited to fulfil

roles in the new protocol are notified, resulting in the ssactor_conversation_error

callback being invoked.

4.6.2 Role Registration

As previously stated, session actors are entities which may fulfil multiple roles in multiple

instances of multiple protocols. This is in contrast to the approach of Neykova and Yoshida

[52], where each actor could not participate in an arbitrary number of session instances. The



48 Chapter 4. Monitored Session Erlang: Design and Implementation

decision to change this restriction was primarily due to the application domain of Erlang server

applications, where actors often need to serve requests from an arbitrary number of clients.

Actors are associated with roles through the use of a configuration file. This takes the following

form:

SessionConfig = [ActorSpec]

ActorSpec = {ActorName, [ProtocolSpec]}

ProtocolSpec = {ProtocolName, [RoleName]}

ActorName = atom()

ProtocolName = string()

RoleName = string()

In essence, a session configuration comprises a list of tuples, where each tuple maps an actor

type to a protocol name and a list of roles which it may fulfil in the protocol.

As an example, consider the Two Buyer protocol, with three actor types: buyer1, buyer2, and

seller. These three actor types should register for the "TwoBuyer" protocol, for the "Buyer1",

"Buyer2", and "Seller" roles respectively. A suitable configuration file would therefore be:

config() ->

[{buyer1, [{"TwoBuyers", ["Buyer1"]}]},

{buyer2, [{"TwoBuyers", ["Buyer2"]}]},

{seller, [{"TwoBuyers", ["Seller"]}]}].

The configuration file can then be used to populate both the protocol-role mapping in each

actor_type process, and the role-actor type mapping in each protocol_type process, hence al-

lowing the actor-role discovery process to take place.

4.7 Monitoring

Monitoring forms the core of the monitored session actors system. The monitoring subsystem

consists of two phases: generation, where a CFSM-based monitor is constructed from the

local projection of a multiparty session type, and the runtime, where the state of a monitor is

maintained, and incoming and outgoing messages are checked against the monitor.
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4.7.1 Generation

The first step of monitor generation is parsing the local projection of the session type: this is

achieved using the Erlang leex3 and yecc4 tools, resulting in an abstract syntax tree representing

the protocol.

The algorithm implemented by monitored-session-erlang largely follows the algorithm pre-

sented by Deniélou and Yoshida [29].

In essence, transitions between states are predicated on send and receive operations. As an ex-

ample of monitor generation, consider the local projection of the two buyer protocol at Buyer 2:

local protocol TwoBuyers at B(role Buyer1, role Buyer2, role Seller) {

quote(Integer) from Seller;

share(Integer) from Buyer1;

rec loop {

choice at Buyer2 {

accept(String) to Buyer1, Seller;

date(String) from Seller;

} or {

retry() to Buyer1, Seller;

continue loop;

} or {

quit() to Buyer1, Seller;

}

}

}

The monitor generated from the projection is shown in Figure 4.6.

Naïvely implemented, the size of a generated CFSM is exponential in the size of the global

type used to generate the projections, due to the handling of parallel composition, since all

interleavings must be accounted for. Without parallel composition, however, the algorithm is

polynomial.

An optimisation described by Hu et al. [40] uses the concept of nested finite state machines in

order to reduce the complexity of monitor generation to polynomial, even in the presence of

parallel composition.

As an example, consider the following protocol:

3http://erlang.org/doc/man/yecc.html
4http://erlang.org/doc/man/leex.html

http://erlang.org/doc/man/yecc.html
http://erlang.org/doc/man/leex.html


50 Chapter 4. Monitored Session Erlang: Design and Implementation

0

1

  Seller?quote(Integer)  

2

  Buyer1?share(Integer)  
  Buyer1, Seller!retry()  

3

  Buyer1, Seller!accept(String)  

4

  Buyer1, Seller!quit()  

  Seller?date(String)  

Figure 4.6: Monitor for Buyer2 projection of the Two Buyer Protocol

global protocol InterleavingExample(role Role1, role Role2) {

par {

A() from Role1 to Role2;

B() from Role2 to Role1;

} and {

C() from Role2 to Role1;

D() from Role1 to Role2;

}

}

The protocol would permit the traces {ABCD,ACBD,ACDB,CABD,CADB,CDAB}. Naïvely

implemented, the monitor would be as shown in Figure 4.7.

With the nested FSM optimisation, however, we have a much more manageable monitor, as

shown in Figure 4.8.

The nested FSM optimisation means that instead of calculating the interleaving product of

all possible message combinations, we instead calculate a separate FSM for each branch of

a parallel composition block. Due to the message uniqueness requirement, it is possible to

ensure that at most one transition matches from all parallel blocks. The nested FSM has two

sub-FSMs, each of which is the monitor for a branch of the par block. Once both nested FSMs

have reached state 3, the outer FSM can proceed to state 2.
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Figure 4.7: Monitor without nested FSM optimisation
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Figure 4.8: Monitor without nested FSM optimisation
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Using nested FSMs to model parallel composition as opposed to computing all possible in-

terleavings results in a slight loss of expressivity—messages in branches which are composed

in parallel must be distinct—but the loss of expressivity seems a worthy tradeoff in return for

tractable monitor sizes and generation times.

In the implementation, we define three types of transition:

Send – {send, ToID, Recipients, MessageName, PayloadTypes}

Specifies a transition that may be taken to the state with ID ToID, by sending a message

with name MessageName and types PayloadTypes, to recipient roles Recipients.

Receive – {recv, ToID, Sender, MessageName, PayloadTypes}

Specifies a transition that may be taken to the state with ID ToID, by receiving a message

with name MessageName and types PayloadTypes, from the sender role Sender.

Par – {par, ToID, NestedFSMIDs}

Specifies a transition that may be taken to state with ID ToID when all nested finite state

machines with IDs NestedFSMIDs are in a terminal state.

A notable difference to standard CFSMs is that we allow transitions to be predicated on sending

a message to a set of recipients, in a multicast fashion. The failure detection mechanisms in

Section 6.2 provide mechanisms to enforce atomic multicast. Par transitions may be taken if

all nested finite state machines with IDs in NestedFSMIDs are in a terminal state, thus providing

a ‘join’ abstraction.

4.7.2 Runtime

Once a monitor has been generated, it may be used to check incoming and outgoing messages

against the local specification for a type. At its outermost level, the runtime representation of a

monitor is a hashtable monitor_instances, mapping monitor IDs to monitor instances. Monitor

0 always maps to the root monitor: in protocols without parallel composition, monitor 0 will

be the only entry. In monitors with parallel scopes, there will be one monitor entry per parallel

branch. The monitors field contains monitor specifications. The reachability_dicts field is

used for push-based failure detection, described in Section 6.2.1.

-record(outer_monitor_instance, {protocol_name,

role_name,

monitors,

monitor_instances,

reachability_dicts

}).
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A monitor instance consists of four main components: a unique FSM ID within the monitor,

the current state of the monitor, hashtables mapping state numbers to state descriptions, and

state numbers to transitions.

-record(monitor_instance, {fsm_id,

current_state = 0,

states,

transitions

}).

Checking a message involves checking whether any transitions can be made from the current

state. In the case of send and receive transitions, the message will need to be checked against

the condition of the transition. If the message passes the check, then the monitor state is

advanced, and the message can be sent. If not, then an exception is raised. Failure handling is

discussed in more detail in Chapter 6.

4.8 Session API

In this section, we detail how users may send messages, and the integration of the inter-role

co-operative scheduling mechanism introduced by Neykova and Yoshida [52].

4.8.1 Send

A user may send a monitored session message by calling the conversation:send(ConvKey, Recipients,

MessageName, Values) function.

In order to send a message, four pieces of information are required:

1. A ConvKey, describing the role the actor is playing in the session.

2. A list of recipients

3. A message name

4. A list of values

Recall that the monitoring process is external to the logic process. In order to send a session

message, the conversation:send/4 function calls the actor_monitor process associated with the

logic process. Also recall that a ConvKey contains the role name and session ID, which uniquely

identify a monitor.

The actor monitor process begins by retrieving the appropriate monitor using the role name and

session ID. In order to verify that sending a message is permitted by a monitor, the algorithm
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begins by checking whether the root monitor—that is, the monitor with ID 0—has a matching

send transition from the current state. In order to do so, the algorithm retrieves the list of

transitions from the current state: in the case of send and receive transitions, the interaction type

(in this case, send) is checked against the transition type, and the check_send and check_receive

functions return true if the message and interaction type match the transition. In the case of a

par transition, the nested FSMs are checked recursively.

Figure 4.9: Internal messages sent when delivering a message

Figure 4.9 shows the process of delivering a message. Suppose an an actor A wishes to send

a message with name Name and payload Payload to an actor B. Firstly, A makes a blocking syn-

chronous call to the monitor process to ascertain whether the message can be sent.

If so, then the monitor process for A resolves the PID for the monitor process of B using the

internal routing table, and makes a synchronous call to the monitor to check whether it will

accept the message. If so, the monitor for B will deliver the message to B and return ok to the

monitor for A, which will in turn return ok to the process.

If either monitor fails, then rejected is returned to the actor, which throws an exception. The

default behaviour, should a monitor reject a message, is to throw an exception. Such behaviour

is consistent with the Erlang design ideology of letting a process fail if its behaviour deviates

from a specification, and logging the error in order to allow the failure to be investigated at

a later stage. In such a case, the failure is detected and handled, as described in Chapter 6.

In the unlikely event that a user anticipates a monitor failure, the exception can be caught and

handled.
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4.8.2 Become

In the session actor model, actors may fulfil multiple roles in multiple protocols. Importantly,

however, only one role is ‘active’ at any one time, due to the single-threaded nature of the actor

model. Importantly, it should be possible to switch between roles: a message received in one

session should be able to trigger the sending of a message in a different session, for example.

Neykova and Yoshida [52] introduce a construct, become, which allows actors to switch between

roles. In the original Python implementation of multiparty session actors, as discussed in Sec-

tion 3.2.1, actors could only partake in a single instance of a session at a time. Consequently,

switching to another role was an unambiguous process.

In the Erlang setting, we allow multiple session instances, as is necessary for server applica-

tions. Unfortunately, however, a consequence of this is that the co-operative role scheduling

becomes ambiguous: which instance should be switched to?

Our solution is to allow session instances to be registered, using a unique key. This is achieved

by calling the register_conversation function:

register_conversation(RegKey, ConvKey={ProtocolName, RoleName, ConvID, MonitorPID}) ->

actor_monitor:register_become(MonitorPID, RegKey, ProtocolName, RoleName, ConvID).

In order to switch to a registered session, a user uses the conversation:become/5 API function,

specifying the key (RegKey), along with the role name the actor should play, and an operation

and arguments.

become(ConvKey={_, _, _, MonitorPID}, RegKey, RoleName, Operation, Arguments) ->

actor_monitor:become(MonitorPID, RegAtom, RoleName, Operation, Arguments).

Should RegKey be a valid key, with the actor registered to play RoleName in the associated session,

a message is sent to the user process which invokes the ssactor_become callback.

ssactor_become(ProtocolName, RoleName, Operation, Arguments, ConvKey, State) ->

...

{ok, State}.

In this callback, the given ConvKey allows the actor to communicate as the role RoleName in

the conversation registered to RegName. The Operation and Arguments allow data to be shared

between the two sessions.

The whole process is as follows:

1. Upon session initiation, the user calls conversation:register_conversation/2 to register

the session with a key.
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2. The user calls the actor_monitor process, which associates the key with the session ID.

3. When a user wishes to transition to another role, they call conversation:become function,

which sends a message to the actor_monitor process.

4. If the key is registered, and the actor is registered to play the role RoleName in the session,

then a message is sent to the logic process implementing the ssa_gen_server behaviour,

which then invokes the ssactor_become callback.

5. The ssactor_become callback is invoked with the ConvKey allowing the actor to play the

given role in the specified session.

In this chapter, we have described how communication in Erlang applications can be monitored

using multiparty session types. A session is initiated, with actors invited to fulfil roles within

the session. Actors are able to partake in an arbitrary number of session instances, and are

registered to take part in sessions via a configuration file. Much like with standard actors

implementing the gen_server behaviour, lifecycle events in a session (for example, session

initiation) invoke callback functions, which allow users to respond to the events. Monitoring

is undertaken by an external process: no session message should be delivered without firstly

being checked by a monitor.

