
Model-View-Update-Communicate: Session Types
meet the Elm Architecture
Simon Fowler
University of Edinburgh, Scotland
simon.fowler@ed.ac.uk

Abstract
Session types are a type discipline for communication channel endpoints which allow conformance to
protocols to be checked statically. Safely implementing session types requires linearity, usually in the
form of a linear type system. Unfortunately, linear typing is difficult to integrate with graphical user
interfaces (GUIs), and to date most programs using session types are command line applications.

In this paper, we propose the first principled integration of session typing and GUI development
by building upon the Model-View-Update (MVU) architecture, pioneered by the Elm programming
language. We introduce λMVU, the first formal model of the MVU architecture, and prove it sound.
By extending λMVU with commands as found in Elm, along with linearity and model transitions,
we show the first formal integration of session typing and GUI programming. We implement our
approach in the Links web programming language, and show examples including a two-factor
authentication workflow and multi-room chat server.

2012 ACM Subject Classification Software and its engineering→ Concurrent programming languages

Keywords and phrases Session types, concurrent programming, Model-View-Update

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.14

Related Version An extended version of the paper is available on arXiv (https://arxiv.org/abs/1910.
11108).

Funding This work was supported by ERC Consolidator Grant Skye (grant no. 682315) and an ISCF
Metrology Fellowship grant provided by the UK government’s Department for Business, Energy and
Industrial Strategy (BEIS).

Acknowledgements I thank Jake Browning for sparking my interest in Elm and for his help with
an early prototype of the Links MVU library; Sára Decova for a previous version of the multi-room
chat server example; Sam Lindley for many useful discussions and suggestions; and James Cheney,
April Gonçalves, and the anonymous ECOOP PC and AEC reviewers for detailed comments.

1 Introduction

Modern applications are necessarily concurrent and distributed. Along with concurrency
and distribution naturally comes communication, but communication protocols are typically
informally described, resulting in costly runtime failures and code maintainability issues.

Session types [23, 24] are a type discipline for communication channel endpoints which
allow conformance to a protocol to checked statically rather than after an application is
deployed. Many distributed GUI applications, such as chat applications or multiplayer
games, would benefit from session-typed communication with a server. Unfortunately, safely
implementing session types requires a require a linear type system, but safely integrating
linear resources and GUIs is nontrivial. As a consequence, to date most programs using
session types are batch-style applications run on the command line.

The lack of a principled integration of GUI applications and session types is a significant
barrier to their adoption. In this paper, we bridge this gap by extending the Model-View-
Update (MVU) architecture, pioneered by the Elm programming language, to support linear

© Simon Fowler;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 14; pp. 14:1–14:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5143-5475
mailto:simon.fowler@ed.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14
https://arxiv.org/abs/1910.11108
https://arxiv.org/abs/1910.11108
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Model-View-Update-Communicate

resources. We present λMVU, a core formalism of the MVU architecture, and an extended
version of λMVU which supports session-typed communication. Informed by the formal
development, we provide a practical implementation in the Links programming language [10].

Session types by example. Let us consider a two-factor authentication workflow, introduced
by Fowler et al. [20]. A user first enters their credentials. If correct, the server can then
either grant access, or send a challenge key. If challenged, the user enters the challenge code
into a hardware token, which generates a response to be entered into the web page. The
server then either authenticates the user or denies access.

We can describe the two-factor authentication example as a session type as follows:

TwoFactorServer ,
?(Username,Password).⊕{

Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.
⊕{Authenticated : ServerBody,

AccessDenied : End},
AccessDenied : End}

TwoFactorClient ,
!(Username,Password).&{

Authenticated : ClientBody,
Challenge : ?ChallengeKey.!Response.