Some questions remain, however: are there communication patterns which are not immediately

expressible using multiparty session types, and how do we detect and handle failures? We

explore these questions further in Chapters 5 and 6.
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Encoding Erlang Communication

Patterns

In this section, we detail communication patterns that are common in Erlang applications, but

difficult to encode using standard multiparty session types. We discuss two main patterns: pass-

ing process IDs in order to dynamically introduce processes into a session, and synchronous

calls as used by the gen_server behaviour. We discuss two methods by which these two patterns

may be encoded: subsessions for introducing participants dynamically (as originally observed

by Neykova and Yoshida [51]), and additional constructs within the Scribble language for

safely encoding blocking synchronous calls.

5.1 Passing Process IDs

In Erlang applications, it is often the case that in order to satisfy a request, a process must send

the ID of another process. This is particularly the case when processes act as registries for

other processes, mapping keys to process IDs.

Consider the case of a chat server, where a user wishes to join a chat room. Each chat room is

modelled as a process. In order to join the chat room, the user sends a find_room message to

the registry, which returns the process ID of the room. The user can then use the process ID to

join the room. This interaction pattern is shown in Figure 5.1.

As a first attempt, this interaction pattern could be encoded as a Scribble protocol as in List-

ing 5.1.

57
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Figure 5.1: Diagram showing chat room joining scenario

Listing 5.1: First attempt at the room joining interaction

global protocol JoinRoom(role User, role RoomRegistry, role Room) {

Request(RoomName) from User to RoomRegistry;

choice at RoomRegistry {

RoomResponse(PID) from RoomRegistry to User;

Join() from User to Room;

...

} or {

NonexistentRoom() from RoomRegistry to User, Room;

}

}

There are two issues with this presentation. The first issue is that it is assumed that roles are

available throughout the entirety of an interaction: that is, roles are associated with endpoints

upon session initiation. This is not the case here: we do not know which endpoint will fulfil

the Room role until the request has been made, and the RoomRegistry resolves the room name to

a process ID.

The other problem with this presentation lies with the Scribble requirement that the set of roles

involved in a choice block must be the same in all branches. As the Join message is sent in to

the room should the resolution be successful, it is therefore necessary to send a NonexistentRoom

message (or another message) to the room in the second block, which is clearly nonsensical.

A second approach would be parameterised multiparty session types. Parameterised multiparty

session types provide a degree of type-dependence, allowing participants to have session types

parameterised by indices. The parameterised session framework is particularly useful in the

domain of parallel programming and high-performance computing [55]. Such an abstraction

would be useful should there be a known, static set of rooms populated at compile time, with a

function translating room names into indices. However, in the (likely) case where the number
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of rooms is not statically known when the protocol is written, for example when users may

create or remove rooms, the parameterised framework becomes too rigid.

5.1.1 On the Merits of Subsessions

One way of encoding such a pattern is through the use of subsessions [28]. Subsessions are

an abstraction to allow nested protocols in session types, allowing increased modularity but

also, importantly, for the introduction of participants not involved in the original session. In the

subsession model, an initiator process establishes a new session, and can invite participants of

the original session by sending internal invitations, but also external invitations to participants

uninvolved in the original session.

Subsession Implementation

The syntax of Scribble allows multiple protocols to be defined in a file.

In order to allow subsessions to be initiated we introduce the initiates Scribble construct:

Role initiates ProtocolName(Roles) { SuccessBlock } handle(FailureName) { FailureBlock }

The initiates construct states that a Role initiates a protocol ProtocolName with role instan-

tiations Roles. Should the subsession complete successfully, then the protocol will proceed

with the interactions described in SuccessBlock. We defer discussion of the handle clauses until

Section 6.3.1.

Returning to the chat room example, it is now possible to write the room joining pattern as:

global protocol JoinRoom(role User, role RoomRegistry) {

Request(RoomName) from User to RoomRegistry;

choice at RoomRegistry {

RoomResponse(PID) from RoomRegistry to User;

User initiates RoomActions(User, new Room) {}

} or {

NonexistentRoom() from RoomRegistry to User;

}

}

global protocol InRoom(role User, role Room) {

Join() from User to Room;

...

}
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We split the protocol into two: the JoinRoom protocol involves the User and RoomRegistry roles

and, importantly, not the Room role. Instead, the InRoom protocol is invoked by User: User is

internally invited, whereas Room is dynamically introduced using the new keyword.

The use of subsessions for dynamic role introduction was discussed briefly by Neykova and

Yoshida [51], in the context of an actor performing a Fibonacci protocol. Here, we extend the

construct to include the initiator role (to allow the construct to be projected and the creation of

the subsession to be monitored) and apply the technique to the passing of process IDs.

Further details of the subsession API, its implementation, and its applicability to failure han-

dling are given in Section 6.3.1.

5.2 Synchronous Calls

A second pattern used heavily in Erlang gen_server behaviours is that of synchronous calls.

Synchronous calls allow a call to be made to another actor during the execution of a message

handler; the call can be used to obtain a value which can then be used in the remainder of the

handler, or it can be used for synchronisation, for example.

An obvious solution to such an issue, and indeed the primary solution used in the literature, is

to represent a synchronous call as two separate synchronous messages. In order to incorporate

this, however, handlers previously making use of synchronous calls must be split whenever

the call is made, saving the state, and adding a separate handler to be invoked when the return

message is received.

To illustrate this, consider the scenario where we have three state cells: StateCell1, StateCell2,

StateCell3, and a client, Client. Each state cell supports two operations: get, which returns the

value of the state cell, and put, which updates the value of the state cell.

Consider the simple scenario, shown in Figure 5.2, where a client gets the values of two state

cells, adds the values, and puts the result into a third state cell.

In a standard gen_server program, such an application could be encoded as three synchronous

calls, as follows:

state_cells(StateCell1PID, StateCell2PID, StateCell3PID) ->

Res1 = state_cell:get(StateCell1PID),

Res2 = state_cell:get(StateCell2PID),

ok = StateCell3:put(Res1 + Res2, StateCell3PID).

The state_cell:get/1 function would be defined as:
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Figure 5.2: State cell scenario

get(PID) ->

gen_server:call(PID, get).

In order to translate this pattern, we could write a Scribble protocol using asynchronous mes-

sages, as shown in Listing 5.2.

Listing 5.2: Scribble protocol for the state cell scenario encoded as asynchronous messages

global protocol SequencedStateCells(role Client, role StateCell1, role StateCell2, role

StateCellRes) {

get_request() from Client to StateCell1;

get_response(Integer) from StateCell1 to Client;

get_request() from Client to StateCell2;

get_response(Integer) from StateCell2 to Client;

put_request(Integer) from Client to StateCellRes;

put_response(Atom) from StateCellRes to Client;

}

The implementation, however, is more verbose than that of the Erlang version. The implemen-

tation using asynchronous messages is shown in Listing 5.3.

Listing 5.3: Erlang implementation of state cell scenario using asynchronous messages

ssactor_conversation_established(_PN, _RN, _CID, ConvKey, _State) ->

Res1 = async_state_cell:get_request(ConvKey, "StateCell1"),

{ok, 0}.

ssactor_handle_message(_, _, _, "StateCell1", "get_response", [Res1], _, ConvKey) ->

async_state_cell:get_request(ConvKey, "StateCell2"),

{ok, Res1};

ssactor_handle_message(_, _, _, "StateCell2", "get_response", [Res2], State, ConvKey) ->

ToPut = State + Res2,
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async_state_cell:put_request(ConvKey, "StateCellRes", ToPut),

{ok, ToPut};

ssactor_handle_message(_, _, _, "StateCellRes", "put_response", _, State, _ConvKey) ->

{ok, State}.

The async_state_cell:get_request/1 and async_state_cell:put_request/1 functions would be

defined as:

put_request(ConvKey, StateCellName, NewValue) ->

conversation:send(ConvKey, [StateCellName], "put_request", [], [NewValue]).

get_request(ConvKey, StateCellName) ->

conversation:send(ConvKey, [StateCellName], "get_request", [], []).

The async_client:put_response/1 and async_client:get_response/2 functions are defined simi-

larly.

The implementation, transformed to use asynchronous instead of synchronous messages, is

less readable, and more cumbersome to write. In particular, the state must be saved in between

each request, and the handler must be split whenever the call response should be received.

5.2.1 Encoding Synchronous Calls

Having a notion of synchronous calls is therefore desirable, wherein an actor may make a call,

block until a response is received, and use the result of the call in the remainder of the message

handler.

The introduction of blocking calls does however introduce additional constraints. Firstly, a

response must always be sent to the actor, otherwise it will block indefinitely (or, in the case of

Erlang, until the default timeout has expired). Additionally, the actor which is blocking while

waiting for a response should not be involved in any further interactions until a response is

received.

Consequently, we wish to disallow possibly-deadlocking interactions such as in Listing 5.4,

where in servicing a synchronous call, the state cell requests synchronous confirmation from

the client. Naturally, the confirmation request cannot be received and processed before the put

request, meaning that the interaction deadlocks.

Listing 5.4: Problematic call example

global protocol SequencedStateCells(role Client, role StateCell) {

put_request(Integer) from Client to StateCell;

confirmation_request() from StateCell to Client;

confirmation_response() from Client to StateCell;
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put_response(Atom) from StateCell to Client;

}

5.2.2 Scribble Modifications

We introduce a construct, call, which signifies a synchronous call.

call MessageName(Payloads) returning Payload from SenderRole to ReceiverRole {

Interactions }

The call construct represents a synchronous call with name MessageName and payload types

Payloads from SenderRole to ReceiverRole, returning a value of type Payload. In order to service

the synchronous call, the receiver role may perform additional interactions Interactions.

Importantly, the call construct is subject to the following constraints:

1. A participant cannot call itself.

2. No interaction in the Interactions block may involve SenderRole.

3. Should a call block be contained in a par block, no other par block may involve SenderRole

or ReceiverRole.

4. The Interactions block should contain no rec blocks or continue statements.

In terms of Scribble projections, the call construct is projected as:

• At the caller, send_call_request MessageName(Payloads) to ReceiverRole, the projection

of Interactions, and receive_call_response MessageName(Payload) from ReceiverRole.

• At the receiver, receive_call_request MessageName(Payloads) from SenderRole, the pro-

jection of Interactions, and send_call_response MessageName(Payloads) to SenderRole

Informally, the projection of a call block involves two types of message: a call request, and

a call response. At the caller, the projection of Interactions will be empty, as the role is not

permitted to be involved in any of the internal interactions.

Figure 5.3 shows the syntax of global types with synchronous calls, building on the syntax of

global types described by Bettini et al. [9], which is the most widely-used formation of global

multiparty session types in the literature.

The type p→ q : 〈〈Ginteractions〉〉Sreq,Sret .G denotes that participant p makes a synchronous call

of type Sreq to participant q, with the synchronous call executing interactions Ginteractions before

returning a value of type Sret and continuing as G. The remainder of the types are standard.
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G ::= p→Π : 〈s〉.G′ Send message

| p→Π : 〈{li : Gi}i∈I Send branch selection

| µt.G Recursion

| t Recursion variable

| end End

| p→ q : 〈〈Ginteractions〉〉Sreq,Sret .G Synchronous call

S ::= bool |int |... Ground types

Figure 5.3: Syntax of global types with synchronous calls

As an example, consider the following scenario, where a client makes a request to a state cell,

which subsequently makes a request to a persistent store:

global protocol PersistentStateCell(role Client, role StateCell, role Database) {

call get() returning String from Client to StateCell {

call select() returning Atom from StateCell to Database;

}

}

The global type would be:

Client→ StateCell〈〈StateCell→ Database〈〈〉〉(),int〉〉(),int.end

T ::= !〈Π,S〉;T Send

| ?(p,S);T Receive

| ⊕〈Π,{li : Ti}i∈I〉 Selection

| &(p,{li : Ti}i∈I) Branching

| µt.T Recursion

| t Recursion variable

| !?〈p,S〉;T Send call request

| ??(p,S);T Receive call request

| !!〈p,S〉;T Send call response

| ?!(p,S);T Receive call response

| end End

Figure 5.4: Syntax of local types with synchronous calls

Figure 5.4 shows the syntax of local types. The majority of types are standard, but with the

addition of types for sending and receiving call requests and responses. Note that calls are

between only two participants, as opposed to standard multicasting functionality.
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The projection function of type G onto a local type for role p, G �env r, is inductively defined

with respect to a call environment which takes the shape 〈 caller role, callee role, return type,

continuation 〉. The projection function is shown in Figure 5.5.

The projection function is partial: a global protocol without a well-formed projection is deemed

to be ill-formed. The main departure from most standard presentations of the projection func-

tion is the inclusion of the call environment: by making a synchronous call, information about

the call is added to the call environment, including the caller, callee, return type, and remainder

of the protocol. The projection of a communication action is undefined if it is contained within

the current set of callers, and the projection of a recursion variable is undefined if the current

call environment is non-empty.

The projection of end depends on the current call environment. Should a call environment be

empty, the projection of the protocol has completed, hence the projection is end. Should the

call environment not be empty, however, then the projection of end denotes the sending or re-

ceiving of a call response, with the remainder of the protocol (as saved in the call environment)

projected with the previous call environment.

Proposition 1 (Non-interference). Given a well-formed global type G= p→ q : 〈〈Ginteractions〉〉Sreq,Sret .G
′,

the projection G �env p =!?〈q,Sreq〉.?!(q,Sret).(G′ �env p).

Proof. Applying the projection rule G �env p gives us !?〈q,Sreq〉;Ginteractions �〈p,q,Sret,G′〉·env p.

The next step is to show that Ginteractions �〈p,q,Sret,G′〉·env p =?!(q,Sret).(G′ �env p).

We firstly show that for an arbitrary global type H, H �env p = end �env p if p ∈ roles(env) and

env 6= /0.

To do so is a straightforward induction: in the SEND and SELECT cases, only the third rule

applies, as p ∈ roles(env) by the assumption, ruling out the first two projection rules, with

the required result following from the induction hypothesis. Cases REC and RECVAR are

impossible as the environment is nonempty.
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roles(env) = {rcaller|〈rcaller,rcallee,Sret,Gcont〉 ∈ env}
SEND

p→Π : 〈S〉.G′ �env r =


!〈Π,S〉;(G′ �env r) if r = p and r /∈ roles(env)

?(p,S);(G′ �env r) if r ∈Π and r /∈ roles(env)

G′ �env r p 6= r and r /∈Π

SELECT

p→Π : {li : Gi}i∈I) �
env r =



⊕〈Π,{li : Gi �env r}i∈I〉 if r = p and r /∈ roles(env)

&(p,{li : Gi �env r}i∈I) if r ∈Π and r /∈ roles(env)

G1 �env r

if r 6= p,r /∈Π, and

Gi �
env r = Gj �

env r

for all i, j ∈ I

CALL

p→ q : 〈〈Ginteractions〉〉Sreq,Sret .G �env r =
!?〈q,Sreq〉;(Ginteractions �〈p,q,Sret,G〉 ·env r) if r = p and r /∈ roles(env)

??(p,Sreq);(Ginteractions �〈p,q,Sret,G〉 ·env r) if r = q and r /∈ roles(env)

Ginteractions �〈p,q,Sret,G〉 ·env r if p 6= r and q 6= r

END

end � /0 r = end end �〈p,q,Sret,G〉 ·env r =


?!(q,Sret);G �env r if r = p

!!(p,Sret);G �env r if r = q

G �env r otherwise

REC

(µt.G) � /0 r = (µt.(G � /0 r))

RECVAR

t � /0 r = t

Figure 5.5: Projection function G �env r
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The more interesting case is CALL:

p′→ q′〈〈Hint〉〉Sreq,Sret .H �env p

= (Projection rule 3: projection cases 1 and 2 are not applicable as p ∈ env)

Hint �
〈p′,q′,Sret,H〉·env p

= (IH)

end �〈p
′,q′,Sret,H〉·env p

= (Projection rule 3 for end, as caller roles in environment are distinct)

H �env p

= (IH)

end �env p

Finally, we apply this result to Ginteractions �〈p,q,Sret,G′〉·env p, giving end �〈p,q,Sret,G′〉·env p. By the

projection rule for end we get ?!(q,Sret);G′ �env p as required.

Corollary 1. Participant p is not involved in any interactions while it is waiting for the response

of the synchronous call.

5.2.3 Implementation

In order to implement the call functionality, much like with gen_server, we require an additional

callback ssactor_handle_call to be implemented. The ssactor_handle_call function has takes

the same arguments as ssactor_handle_message, but includes the ability to reply to the call, by

returning a tuple {reply, Reply, NewState}.

The call request and call response types are translated into monitor transitions in exactly the

same way as sending and receiving messages. More specifically, we add four new transi-

tion types: send_call_request, send_call_response, recv_call_request, and recv_call_response,

which are added in the same ways as standard send and receive transitions.

Additionally, we extend the session API to include a call function, identical to the existing

send function. The call function initially calls the monitor, which checks whether the call is

allowed. If so, then a synchronous call is made to the remote actor, which checks whether the

incoming call is allowed. If so, the the handler function is executed, which can send a reply

message. The reply message is sent to the caller.

Returning to our motivating example, it is now possible to write the protocol for the state cell

scenario as shown in Listing 5.5.
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Listing 5.5: Scribble protocol for synchronous state cells example

global protocol SynchronousSequencedStateCells(role Client, role StateCell1,

role StateCell2, role StateCellRes) {

call get() returning String from Client to StateCell1;

call get() returning String from Client to StateCell2;

call put(Integer) returning Atom from Client to StateCellRes;

}

The local protocols for the client and the first state cell are shown in Listings 5.6 and 5.7

respectively.

Listing 5.6: Local projection of synchronous state cells protocol at Client

local protocol SynchronousSequencedStateCells at Client(role Client,role StateCell1,role

StateCell2,role StateCellRes) {

send_call_request get() to StateCell1;

receive_call_response get(String) from StateCell1;

send_call_request get() to StateCell2;

receive_call_response get(String) from StateCell2;

send_call_request put(Integer) to StateCellRes;

receive_call_response put(Atom) from StateCellRes;

}

Listing 5.7: Local projection of synchronous state cells protocol at State Cell 1

local protocol SynchronousSequencedStateCells at StateCell1(role Client,role StateCell1,

role StateCell2,role StateCellRes) {

receive_call_request get() from Client;

send_call_response get(String) to Client;

}

Finally, the implementation of the client is shown in Listing 5.8, with a style much closer to

that of Erlang, without the need to save intermediate states and separate the handler.

Listing 5.8: Implementation of the client for the synchronous state cells example

ssactor_conversation_established(_PN, _RN, _CID, ConvKey, State) ->

Res1 = sequenced_state_cell:get(ConvKey, "StateCell1"),

Res2 = sequenced_state_cell:get(ConvKey, "StateCell2"),

sequenced_state_cell:put(ConvKey, "StateCellRes", Res1 + Res2),

{ok, State}.



Chapter 6

Failure Detection and Handling

6.1 Overview and Motivation

A common asumption for implementations of either session-typed languages, or monitoring

frameworks for applications using session types, is that processes persist throughout the course

of the session.

Unfortunately, this assumption does not hold true in real-world distributed systems, or indeed

standalone Erlang applications. As discussed in Chapter 3, an important design pattern in

Erlang applications is to arrange processes in supervision hierarchies, allowing processes to fail

when they encounter an unrecoverable fault, and letting them be restarted by their supervisors.

Consequently, it is not possible to assume that a process is running throughout the entirety

of the session. In this section, we detail how failures within a session can be detected, the

circumstances in which a session can continue in spite of the termination of a participant, and

a modular method based on subsessions to enable error handling and recovery.

6.2 Failure Detection

Once a session has been established, a process group is formed, consisting of all participants

in the session. Should a process in the group fail, the failure should be detected, as it may be

the case that the process which has failed is playing a role which is involved in the remainder

of the session.

To this end, we describe two methods of failure detection: push-based, which involves using the

Erlang monitor functionality to detect when a participant is no longer available, and pull-based,

which uses reliable sends and a two-phase commit protocol.

69
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6.2.1 Push-Based

As described in Section 2.4.1, Erlang provides the ability to monitor processes. Consider

the case where a process A is monitoring a second process B. If B terminates or becomes

unreachable, a message is placed into the mailbox of A, notifying it of the fact that process B

has terminated. If a process is set to trap exits, then the message is delivered as normal. If not,

then A will also terminate.

Push-based failure detection involves detecting when any participant in the session has failed,

and ascertaining whether or not the participant is involved in the remainder of the session. The

main concepts behind push-based failure detection are shown in Figure 6.1.

1: Monitor participants

A

B

C

D

monitor

monitor

monitor

A

B

C

D

2: Session Communication

A

B

C

D

3: Failure Detected

A

B

C

D

check(D)

check(D)

4: Involvement Check

A

B

C

D

continue

continue

5: Notification

...

Figure 6.1: Push-Based Failure Detection

Recall that a process, conversation_instance, is spawned in order to co-ordinate session lifecy-

cle actions such as invitations and termination. Upon successful initiation of a session, and be-

fore notifying participants that the session has been successfully established, the conversation_instance

monitors all processes in the session and sets itself to trap exits.

Once each process has been monitored by the conversation_instance process, the session can

begin, and functions as normal. Once a process terminates, the conversation_instance process

is notified, and begins a safety check to ascertain whether the role played by the terminated

process is involved in the remainder of the session.

A role r is involved in a session if there exists a transition reachable from the current state,

where r is the sender or receiver in a communication.

In order to determine whether a role is involved in the remainder of a session, the conversation_instance

process sends a message check_role_reachable to all other participant monitor processes. Upon
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receiving the message, a monitor process performs reachability analysis on the monitor for the

current session, returning the result to the conversation_instance process.

Should all responses be false, meaning that the role is not involved in the remainder of the

session, then the session can safely continue. If any responses are true, then it is not possible

to safely continue the session. If the session is a subsession, then the subsession will terminate,

notifying the parent session as described in Section 6.3. If the session is not a subsession, then

the session will end, notifying all participants.

Reachability Analysis

0

1

  Seller?quote(Integer)  

2

  Buyer1?share(Integer)  
  Buyer1, Seller!retry()  

3

  Buyer1, Seller!accept(String)  

4

  Buyer1, Seller!quit()  

  Seller?date(String)  

Figure 6.2: Two Buyer Protocol: Monitor for Buyer 2

Recall the monitor for the projection of the two buyer protocol at Buyer 2, shown in Figure 6.2.

Different roles will be reachable at different points in the session, and the set of roles involved

in paths reachable from each state can be determined by a reachability analysis algorithm.

As an example, the reachability sets for each state are shown in Table 6.1.

The reachability analysis algorithm is shown in Listing 6.1.
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State Reachable Roles

0 [Buyer1, Seller]

1 [Buyer1, Seller]

2 [Buyer1, Seller]

3 [Seller]

4 []

Table 6.1: Reachability table for two-buyer protocol at Buyer2

Listing 6.1: Reachability Analysis Algorithm

generate_reachability_dict(FSM):

reachable_from_inner(0, FSM, {}, {}, {}, {})

reachable_from_inner(NodeID, FSM, CurrentPathRoles, CurrentPathFSMIDs,

ReachableDict, VisitedSet):

if NodeID in VisitedSet:

return (CurrentPathRoles, CurrentPathFSMIDs, ReachableDict)

NewVisitedSet = VisitedSet ∪ {NodeID}

WorkingRoleSet = {}

WorkingIDSet = {}

WorkingDict = ReachableDict

for each Transition in transitions(NodeID):

TransitionRoles = roles_in_transition(Transition)

TransitionFSMs = fsms_in_transition(Transition)

OutgoingID = outgoing_id(Transition)

NewCurrentPathRoles = TransitionRoles ∪ CurrentPathRoles

NewCurrentPathFSMIDs = TransitionFSMIDs ∪ CurrentPathFSMIDs

(SubpathRoles, SubpathFSMIDs, NewReachableDict) =

reachable_from_inner(ToID, FSM, NewCurrentPathRoles, NewCurrentPathFSMIDs,

WorkingDict, NewVisitedSet)

WorkingRoleSet = WorkingRoleSet ∪ SubpathRoles

WorkingIDSet = WorkingIDSet ∪ SubpathFSMIDs

WorkingDict = NewReachableDict

NewReachableDict = store(NodeID, (WorkingRoleSet, WorkingIDSet), WorkingDict)

return (WorkingRoleSet, WorkingIDSet, ReachableDict)

The algorithm only needs to be run once, upon monitor generation, and memoises results dur-

ing the course of execution to avoid unnecessary recomputation. In addition to storing the roles

reachable on each subpath, the algorithm also records the IDs of any nested FSMs used to
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implement parallel scopes: this is necessary when detecting which roles are reachable in the

nested FSMs.

The steps of the algorithm are as follows:

1. Check if the node has already been visited: if so, then return the current paths, FSM IDs,

and reachability table.

2. If not, then add the current node to the visited set, initialise three variable WorkingRoleSet,

WorkingIDSet, and WorkingDict, and for each outgoing transition:

(a) Initialise the variables NewCurrentPathRoles and NewCurrentPathFSMIDs as the union

of the roles and nested FSM IDs referenced by the transition respectively

(b) Recursively calculate the roles and FSM IDs in the subpath

(c) Update WorkingRoleSet, WorkingIDSet, and WorkingDict with the results of the recur-

sive call

3. Store the results in WorkingDict, and return a 3-tuple of (WorkingRoleSet, WorkingIDSet,

WorkingDict)

Upon termination, the algorithm will return a complete reachability table for the given FSM.

The reachability table takes the form of a map StateID 7→ (RolesInvolved, FSMsInvolved).

Checking whether a role is involved at the current point in the session is therefore achieved

by a lookup of the current state ID. As the reachability table also contains reachable nested

FSM IDs, the process can be applied recursively.

6.2.2 Pull-Based

In contrast to push-based failure detection, which involves processes being notified upon the

termination of another process, pull-based failure detection involves ensuring another process

is active prior to sending a message.

Multiparty session types allow messages to be sent to multiple participants. Consequently, it

is desirable to ensure that messages are only delivered if all processes receiving the message

are active. In order to do this, pull-based failure detection makes use of reliable send mes-

sages, using a two-phase commit to ensure that firstly, all recipient processes are available, and

secondly, that all recipient monitors accept the message.

The first stage of pull-based failure detection is to send a synchronous message, queue_msg, to

each recipient monitor process (Figure 6.3a). The result of this call will be one of three things:

either the call will succeed, returning ok, indicating that the call was successful and the message
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was accepted by the remote monitor; the call will succeed, but returning error, indicating that

the remote process was available but the remote monitor rejected the incoming message; or the

call will fail.

A

B

C

D

queue_msg(Msg1())

queue_msg(Msg1())

queue_msg(Msg1())

(a) Queue Messages: All successful

A

B

C

D

drop_msg(Msg1())

drop_msg(Msg1())

(b) Queue Messages: Failure de-

tected

Figure 6.3: Pull-based failure detection: queue

When a message is sent, it is assigned a unique identifier. Should a message be accepted, it

is stored in a table taking the form of a map MessageID 7→ (ProtocolName, RoleName, ConvID,

Message). Should all messages be delivered successfully, a second, asynchronous message will

be sent to commit the message, sending the messages to the actor processes to be handled.

On the other hand, if the a queue message fails for any participant (Figure 6.3b), then the

message cannot be delivered successfully. If the failure is due to a message rejection, then it

is possible for the session to continue: a drop message is sent to all participants, the messages

are discarded from the queue, and the failure is synchronously reported to the sender as an

exception. If the failure is due to a process being unreachable, however, it is not possible for

the session to continue, and a failure handler is invoked.

A problem with the two-phase commit approach is if a process should terminate after queueing

a message but before committing it. A possible solution to this would be to implement a full

atomic multicast protocol, which would require all participants sent the message to each other,

before passing the message onto the actor for handling. While affording slightly more safety,

this method would require more messages to be sent.

6.2.3 Discussion

Push- and pull-based approaches each have advantages and disadvantages. Push-based ap-

proaches allow failures to be detected as soon as they occur, and allow the sessions to continue

should the failed role not be involved in the remainder of the session.

Pull-based approaches only report failures when a failed role is needed, but do not require
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co-ordination amongst processes to detect whether it is safe to continue. On the other hand,

however, pull-based detection approaches fall short when an actor terminates while processing

a message; consider the following protocol:

global protocol PullExample(role A, role B, role C) {

X() from A to B, C;

Y() from B to A, C;

}

Consider the case where the message X is delivered successfully, but B terminates prior to

sending Y to A: in this case, there would be no way of detecting the failure.

Such a situation can be detected using push-based detection.

Push-based failure detection falls short should a message handler involving the failed role be

executed while the safety check is in progress. In the PullExample protocol, for example, con-

sider the case where A terminates while B processes message A. Without pull-based detection,

there no guarantee that the failure will be detected prior to Y being sent to A and C, resulting in

a non-atomic send operation where only C receives the message.

Consequently, the it is useful to use both methods of failure detection together to ensure that

failures are eventually detected (using push-based detection) and that they are detected should

the process fail before the safety check is complete (using pull-based detection).

6.3 Failure Handling

Once a failure has been detected, how can it be handled?

In Chapter 3, we discussed various, primarily theoretical, approaches to handling exceptions

and failures in session-typed processes. Our setting is largely different: we are working in an

environment where not only may exceptions be raised in the case of an error in application

logic, but we must be able to take into account the case where a process terminates. In this

section, we describe an approach based on subsessions [28], which can handle both application-

level exceptions, and failures due to processes terminating during the session.

6.3.1 Subsessions for Failure Handling

In their paper on subsessions, Demangeon and Honda [28] speculate that subsessions could be

useful for exception handling. In the setting of Erlang applications, we cannot assume that the

processes that fulfil roles persist through the lifetime of a session. Consequently, the modularity
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of the subsession abstraction allows us to minimise the amount of time that a participant is

involved with a session, and, in the case of failure, allows us to repeat smaller computations.

One approach to failure handling is that of ‘role repopulation’: upon detection of an actor

terminating, and therefore not being able to fulfil the role in the remainder of the session,

inviting a separate actor to fulfil the role and continue the protocol. This is difficult for two

main reasons: we must have a separate copy of the monitor state independent of the process,

which would require either centralised monitors or costly and difficult synchronisation. The

other reason is that we would need a method of ensuring that the actor participating in the

session begins the computation at the correct point in the protocol.

Separating blocks of computation into subsessions retains the possibility of inviting other actors

to repopulate roles where the original participant has terminated. By explicitly demarcating the

computation blocks, clean-up operations can be executed in order to compensate for failures,

and the protocol can be retried from the beginning without needing to maintain monitor state.

6.3.2 Scribble Constructs for Failure Handling Subsessions

Our approach to failure handling involves making subsessions first-class entities within ses-

sion types. Consequently, in order to fulfil a session type, an implementation must spawn a

subsession when specified by the session type.

Recall the initiates construct from Section 5.1.1.

Role initiates ProtocolName(Roles) { SuccessBlock } handle(FailureName) { FailureBlock }

The initiates construct specifies that a given subsession of protocol ProtocolName should be

executed. The protocol then proceeds based on the result of the subsession: should the subses-

sion execute successfully, the protocol will proceed as SuccessBlock. When raising an exception

within an implementation, a user must specify the name of the failure. Should an exception

with name FailureName be raised, then the protocol will proceed as the FailureBlock associated

with the name of the failure.

The initiates syntax is reminiscent of the try..in..unless construct advocated by Benton and

Kennedy [8] for exception handling in ML-like programming languages.

Only the subsession initiator is aware that the subsession is to be initiated. For participants

involved in the success and failure blocks, an initiates block is semantically identical to an

external choice by the subsession initiator role: although the choice at the initiator is driven by

the result of the subsession, this is transparent to the participant. Consequently, the projection

of an initiates block for a non-initiator participant is a local choice.
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In order to guarantee that protocols are safe—that is, that monitor transitions remain deter-

ministic, and all participants are aware of a choice that has been made—we impose the same

restrictions as a global choice block. In the original presentation of multiparty session types,

projections were subject to a somewhat restrictive property meaning that it was only possible to

define a projection on a choice in which all projections of a choice had the same session type.

Consequently, all branches behave the same regardless of the chosen option, in turn avoiding

the problem that all participants are notified of the chosen branch. Later work [19] relaxes this

constraint subject to mergeability conditions. Informally, mergeability conditions enable the

projection of branches with different labels to be different. In Scribble, this is realised by re-

quiring the following well-formedness conditions on choices, taken from the Scribble language

specification [60]:

“In a global-choice, of the form choice at A block1 or ... or blockn, the follow-
ing conditions should be satisfied.

1. There should be strictly more than one block: n > 1.

2. For 0 < i ≤ n, in each blocki, A should send the first message. All the other
participants appearing in the block should appear first as receivers, before
possibly be senders.

3. Any participant B, different from A, receiving a message in blocki, should
also be receiving a message in all other blocks. The messages received by
B in the other blocks should however be distinct if B’s following actions are
different.

4. The messages that A sends should be different in each block.”

By enforcing these restrictions on the success and handle branches of an initiates block, we

ensure that the protocol remains well-formed.

6.3.3 Session API Additions

In order to implement failure-handling subsessions in user code, we provide three additional

API functions. The additional functions are shown in Table 6.2.

The three functions start_subsession, subsession_success, and subsession_failed govern the

lifecycle events of subsessions. Should it be allowed by the monitor, the subsession_success

function starts a new subsession by inviting the necessary participants. Inspired by the work of

Demangeon and Honda [28], there are two types of invitation: internal, referring to participants

active within the current session, and external, which refers to participants outside of the current

session. Internal invitations are specified by providing a role name which is present in the

current session, whereas an external invitation may either be a role name, or a pair mapping a

role name to a process ID, should a particular participant need to be invited.
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The subsession_success and subsession_failed functions are called by a participant within the

subsession to signify that either the subsession has succeeded, returning a value, or that the

subsession has failed, notifying the initiator of the type of failure that has occurred.

We also require the implementation of three new callback functions:

ssactor_subsession_complete(SubsessionName, Result, State, ConvKey)

Called in the initiator when the subsession for protocol SubsessionName completes suc-

cessfully, returning Result.

ssactor_subsession_failed(SubsessionName, FailureName, State, ConvKey)

Called in the initator when the subsession for protocol SubsessionName terminates abnor-

mally, for reason FailureName.

ssactor_subsession_setup_failed(SubsessionName, Reason, State, ConvKey)

Called in the initiator when it was not possible to start the subsession, for example, if it

was not possible to find an actor to fulfil a role.

When implemented, all callbacks should return {ok, NewState}, where NewState is the updated

actor state.

Should a subsession terminate due to a participant becoming unavailable, as detected by the

failure handling mechanisms, the subsession will exit with the reason ParticipantOffline. This

can be detected in a handle block, and if possible, the subsession can be retried.

6.3.4 Case Study: BPMN Travel Booking Scenario

The Business Model Process and Notation (BPMN)1 modelling language is a modelling lan-

guage for describing business processes. Describing business processes naturally shares sev-

eral similarities with describing protocols: BPMN provides several constructs such as parallel

composition and choice which map directly onto those of multiparty session types.

In this section, we describe and implement a travel booking scenario from the BPMN 2.0

examples guide [14], which includes error handling. The scenario proceeds as follows:

1. The customer sends a request to travel to a destination between two dates.

2. The travel agent forwards the request to a flight booking service and a hotel booking

service.

3. The flight booking service and hotel booking service return flights and hotels matching

the booking criteria to the travel agent.

1http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/
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Function Name Arguments Description

start_subsession(ConvKey,

ProtocolName,

InternalInvitations,

ExternalInvitations)

ConvKey: The ConvKey for

the initiator role and ses-

sion.

ProtocolName: The name

of the protocol to spawn

as a subsession.

InternalInvitations: A

list of roles which should

be invited from the cur-

rent session.

ExternalInvitations: A

list of roles which should

be invited from outside of

the current session.

Starts a new subsession.

subsession_failed(ConvKey,

FailureName)

ConvKey: The ConvKey for a role

within the subsession.

FailureName: The name of the

failure that occurred.

Terminates the current

subsession, notifying

the parent session of the

failure.

subsession_complete(ConvKey,

Result)

ConvKey: The ConvKey for

a role within the subses-

sion.

Result: A result value to

be returned to the initiator

subsession.

Terminates the current

subsession, notifying

the parent session of the

success, and returning a

value.

Table 6.2: Subsession API Functions
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4. The travel agent sends the alternatives to the customer.

5. The customer can either select the desired flights and hotels, and proceed with the book-

ing, or cancel the request. If no response is received after 24 hours, then the request is

cancelled.

6. If the customer chooses to continue, the travel agent requests credit card information

from the customer. If no response is received after 24 hours, then the request is cancelled.

7. The travel agent sends requests to the flight booking service and hotel booking service

to book the requests, which respond with a confirmation if the booking is successful.

Should either booking be unsuccessful, both the flight and hotel bookings should be

cancelled, and the process retried up to a set number of times.

8. Once the booking is made, the travel agent should attempt to charge the credit card.

Should this be successful, then the customer should be notified. Should it fail, the book-

ing should be cancelled, the customer should be asked for another credit card.

BPMN processes consist of a series of Activities and Tasks. An activity is a generic name for a

unit of work to be performed, and a task is a core, atomic unit of work in a process. An Activity

can consist of multiple sub-tasks, and is indicated by a rounded rectangle. A task is a rounded

rectangle containing text.

Messages are denoted by envelopes: a black envelope denotes sending a message, and a white

envelope denotes receiving a message; the sending or receiving of messages can also be asso-

ciated with a task.

Diamond-shaped elements are known as gateways, and handle control flow (for example,

branching and joining). A diamond with a + symbol indicates that the branches are executed

in parallel.

Finally, and more interestingly, BPMN includes functionality for error handling. There exist

two constructs: compensation handlers (denoted by a rewind symbol) which can be used to

undo the effects of an action, and error handlers, which perform error handling. Error handlers

are Activity blocks with a dotted line, and begin with a lightning symbol.

In order to implement BPMN-style error handling, we can spawn the activity which can throw

an error as a subsession, with the communication actions performed by the error handler in a

handle block.

Figure 6.4 shows the travel booking process as a BPMN diagram.

The translation to a Scribble protocol, without any error handling, is shown in Listing 6.2.
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9.2 The Travel Booking Diagram

  28                                                                                                                                    BPMN 2.0 by Example, Version 1.0 
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Figure 6.4: Travel Booking Scenario BPMN Diagram [14]
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Listing 6.2: Scribble Protocol for Travel Booking Scenario

global protocol BookTravel(role TravelAgent, role Customer,

role FlightBookingService, role HotelBookingService, role PaymentProcessor) {

// 1) Receive customer request

customerRequest(RequestInfo) from Customer to TravelAgent;

// 2) In parallel, search for flights and hotels

par {

flightInfoRequest(RequestInfo) from TravelAgent to FlightBookingService;

flightInfoResponse(OutwardFlights, ReturnFlights) from FlightBookingService to

TravelAgent;

} and {

hotelInfoRequest(RequestInfo) from TravelAgent to HotelBookingService;

hotelInfoResponse(HotelDetails) from HotelBookingService to TravelAgent;

}

// Send details to customer

customerResponse(OutwardFlights, ReturnFlights, HotelDetails) from TravelAgent to

Customer;

// Customer can choose to proceed, or cancel the booking and start again.

choice at Customer {

proceedWithBooking(OutwardFlight, ReturnFlight, HotelName) from Customer to

TravelAgent;

// At this point, the customer has asked for the booking.

ccInfoRequest() from TravelAgent to Customer;

ccInfoResponse(CCNumber, ExpiryDate, CVC) from Customer to TravelAgent;

par {

bookFlight(Name, OutwardFlight, ReturnFlight) from TravelAgent to

FlightBookingService;

flightBookingConfirmation() from FlightBookingService to TravelAgent;

} and {

bookHotel(Name, HotelName, CheckInDate, CheckOutDate) from TravelAgent to

HotelBookingService;

hotelBookingConfirmation() from HotelBookingService to TravelAgent;

}

processPayment(CCNumber, ExpiryDate, CVC, Money) from TravelAgent to

PaymentProcessor;

paymentConfirmation() from PaymentProcessor to TravelAgent;

confirmation() from TravelAgent to Customer;

} or {

cancelBooking() from Customer to TravelAgent, FlightBookingService,

HotelBookingService, PaymentProcessor;

}

}

Points of Failure

As specified by the scenario, there are five main failure points in the application logic:
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1. Customer fails to respond to the packages returned by the flight search

2. Customer fails to respond to the request for credit card information

3. Failure when booking flight

4. Failure when booking hotel

5. Failure when charging credit card

The five points above arise due to specific logic errors. Additionally, as we are working with an

Erlang system wherein developers are encouraged to let processes fail, and session actors can

also partake in other sessions, we must also consider that processes can fail at any time during

the session. We do not consider timing constraints such as points 1 and 2, but these could be

addressed by timed session types [10, 13, 54], and handled in an identical manner.

Partitioning the Protocol

Conceptually, we can partition the protocol into three separate phases:

Request Phase

The customer makes the initial request, the travel agent requests appropriate flights and

hotels from providers, and sends the flights and hotels to the user.

Booking Phase

The customer accepts a selection, sending credit card details to the travel agent. The

travel agent proceeds to make the booking.

Payment Phase

Having made the booking, the travel agent contacts the payment processing service, and

attempts to make the payment. If payment processing fails, the booking is cancelled, and

the booking stage must be repeated with new information.

Failures may arise when booking flights and hotels in the booking phase, and when charg-

ing a credit card in the payment phase. As a result, we split the outer protocols into three

separate protocols: BookTravel, PerformBooking, and PerformPayment, and a further subsession

CancelBooking which notifies the hotel- and flight booking services that the booking should be

cancelled.

global protocol BookTravel(role TravelAgent, role Customer,

role FlightBookingService, role HotelBookingService, role PaymentProcessor) {

// 1) Receive customer request

customerRequest(RequestInfo) from Customer to TravelAgent;

// 2) In parallel, search for flights and hotels

par {
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flightInfoRequest(RequestInfo) from TravelAgent to FlightBookingService;

flightInfoResponse(OutwardFlights, ReturnFlights) from FlightBookingService to

TravelAgent;

} and {

hotelInfoRequest(RequestInfo) from TravelAgent to HotelBookingService;

hotelInfoResponse(HotelDetails) from HotelBookingService to TravelAgent;

}

// Send details to customer

customerResponse(OutwardFlights, ReturnFlights, HotelDetails) from TravelAgent to

Customer;

// Customer can choose to proceed, or cancel the booking and start again.

choice at Customer {

proceedWithBooking(OutwardFlight, ReturnFlight, HotelName) from Customer to

TravelAgent;

rec BookingLoop {

TravelAgent initiates PerformBooking(TravelAgent, Customer, new

FlightBookingService, new HotelBookingService) {

// Success!

TravelAgent initiates PerformPayment(TravelAgent, PaymentProcessor) {

confirmation() from TravelAgent to Customer;

} handle (PaymentFailure) {

paymentFail() from TravelAgent to Customer;

continue BookingLoop;

}

} handle (BookingFailure) {

bookingFail() from TravelAgent to Customer;

TravelAgent initiates CancelBookings(TravelAgent, new

FlightBookingService, new HotelBookingService) {

continue BookingLoop;

}

}

}

} or {

cancelBooking() from Customer to TravelAgent;

}

}

global protocol PerformBooking(role TravelAgent, role Customer, role FlightBookingService

, role HotelBookingService) {

// At this point, the customer has asked for the booking.

ccInfoRequest() from TravelAgent to Customer;

ccInfoResponse(CCNumber, ExpiryDate, CVC) from Customer to TravelAgent;

par {

bookFlight(Name, OutwardFlight, ReturnFlight) from TravelAgent to

FlightBookingService;

flightBookingConfirmation() from FlightBookingService to TravelAgent;

} and {

bookHotel(Name, HotelName, CheckInDate, CheckOutDate) from TravelAgent to

HotelBookingService;

hotelBookingConfirmation() from HotelBookingService to TravelAgent;

}

}
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global protocol PerformPayment(role TravelAgent, role PaymentProcessor) {

processPayment(CCNumber, ExpiryDate, CVC, Money) from TravelAgent to PaymentProcessor

;

paymentConfirmation() from PaymentProcessor to TravelAgent;

}

global protocol CancelBookings(role TravelAgent, role FlightBookingService, role

HotelBookingService) {

par {

cancelFlightBooking() from TravelAgent to FlightBookingService;

} and {

cancelHotelBooking() from TravelAgent to HotelBookingService;

}

}

In the BookTravel protocol, the travel agent receives the customer request, requests hotel and

flight information in parallel, and sends the details back the customer as before. Should the

customer choose to proceed, we then proceed to spawn the PerformBooking subsession. The

PerformBooking subsession can fail, for example if the flights or hotels are no longer available:

in this case, the relevant participant would end the session, with the reason BookingFailure. Note

that the throwing of the exception can happen at any point in the subsession, and therefore does

not appear in the type. Should the session fail, the protocol will progress to the BookingFailure

branch, initiating the CancelBookings subsession to cancel the bookings, before allowing the

booking to be retried.

Note, however, the additional message bookingFail that must be sent to the customer should the

booking fail. Recall that an initiates block is projected as a choice block at non-initiator roles,

and therefore the success and handle branches must adhere to the safety conditions of choice

blocks, meaning that the set of roles in each must be identical.

Should the booking session succeed, the PerformPayment session will be initiated, which pro-

cesses the payment. Should this be successful, then a confirmation will be sent to the user

and the protocol will have completed. Should the payment have failed, the customer will be

notified and the process will repeat.

6.4 Implementation

The implementation of the scenario is standard: we create ssa_gen_server implementations for

the travel agent, customer, flight booking service, and hotel booking service, and register the

actors for their roles in a configuration file.
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The more interesting parts of the implementation are based around failure-handling subses-

sions. As an example, the actor implementing the TravelAgent role must initiate the PerformBooking

subsession upon receiving a proceedWithBooking message from the customer. Should the sub-

session fail, the bookingFail message should be sent to the client, and the CancelBookings sub-

session should be initiated. Both functions are shown in Listing 6.3.

Listing 6.3: Implementation of subsession operations in TravelAgent role

ssactor_subsession_complete("PerformBooking", _, State, ConvKey) ->

error_logger:info_msg("PerformBooking complete~n"),

conversation:start_subsession(ConvKey, "PerformPayment", ["TravelAgent"],

["PaymentProcessor"]),

{ok, State};

ssactor_subsession_complete("PerformPayment", _, State, ConvKey) ->

travel_customer_split:confirmation(ConvKey),

{ok, State};

ssactor_subsession_complete("CancelBookings", _, State, ConvKey) ->

conversation:start_subsession(ConvKey, "PerformBooking", ["TravelAgent", "Customer"],

["FlightBookingService", "HotelBookingService"]),

{ok, State}.

ssactor_subsession_failed("PerformBooking", "BookingFailure", State, ConvKey) ->

travel_customer_split:booking_failed(ConvKey),

conversation:start_subsession(ConvKey, "CancelBookings", ["TravelAgent"],

["FlightBookingService", "HotelBookingService"]),

{ok, State}; ...

Should the PerformBooking subsession succeed, the PerformPayment subsession will be started.

Should the PerformPayment booking be successful, a confirmation is sent. If the PerformBooking

subsession is unsuccessful, however, then the ssactor_subsession_failed callback will be in-

voked, the CancelBooking subsession will be initiated, and upon its completion, the PerformBooking

subsession will be restarted. Should there need to be a limit on the number of times that the

subsession is invoked (in order to prevent infinite loops, for example), this could easily be

recorded in the state.

Finally, Figure 6.5 shows the monitor for the TravelAgent role, omitting the nested FSMs rep-

resenting the parallel scopes.

Note in particular the transitions for initiating subsessions: we require one transition to check

that the subsession has been initiated, and multiple transitions dictate the next state based on

the result of the subsession.
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0

1

  Customer?customerRequest(RequestInfo)  

2

  par(FSMs 1, 2)  

3

  Customer!customerResponse(outwardFlights,
ReturnFlights, HotelDetails)  

13

  Customer?cancelBooking()  

4

  Customer?proceedWithBooking(OutwardFlight,
ReturnFlight,

Hotel)  

5

  start_subsession(PerformBooking, 
HotelBookingService, 
FlightBookingService, 

Customer, 
TravelAgent)  

10

  subsession_failure(BookingFailure)  

6

  subsession_success()  

11

  Customer!bookingFail()  

7

  start_subsession(PerformPayment,
PaymentProcessor,

TravelAgent)  

9

  subsession_failure(PaymentFailure)  

8

  subsession_success()  

  Customer!paymentFail()  

  Customer!confirmation()  

12

  start_subsession(CancelBookings, 
HotelBookingService, 
FlightBookingService, 

TravelAgent  

  subsession_success()  

Figure 6.5: Monitor for BookTravel protocol, projected at TravelAgent





Chapter 7

Evaluation

7.1 Case Studies

7.1.1 DNS Server

The Domain Name System (DNS) provides a hierarchical service to resolve domain names to

IP addresses. While the DNS protocol itself is simple—a DNS request is a simple request-

response interaction, where the complexity instead lies in the packet itself—processing a DNS

request in an actor-based language gives rise to interesting communication patterns.

Overview of erlang-dns

The erlang-dns project1 is a DNS server based on Erlang/OTP design principles. Figure 7.1

shows the supervision hierarchy of the DNS server. The system is structured as a typical

Erlang/OTP application: a root supervisor ed_sup supervises the entire system. The ed_zone_sup

supervisor supervises the zone subsystem, in particular the ed_zone_registry_server which acts

as a registry for individual zone processes, mapping domain names to their resolver processes;

and the ed_zone_data_sup supervisor supervises individual instances of zone data servers. Zone

data servers (shown in the diagram as ‘.com’ and ‘.net’) are processes which map domain

names to IP addresses.

The application is entirely request-driven: it is a server in which communication amongst

participants occurs purely in order to satisfy requests.

Upon system initiation, the ed_udp_server process opens a UDP acceptor socket, and listens for

incoming requests. When a query is received, a ed_udp_handler_server process is spawned to

1https://github.com/hcvst/erlang-dns
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ed_sup

ed_udp_handler_sup ed_zone_sup ed_extension_sup

simple_stats_
server

ed_zone_
registry_server

ed_zone_data_sup

ed_udp_server

.com .net...

Req1 Reqn...

Figure 7.1: erlang-dns Supervision Hierarchy

Figure 7.2: Messages sent when fulfilling a DNS lookup request
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handle the request.

Figure 7.2 shows the messages sent when processing a DNS query. The UDP handler server

firstly contacts the zone registry server to ascertain whether or not the zone is available. If not,

then the server returns InvalidZone(), an ‘invalid zone’ DNS packet is sent to the host making

the request, and the session terminates. If the zone is found, however, then the zone registry

returns the PID of the zone data server. The zone data server is then contacted, returning the

information about the zone. At this point, if the IP address can be resolved from the request,

then it is returned to the user. Alternatively, it may be necessary to perform a recursive lookup,

at which point the protocol repeats.

Encoding the Protocol

We begin the session at the point after a UDP handler server has been spawned to handle

the request. We have three roles: UDPHandlerServer (fulfilled by the ed_udp_handler_server

instance initiating the session), DNSZoneRegServer (fulfilled by the ed_zone_reg process), and

DNSZoneDataServer (eventually fulfilled by the zone data server which is able to handle the re-

quest).

Note that we cannot fulfil the DNSZoneDataServer role at the beginning of the session, as the actor

to invite depends on the result of the the request to the zone registry. Consequently, we write the

main body of the protocol HandleDNSRequest involving UDPHandlerServer and DNSZoneDataServer,

and a subprotocol GetZoneData involving UDPHandlerServer and DNSZoneDataServer.

Listing 7.1: Scribble protocols for DNS server

global protocol HandleDNSRequest(role UDPHandlerServer, role DNSZoneRegServer) {

rec QueryResolution {

// Request the nearest zone

FindNearestZone(DomainName) from UDPHandlerServer to DNSZoneRegServer;

// DNSZoneRegServer checks whether it has the data

choice at DNSZoneRegServer {

// If we do, then get the PID for the zone data server

ZoneResponse(ZonePID) from DNSZoneRegServer to UDPHandlerServer;

// Introduce the zone data server using a subsession

UDPHandlerServer initiates GetZoneData(UDPHandlerServer, new DNSZoneDataServer) {

// Now we've done that, we can do possible recursive lookups

continue QueryResolution;

}

} or {

InvalidZone() from DNSZoneRegServer to UDPHandlerServer;

}

}

}
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global protocol GetZoneData(role UDPHandlerServer, role DNSZoneDataServer) {

call ZoneDataRequest() returning RRTree from UDPHandlerServer to DNSZoneDataServer {}

}

Listing 7.1 shows the Scribble protocol for the DNS server, which concisely describes the

interaction patterns. Note that if a zone server responds with a zone PID, a new subsession is

spawned using the returned PID to inhabit the DNSZoneDataServer role.

Implementation

We begin by writing a configuration file, associating each actor with the role it plays in each

protocol. Only ed_udp_handler_server participates in both sessions.

config() ->

[{ed_zone_data_server, [{"GetZoneData", ["DNSZoneDataServer"]}]},

{ed_zone_registry_server, [{"HandleDNSRequest", ["DNSZoneRegServer"]}]},

{ed_udp_handler_server,

[{"HandleDNSRequest", ["UDPHandlerServer"]},

{"GetZoneData", ["UDPHandlerServer"]}]

}].

The next step is to change each of the actors, which were formerly instances of gen_server,

to be instances of ssa_gen_server. Making such a change can be done gradually: once the

ssactor_init callback has been implemented, a ssa_gen_server works in exactly the same way

as a gen_server in terms of handling call and cast messages.

Vitally, no changes are made to the supervision structure. The supervision structure itself is

orthogonal to the monitoring of messages: developers do not have to change the supervision

hierarchies of their applications in order to use monitored-session-erlang.

There are two points of note where the implementation of the original system diverges from

that of the original server. The first is the spawning of the subsession to dynamically introduce

the new role. In order to do so, we replace the previous implementation of the get_zone function

(Listing 7.2) with that in Listing 7.3, which starts a new subsession. We also must add a case

in the ssactor_sconversation_established callback for ed_udp_handler_server, which makes and

returns the result of the synchronous call the the zone data server (Listing 7.4). Finally, the call

handler in ed_zone_data_server must be changed to be a ssaactor_handle_call, but this change

is trivial.

Listing 7.2: Original get_zone function

get_zone(Pid) ->

gen_server:call(Pid, get_zone).
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Listing 7.3: Modified get_zone function

get_zone(Pid, ConvKey) ->

conversation:start_subsession(ConvKey, "GetZoneData", ["UDPHandlerServer"],

[{"DNSZoneDataServer", Pid}]).

Listing 7.4: DNS Subsession Initiation

ssactor_conversation_established("GetZoneData", _RN, _CID, ConvKey, State) ->

RRTree = conversation:call(ConvKey, "DNSZoneDataServer", "ZoneDataRequest", [], []),

conversation:subsession_complete(ConvKey, RRTree),

{ok, State}.

The change is relatively small, but still a little larger than would be ideal given that only one

interaction takes place in the subsession. The subsession abstraction is modular for introducing

roles, and scales well when either multiple new roles are introduced or the subprotocol is more

complex. For smaller calls, however, a future area for exploration may be finding a more

lightweight abstraction for the special case of using a new participant only for a single call.

One area that could be improved in the implementation is that FindNearestZone was imple-

mented in the original gen_server implementation as a synchronous call. Currently, synchronous

calls are encoded with the assumption that they return a single value, whereas the result of the

FindNearestZone could return two, depending on whether or not the zone was found. We can of

course still encode the pattern in the system, but need to instead model the synchronous call as

two asynchronous messages.

Failure Model

The failure model for the DNS server is simple. DNS is often implemented using UDP, which

is itself an unreliable protocol: consequently, there is no guarantee that a response will ever be

received. Should a failure occur within the DNS server, there is little point in trying to fulfil

the remainder of a request: instead, it is better to let the supervisor restart the component, and

let the request time out.

7.1.2 Chat Server

In this section, we detail the implementation of a chat server using monitored-session-erlang.

We begin by outlining the system supervision hierarchy, shown in Figure 7.3.

As is typical, we have a root supervisor, mse-chat-sup. We have two subsystems: a client

subsystem, consisting of a client registry and a client supervisor: the client supervisor spawns
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mse_chat_sup

mse_client_sup mse_chat_room_sup

mse_client_registry mse_chat_client_sup

c1 cn

mse_chat_tcp_server

mse_chat_room_manager mse_chat_room_instance_sup

r1 rn... ...

Figure 7.3: Supervision Hierarchy for Chat Server

child processes to handle communication with the user, but does not restart them should they

fail. The mse_chat_tcp_server listens on a socket and accepts new clients, spawning a new

mse_chat_client when a client connects.

Clients can create and join chat rooms. Chat rooms are represented by mse_chat_room_instance

actors and recorded by the mse_chat_room_manager actor.

The protocol proceeds as follows:

• A client connects to the server.

• An mse_chat_client actor is spawned to handle incoming requests from the new client.

• A client can either create or join a room.

– If a client chooses to create a room, it sends a request to mse_chat_room_manager,

which responds by either notifying the client that the room has been created suc-

cessfully, or that the room already exists.

– If a client chooses to join a room, it sends a request to mse_chat_room_manager to

ascertain whether the room exists. If so, then the client is registered with the room.

Once registered with the room, any chat messages sent should be delivered to all

other clients registered with the room.

• The client can leave the session at any time. When it leaves, it should be deregistered

from any rooms to which it is registered.

The chat server example differs from the DNS server as sessions are longer: whereas a DNS

handling session existed only while the request was being fulfilled, a chat server persists for

as long as the client remains connected to the server. Similarly to the DNS server example,

not all roles are inhabited at the start of the protocol, as a client joins the chat room only after

specifying the room name.
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We specify the protocol using two sessions: ChatServer (Listing 7.5), which describes the in-

teractions prior to joining a chat room, and ChatSession (Listing 7.6), which describes the in-

teractions within the session.

Listing 7.5: ChatServer protocol

global protocol ChatServer(role ClientThread, role RoomRegistry) {

rec ClientChoiceLoop {

// When not in a room, a user can either join, create, or list the rooms.

choice at ClientThread {

lookupRoom(RoomName) from ClientThread to RoomRegistry;

choice at RoomRegistry {

roomPID(RoomName, PID) from RoomRegistry to ClientThread;

ClientThread initiates ChatSession(ClientThread, new ChatRoom) {

continue ClientChoiceLoop;

} handle (ParticipantOffline) {

continue ClientChoiceLoop;

}

} or {

roomNotFound(RoomName) from RoomRegistry to ClientThread;

}

} or {

createRoom(RoomName) from ClientThread to RoomRegistry;

choice at RoomRegistry {

createRoomSuccess(RoomName) from RoomRegistry to ClientThread;

} or {

roomExists(RoomName) from RoomRegistry to ClientThread;

}

} or {

listRooms() from ClientThread to RoomRegistry;

roomList(StringList) from RoomRegistry to ClientThread;

}

continue ClientChoiceLoop;

}

}

Listing 7.6: ChatSession protocol

global protocol ChatSession(role ClientThread, role ChatRoom) {

par {

rec ClientLoop {

choice at ClientThread {

outgoingChatMessage(String) from ClientThread to ChatRoom;

continue ClientLoop;

} or {

leaveRoom() from ClientThread to ChatRoom;

}

}

} and {

rec ServerLoop {

incomingChatMessage(String) from ChatRoom to ClientThread;

continue ServerLoop;
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}

}

}

Upon receiving the room PID, the client creates a new subsession for interactions within the

chat room. In this section, it is important to note that communication is bidirectional: the client

can send chat messages to the chat room, and can also receive messages from the chat room.

This is encoded using the par block, where each scope contains actions that can be performed

in an interleaved fashion.

Implementation

The implementation requires some interesting communication patterns. Firstly, TCP messages

are delivered to an actor and must trigger the sending of a message in the correct session.

Secondly, the chat server makes essential use of the fact that multiple session instances can

exist, in contrast to the work of Neykova and Yoshida [52]. Moreover, different sessions must

interact: a message from one client to a chat room triggers a send to other clients in the chat

room.

We begin, as ever, by creating a configuration file detailing the roles that each actor plays in

the session:

config() ->

[{mse_chat_client, [{"ChatServer", ["ClientThread"]},

{"ChatSession", ["ClientThread"]}]},

{mse_chat_room_manager, [{"ChatServer", ["RoomRegistry"]}]},

{mse_chat_room_instance, [{"ChatSession", ["ChatRoom"]}]}].

The mse_chat_tcp_server accepts incoming connections, and creates a new mse_chat_client to

handle incoming messages: in Erlang, the gen_tcp socket library dispatches incoming TCP

messages to the client as messages.

Recall that the mse_chat_client can partake in both ChatServer and ChatSession protocols. Upon

receiving messages from the remote host—in this case, a chat client program—the process must

ensure that a message is sent to the correct session. For example, a ‘create room’ packet must

be handled by the ChatServer session, whereas a ‘send chat message’ packet must be handled

by the ChatSession session. In order to do this, we make essential use of the become co-operative

role-switching capability. When a client actor is started, it initiates a ChatServer session. This

is registered using the main_thread key. Additionally, when the client has joined a chat room, it

begins a ChatSession session, and this is registered using the chat_session key.
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ssactor_conversation_established("ChatServer", "ClientThread", _CID, ConvKey, State) ->

error_logger:info_msg("Conv established~n"),

conversation:register_conversation(main_thread, ConvKey),

{ok, State};

ssactor_conversation_established("ChatSession", "ClientThread", _CID, ConvKey, State) ->

conversation:register_conversation(chat_session, ConvKey),

{ok, State}.

Upon handling an incoming packet, the actor switches to the appropriate role using the become

function, and can subsequently send a message in the appropriate session. The cases for room

creation and chat are as follows:

...

if Command == "CHAT" ->

[_|SplitChatMessage] = SplitMessage,

ChatMessage = string:join(SplitChatMessage, ":"),

conversation:become(MonitorPID, chat_session, "ClientThread",

chat, [ChatMessage]),

State;

Command == "CREATE" ->

[RoomName|_Rest] = PacketRemainder,

conversation:become(MonitorPID, main_thread, "ClientThread",

create_room, [RoomName]),

State;

...

The become function subsequently invokes the ssactor_become callback, which is provided with

the ConvKey for the particular session that is needed:

...

ssactor_become("ChatServer", "ClientThread", create_room, [RoomName],

ConvKey, State) ->

handle_create_room(ConvKey, RoomName),

{ok, State};

ssactor_become("ChatSession", "ClientThread", chat, [Message],

ConvKey, State) ->

handle_chat(ConvKey, Message, State),

{ok, State};

...

The handle_create_room and handle_chat functions send the appropriate messages to the room

registry and the chat room respectively.

Another interesting pattern to discuss is how messages can be delivered to all clients in a chat

room. Recall that a session is associated with a unique identifier; we register and store this

identifier when a client joins a chat room:
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ssactor_conversation_established("ChatSession", "ChatRoom", CID, ConvKey, State) ->

conversation:register_conversation(CID, ConvKey),

ClientList = State#room_state.room_members,

NewClientList = [CID|ClientList],

NewState = State#room_state{room_members=NewClientList},

{ok, NewState}.

Consequently, we have a list of unique session identifiers, with each session identifier registered

to its ConvKey. By iterating over the list of stored session IDs, we can switch to the appropriate

session, and send the message to all participants as required.

handle_broadcast_message(ConvKey, SenderName, Message, State) ->

RoomMembers = orddict:to_list(State#room_state.room_members),

lists:foreach(fun(CID) ->

conversation:become(ConvKey, CID, "ChatRoom",

broadcast, [SenderName, Message])

end,

RoomMembers).

ssactor_become("ChatSession", "ChatRoom", broadcast, [SenderName, Message], ConvKey,

State) ->

mse_chat_client:chat_message(ConvKey, SenderName, Message),

{ok, State}.

Failure Model

An mse_chat_client is linked to the socket connected to the client application. Should the socket

be closed, then the mse_chat_client actor will terminate. Push-based failure detection then

detects that the session cannot continue, and invokes the ssactor_conversation_ended callback

in the chat room instance, which removes the session ID from the list.

Should the chat room terminate while a participant is involved, the system will end the subses-

sion with the reason ParticipantOffline, which is handled by the handle block. At this point,

the user can join another room.

7.2 Performance

In this section, we empirically evaluate the performance of the framework.
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7.2.1 Message Delivery Time

In order to measure the overheads of the monitored-session-erlang framework on message de-

livery time, we make use of the PingPong benchmark.

The PingPong benchmark is a simple, but effective, measure of the time taken to deliver mes-

sages. In this benchmark, an actor A sends a message, ping, to an actor B. Upon receiving a

ping message, B sends a message pong back to A. This pattern is repeated for a set number of

iterations.

The PingPong benchmark is a useful measure, as it allows the overheads of the monitoring

framework to be compared against a baseline implementation, without the framework.

We run four different scenarios:

Vanilla Erlang

A simple PingPong implementation, not using the monitored-session-erlang framework.

The scenario consists of two actors communicating sending messages using gen_server2:cast.

Session Erlang

An implementation of PingPong using the full monitored-session-erlang framework.

Session Erlang – No error reporting

An implementation of PingPong using the monitored-session-erlang framework, but with-

out synchronous reporting of monitoring errors.

Session Erlang – No monitoring

An implementation of PingPong using the monitored-session-erlang framework, but with-

out monitoring of messages.

The three different scenarios using monitored-session-erlang demonstrate different aspects of

the system. By default, and in contrast to the original work on session actors, sending a message

involves a synchronous call to the monitor, which subsequently performs a further synchronous

call to monitor of the destination role. Should either of these checks fail, the message is not

sent, and an exception is raised. Should the exception be caught, the program can attempt to

send a different message.

Sending a message in this synchronous manner has the advantage of allowing a computation

to be aborted as soon as a message is rejected by a monitor. The communication pattern for

monitoring with error reporting is shown in Figure 7.4.

Alternatively, by employing a fully-asynchronous approach to monitoring, there are 2 fewer

messages required, as results do not need to be returned from the destination monitor to the

source monitor, and the source monitor to the source actor. A disadvantage, however, is that
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Figure 7.4: Communication pattern for sending a message with synchronous monitor error re-

porting

errors have to be reported as separate messages: consequently, the remainder of the handler

must run before an error report can be processed, resulting in wasted computation. The com-

munication pattern for monitoring without error reporting is shown in Figure 7.5.

Figure 7.5: Communication pattern for sending a message without monitor error reporting

The final variation uses the monitored-session-erlang framework, but without monitoring: con-

sequently, the overheads incurred in this scenario are as a result of having an external process

per actor containing session state, and looking up the PID associated with destination roles.

The final scenario implies no error reporting.

Experimental Setup

The PingPong benchmark was run on two cluster nodes, each with 4 16-core AMD Opteron

6376 processors, with each core running at 2300MHz, with a 2048Kb cache. Each node has
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264Gb of memory. The round-trip-time latency between the nodes was measured as 0.101ms

using ping.

Both nodes run Scientific Linux 7, using Erlang version 7.0.

The PingPong protocol used is shown in Listing 7.7.

Listing 7.7: Scribble protocol for PingPong benchmark

global protocol PingPong(role A, role B) {

rec loop {

ping() from A to B;

pong() from B to A;

}

}

The independent variable was the number of ping messages sent in the session, and the depen-

dent variable was the time taken (in milliseconds) for the scenario to complete. Each case was

repeated 100 times; the value plotted is the arithmetic mean time over the 100 repeats.

The time taken to complete a scenario is measured from when a session is successfully estab-

lished (more precisely, upon the invocation of ssactor_conversation_established in actor A),

and when the final pong message is received. Consequently, the time taken to set up the session

is not included in these experimental results.

Experimental Results

Figure 7.6 shows the experimental results of the four basic experimental scenarios. Firstly,

as would be expected, all four graphs are linear, meaning that the overhead of monitoring is

constant throughout the session.

As would also be expected, monitoring incurs some overhead: the standard Erlang gen_server2

implementation performs fastest, with a mean time per ping-pong iteration of 0.111ms. The

use of the monitored-session-erlang framework without the monitor functionality yields an

average time per ping-pong iteration of 0.160ms, an increase of 0.049ms per iteration due

to the introduction of an additional monitoring process, and the resolution of role names to

process IDs.

Introducing monitoring, but without synchronous error reporting, results in a mean time per

ping-pong iteration of 0.188ms. Checking messages against a simple monitor with one outgo-

ing transition therefore results in an overhead of only 0.028ms.

The full monitored-session-erlang system has a mean time per ping-pong iteration of 0.23ms,

giving a final overhead per iteration of 0.12ms (or 0.06ms per message).
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The overheads can be explained by the additional messages that need to be sent between the

monitors in order to detect and report monitoring errors: while the original gen_server2 imple-

mentation requires only two messages to be sent, the introduction of the actor_monitor process

requires that an additional two messages are sent: one when sending, and one when receiving.

Adding monitoring only adds a small overhead, but synchronously reporting monitoring errors

requires two additional messages to be sent: one to return the result from the local monitor,

and one to return the result from the remote monitor. Importantly, however, the messages sent

to deliver the message to the remote actor and the message to notify the local actor of the

successful send can be sent in parallel.

7.2.2 Monitor Size

Table 7.1 shows statistics about the number of states and transitions in monitors, as well as the

time in milliseconds taken to construct the monitor, and the amount of memory to store the

monitor representation. The construction time displayed in the table is the arithmetic mean of

100,000 runs on the same machine as in Section 7.2.1.

In all cases, monitor construction time is negligible, at under a millisecond. Memory usage

ranges from 1.6KB to 17KB in contrast to the implementation of Hu et al. [40] in which

most monitors remain under 1.5KB: while still reasonably small, our implementation is not yet

optimised for space efficiency.
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Scenario Protocol Name Role

Number

of

States

Number

of

Tran-

sitions

Construction

Time /ms

Memory

Usage /

b

Travel Agent BookTravel Customer 5 7 0.156 6224

Travel Agent BookTravel FlightBookingService 5 3 0.071 3088

Travel Agent BookTravel HotelBookingService 5 3 0.070 2800

Travel Agent BookTravel TravelAgent 20 20 0.443 17792

Travel Agent CancelBookings FlightBookingService 4 2 0.050 1608

Travel Agent CancelBookings HotelBookingService 4 2 0.050 1592

Travel Agent CancelBookings TravelAgent 6 3 0.074 2888

Travel Agent PerformBooking Customer 3 2 0.050 2192

Travel Agent PerformBooking FlightBookingService 5 3 0.071 2944

Travel Agent PerformBooking HotelBookingService 5 3 0.072 3040

Travel Agent PerformBooking TravelAgent 10 7 0.160 7752

Travel Agent PerformPayment PaymentProcessor 3 2 0.050 2384

Travel Agent PerformPayment TravelAgent 3 2 0.050 2544

Chat Server ChatServer ClientThread 8 10 0.211 7328

Chat Server ChatServer RoomRegistry 6 8 0.169 6104

Chat Server ChatSession ChatRoom 6 4 0.096 3272

Chat Server ChatSession ClientThread 6 4 0.095 3096

DNS Server GetZoneData DNSZoneDataServer 3 2 0.063 2112

DNS Server GetZoneData UDPHandlerServer 3 2 0.064 2144

DNS Server HandleDNSRequest DNSZoneRegServer 3 3 0.073 2784

DNS Server HandleDNSRequest UDPHandlerServer 5 5 0.111 4232

Two Buyer TwoBuyers A 5 6 0.130 2976

Two Buyer TwoBuyers B 5 6 0.139 3072

Two Buyer TwoBuyers S 5 6 0.132 2976

Table 7.1: Monitor Benchmarks
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Conclusion

Erlang has gained a positive reputation as a language for developing highly-robust and reliable

distributed software. Erlang encourages developers to design applications in such a way that

faults are isolated, and processes may be restarted by supervisors upon failure in order to

achieve a high level of availability and reliability.

In order to facilitate fault isolation, Erlang is based upon the actor model. Consequently, pro-

cesses do not co-ordinate with each other using shared state, instead relying on message pass-

ing. In spite of the heavy use of message passing, until now there has been little work on

ensuring that Erlang processes conform to communication patterns, or that the communication

patterns are race- or deadlock-free.

8.1 Overview of Contributions

This thesis has investigated the use of multiparty session types to allow protocols to be ex-

ternally specified and checked for safety, and runtime monitoring techniques to ensure that

communications in Erlang applications conform to their session types.

In doing so, we have adapted the existing work on multiparty session actors by Neykova and

Yoshida [52] to the setting of distributed Erlang/OTP applications, in the form of a framework,

monitored-session-erlang. Designing and implementing monitored-session-erlang has involved

investigating how the conceptual framework of multiparty session actors should be adapted to

the setting of an actor-based functional language with no shared or mutable state, and has

involved departures from the original work such as synchronous error reporting and allowing

actors to partake in multiple instances of a protocol. We have argued that monitoring of session

types should be treated as largely, but not completely orthogonal to the structure of Erlang/OTP

applications using supervision trees: developers should not have to change the supervision

105
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structure of their applications in order to use the framework. Monitor failures throw exceptions

which may in turn cause a process to fail and be restarted by a supervisor.

Secondly, we have investigated common Erlang patterns which cannot be expressed using mul-

tiparty session types alone. Erlang processes often send process IDs, in essence dynamically

introducing participants partway through a session, and have shown how subsessions [28] can

be used to encapsulate this pattern. Additionally, we have investigated the use of synchronous,

blocking calls in Erlang applications, and developed extensions to the Scribble language and

monitored-session-erlang runtime to both ensure that communication with an actor awaiting

the response of a synchronous call is not involved while the call is in progress, and that inter-

mediate state does not have to be saved and ‘threaded’ through multiple asynchronous message

handlers.

Thirdly, we have investigated the issue of failure detection and failure handling. Previous

work on multiparty session types concentrates on the case where the processes playing roles

in sessions are available throughout the entirety of a session: an assumption which cannot

be made in the setting of Erlang/OTP applications due to the ‘let it fail’ design philosophy.

In order to address the issue of failures within sessions, we have considered two methods of

failure-detection: push-based, using Erlang’s monitor functions to detect when a process has

terminated and role reachability analysis to check whether it is safe to proceed; and pull-based,

using synchronous calls and a two-phase commit protocol to ensure atomic multicasts.

In order to handle failures, we again used subsessions, introducing extensions which allow the

remainder of a protocol to be predicated on the success or failure of a subsession. We detailed

how, by splitting possibly-failing portions of a session into subsessions, we may repeat part of

a protocol with a new instance of a participant, should a participant fail. We have also shown

that the same technique may be used to handle application-level exceptions.

Finally, we evaluate the framework through a case study of adding session types to a publicly-

available DNS server, and the implementation of a chat server. We have additionally performed

an empirical evaluation using the PingPong benchmark, in order to investigate the overheads

incurred by different features of the framework, as well as investigated the generation and

storage overheads of monitors.

8.2 Critical Evaluation

In developing monitored-session-erlang, we have investigated how multiparty session types

can be used to encode and monitor the patterns in Erlang/OTP applications. A primary concern

has been to ensure that application developers can still use standard OTP design patterns such
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as supervision hierarchies, and by monitoring incoming and outgoing messages, developers

can be alerted when a message does not conform to the session type, with the supervision tree

correcting the process.

One limitation with the implementation of synchronous calls is that they currently only allow

a single value to be returned: consequently, it is not possible to encode that the result of a

synchronous call determines the remainder of the session. This is limiting, and is the obvious

extension for future work.

Secondly, the addition of an external monitoring process, along with synchronous error re-

porting, does incur some overheads on the time taken to deliver a message. The addition of

the external monitoring process contributes to this, due to the additional messages required.

It is worthwhile to note, however, that the overheads are incurred only when sending and re-

ceiving messages: no other traces are dynamically generated and monitored, unlike with other

approaches to runtime verification.

Finally, finding appropriate case studies was a difficult task: open-source Erlang applications

seemed to be either too small or simple to be of value, or too large to analyse and encode in the

time available, for example yaws or ejabberd. In order to do larger case studies, perhaps a better

approach would be to record traces of Erlang communications, and use session type synthesis

techniques [43] to generate the session types.

8.3 Future Work

An interesting direction to take would be a full formal semantics for session actors. A promis-

ing starting point would be to adapt a process calculus based on the actor model, for example

the Aπ calculus introduced by Agha and Thati [2], and integrate the calculus with existing

formal frameworks for dynamic monitoring of session types such as the work by Bocchi et al.

[12].

This thesis has aimed to investigate high-level Erlang/OTP applications, and consequently

builds on top of the Erlang gen_server behaviour. We do not investigate the lower level com-

munication primitives, such as sending and selective receives. Such a line of work would likely

be a departure from the session actor framework, but it would be interesting to investigate how

communication at a lower level could be monitored.

Another, more ambitious line of work would investigate the extent to which session types in

Erlang applications could be checked statically. Work on success typing [44] has allowed data

types to be specified and checked in Erlang applications, and it would be interesting to see

whether such an approach could be extended to check session types.
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Finally, it would be interesting to see how session types could be added to an actor-based

language as a first-class construct: this would involve identifying the required abstractions, and

developing an appropriate type system for actor mailboxes.
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ssa_gen_server Callback Functions

ssactor_init

Replaces gen_server:init, and allows the session actor to be initialised with some user

state.

ssactor_join

Called when an actor is invited to fulfil a role in a protocol. The actor may choose to

accept or decline the invitation, and update the user state.

ssactor_handle_message

Handles an asynchronous session message, which has already been accepted by the mon-

itor.

ssactor_handle_call

Handles a synchronous session message, which has already been accepted by the moni-

tor. This is discussed further in Section 5.2

ssactor_become

Actors can partake in multiple protocols, and switch between them. The ssactor_become

callback is called when an actor wishes to switch to a different protocol.

ssactor_conversation_established

The invitation algorithm for inviting actors to fulfil roles within a session is asynchronous.

The ssactor_conversation_established function is called when a session is successfully

established: that is, when all roles have been successfully populated by endpoints, and

session communication can begin.

ssactor_conversation_error

Conversely, should an error occur when establishing a session (for example, if no actors

accept the invitation to join), then the ssactor_conversation_error function will be called.
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This allows any necessary cleanup to take place.

ssactor_conversation_ended

The ssactor_conversation_ended function is called when a session is terminated, either

for normal reasons or in the case of an error.
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Sample Output

In this example, we show the output from a sample run of the two buyer protocol. All three

actors are arranged in a supervision tree, and should an actor terminate, it will be restarted by

the supervisor.

In this circumstance, we modify the message sent by S from ‘date’ to ‘datum’. In doing so,

the monitor fails, and an exception is thrown in the calling process before any other messages

are sent in the system. The system begins a safety check, finds that S is still required in the

protocol, and ends the session. The session is then started again, with the same result—note

that the PIDs for actors A and B remain constant, but B is different as it has been restarted by

the supervisor.

Erlang/OTP 18 [erts-7.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-

poll:false]

Eshell V7.0 (abort with ^G)

1> sup_two_buyer_main:main().

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Initialising conversation system.

=WARNING REPORT==== 21-Aug-2015::06:41:12 ===

WARN: Could not parse file SynchronousSequencedStateCells.scr: ignoring

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

actor registry registered at:undefined

Initialised successfully

Starting seller

started supervised seller successfully

started buyer2 successfully

started buyer1 successfully

Starting conversation in buyer1.

Press to start a new session

111



112 Appendix B. Sample Output

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Starting conversation for protocol TwoBuyers.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Started instance process

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Registered for role A in protocol TwoBuyers.

Actor sup_buyer1, actor PID <0.46.0>, monitor instance <0.45.0>.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Registered for role B in protocol TwoBuyers.

Actor sup_buyer2, actor PID <0.44.0>, monitor instance <0.43.0>.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Registered for role S in protocol TwoBuyers.

Actor sup_seller, actor PID <0.42.0>, monitor instance <0.41.0>.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Res: ok

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor seller: Received title To Kill a Mockingbird from A

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer2: Received quote of 40 from S

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer1: Received quote of 40 from S

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer2: Received share quote (20) from A

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer2: Accepted share quote (threshold 50)

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor seller: B accepted quote; received address Informatics Forum

Starting seller

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer1: B accepted quote; received address ("Informatics Forum")

=WARNING REPORT==== 21-Aug-2015::06:41:12 ===

Monitor failed when processing message {message_record,#Ref<0.0.2.164>,"S",

["B"],

"datum",

["String"],

["Sometime in the future"]} (send). Error:

bad_message

Actor sup_seller, actor PID <0.42.0>, monitor instance <0.41.0>.

=ERROR REPORT==== 21-Aug-2015::06:41:12 ===

Actor terminating for reason {{error,bad_message},

[{conversation,send,5,

[{file,"src/conversation/conversation.erl"},

{line,25}]},

{sup_seller,ssactor_handle_message,8,
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[{file,

"src/SupervisedTwoBuyer/sup_seller.erl"},

{line,35}]},

{ssa_gen_server,handle_cast,2,

[{file,"src/behaviours/ssa_gen_server.erl"},

{line,195}]},

{gen_server2,handle_msg,2,

[{file,"src/util/gen_server2.erl"},

{line,1034}]},

{proc_lib,init_p_do_apply,3,

[{file,"proc_lib.erl"},{line,239}]}]}

SSACTOR: Actor sup_seller, actor PID <0.42.0>, monitor PID <0.41.0>.

=ERROR REPORT==== 21-Aug-2015::06:41:12 ===

** Generic server <0.42.0> terminating

** Last message in was {'$gen_cast',

{ssa_msg,"TwoBuyers","S",<0.47.0>,

{message_record,#Ref<0.0.2.158>,"B",

["A","S"],

"accept",

["String"],

["Informatics Forum"]}}}

** When Server state == {actor_state,sup_seller,<0.41.0>,no_state}

** Reason for termination ==

** {{error,bad_message},

[{conversation,send,5,

[{file,"src/conversation/conversation.erl"},{line,25}]},

{sup_seller,ssactor_handle_message,8,

[{file,"src/SupervisedTwoBuyer/sup_seller.erl"},{line,35}]},

{ssa_gen_server,handle_cast,2,

[{file,"src/behaviours/ssa_gen_server.erl"},{line,195}]},

{gen_server2,handle_msg,2,

[{file,"src/util/gen_server2.erl"},{line,1034}]},

{proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,239}]}]}

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Role "S" down. Beginning safety check.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Safety check failed: "S" still needed in "B"

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer2: Conversation <0.47.0> ended.

=INFO REPORT==== 21-Aug-2015::06:41:12 ===

Actor buyer1: Conversation <0.47.0> ended.

Press to start a new session

Starting conversation in buyer1.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Starting conversation for protocol TwoBuyers.
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=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Started instance process

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Registered for role A in protocol TwoBuyers.

Actor sup_buyer1, actor PID <0.46.0>, monitor instance <0.45.0>.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Registered for role B in protocol TwoBuyers.

Actor sup_buyer2, actor PID <0.44.0>, monitor instance <0.43.0>.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Registered for role S in protocol TwoBuyers.

Actor sup_seller, actor PID <0.49.0>, monitor instance <0.48.0>.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Res: ok

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor seller: Received title To Kill a Mockingbird from A

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer2: Received quote of 40 from S

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer1: Received quote of 40 from S

Starting seller

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer2: Received share quote (20) from A

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer2: Accepted share quote (threshold 50)

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor seller: B accepted quote; received address Informatics Forum

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer1: B accepted quote; received address ("Informatics Forum")

=WARNING REPORT==== 21-Aug-2015::06:41:19 ===

Monitor failed when processing message {message_record,#Ref<0.0.2.194>,"S",

["B"],

"datum",

["String"],

["Sometime in the future"]} (send). Error:

bad_message

Actor sup_seller, actor PID <0.49.0>, monitor instance <0.48.0>.

=ERROR REPORT==== 21-Aug-2015::06:41:19 ===

Actor terminating for reason {{error,bad_message},

[{conversation,send,5,

[{file,"src/conversation/conversation.erl"},

{line,25}]},

{sup_seller,ssactor_handle_message,8,

[{file,

"src/SupervisedTwoBuyer/sup_seller.erl"},

{line,35}]},
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{ssa_gen_server,handle_cast,2,

[{file,"src/behaviours/ssa_gen_server.erl"},

{line,195}]},

{gen_server2,handle_msg,2,

[{file,"src/util/gen_server2.erl"},

{line,1034}]},

{proc_lib,init_p_do_apply,3,

[{file,"proc_lib.erl"},{line,239}]}]}

SSACTOR: Actor sup_seller, actor PID <0.49.0>, monitor PID <0.48.0>.

=ERROR REPORT==== 21-Aug-2015::06:41:19 ===

** Generic server <0.49.0> terminating

** Last message in was {'$gen_cast',

{ssa_msg,"TwoBuyers","S",<0.50.0>,

{message_record,#Ref<0.0.2.190>,"B",

["A","S"],

"accept",

["String"],

["Informatics Forum"]}}}

** When Server state == {actor_state,sup_seller,<0.48.0>,no_state}

** Reason for termination ==

** {{error,bad_message},

[{conversation,send,5,

[{file,"src/conversation/conversation.erl"},{line,25}]},

{sup_seller,ssactor_handle_message,8,

[{file,"src/SupervisedTwoBuyer/sup_seller.erl"},{line,35}]},

{ssa_gen_server,handle_cast,2,

[{file,"src/behaviours/ssa_gen_server.erl"},{line,195}]},

{gen_server2,handle_msg,2,

[{file,"src/util/gen_server2.erl"},{line,1034}]},

{proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,239}]}]}

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Role "S" down. Beginning safety check.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Safety check failed: "S" still needed in "B"

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer2: Conversation <0.50.0> ended.

=INFO REPORT==== 21-Aug-2015::06:41:19 ===

Actor buyer1: Conversation <0.50.0> ended.
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