&{Authenticated : ClientBody,
AccessDenied : End},

AccessDenied : End}
The TwoFactorServer type shows the session type for the server, which firstly receives (?)

the credentials from the client, and then chooses (⊕) whether to authenticate, deny access,
or issue a challenge. If the server issues a challenge, it sends (!) the challenge string, awaits
the response, and then chooses whether to accept or reject the request. The ServerBody
type abstracts over the actions performed in the remainder of the application, for example
taking out a loan. The TwoFactorClient type is the dual of the TwoFactorServer type: where
the server sends, the client receives, and where the client sends, the server receives. The
& construct denotes offering a choice of branches. Suppose we have constructs for sending
along, receiving from, and closing an endpoint:

send : (A× !A.S)→ S receive : ?A.S → (A× S) close : End→ 1
Let us also suppose we have constructs for selecting and offering a choice:

select `j M : Sj where M has session type ⊕{`i : Si}i∈I , and j ∈ I
offerM {`i(xi) 7→ Ni}i∈I : A where M has session type &{`i : Si}i∈I , each xi binds an

endpoint with session type Si, and each Ni has type A

We can write a server implementation as follows:
twoFactorServer : TwoFactorServer→ 1
twoFactorServer(s) , let ((username, password), s) = receive s in

if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s

To implement session-typed communication safely, we require a linear type system [44] to
ensure each communication endpoint is used exactly once: as an example, without linearity
it would be possible to attempt to receive the credentials twice.

Linearity and GUIs. We can also write a client application:

twoFactorClient : (Username× Password× TwoFactorClient)→ 1
twoFactorClient(username, password, s) ,
let s = send ((username, password), s) in
offer s {Authenticated(s) 7→ clientBody(s)

Challenge(s) 7→ let (key, s) = receive s in
let s = send (generateResponse(key), s) in
offer s {Authenticated(s) 7→ clientBody(s)

AccessDenied(s) 7→ close s; loginFailed}
AccessDenied(s) 7→ close s; loginFailed}

S. Fowler 14:3

However, such a client is of little use, as it sends only a pre-defined set of credentials,
and the step where a user enters the response to the challenge is replaced by a function
generateResponse. Ideally, we would like the credentials to be entered into a GUI, and for a
button press to trigger the session communication with the server.

Let us attempt to write a GUI for the first stage of the two-factor authentication example;
as HTML is well-understood, we concentrate on web pages in the remainder of the paper.

render(c) ,
<html>

<body>
<input id = "username"></input>
<input id = "password"></input>
<button onClick = login(c)>Submit</button>

</body>
</html>

login(c) , λ().
let user = getContents("username") in
let pass = getContents("password") in
let c = send ((user, pass), c) in
handleResponse(c)

Given a channel c of type TwoFactorClient, the render function generates a web page with
input boxes for the username and password, and a button to submit the credentials. The
login function, triggered when the button is clicked, retrieves the username and password
from the two input boxes, and sends the credentials along c. The handleResponse function,
which we omit, receives the response from the server and updates the web page.

On first inspection, this implementation seems sound since the endpoint c is used linearly.
However, the above attempt is unsound due to the asynchronous nature of GUI programming:
there is nothing stopping the user pressing the button twice and sending the credentials
twice along c, in contravention of the session type. As a further complication, suppose we
augmented the protocol with a “forgotten password” branch, triggered by another button.
This would require two instances of c in the GUI, again violating linearity:

<button onClick = login(c)>Submit</button>
<button onClick = reset(c)>Reset password</button>

It is clear that directly embedding linear resources into a GUI is a non-starter. A more
successful approach involves spawning a separate process which contains the linear resource,
and which receives non-linear messages from the GUI. Upon receiving a GUI message, the
process can then perform the session communication, while ignoring duplicate GUI messages:

render(c) ,
let pid = spawn handler(c) in
<html>

<body>
<input id = "username"></input>
<input id = "password"></input>
<button onClick = login(pid)>Submit</button>

</body>
</html>

login(pid) , λ().
let user = getContents("username") in
let pass = getContents("password") in
pid ! SubmitLogin(user, pass)

handler(c) ,
case (get ()) {

SubmitLogin(user, pass) 7→
let c = send ((user, pass), c) in
handleResponse(c)

}
The render function begins by spawning handler(c) as a separate process with an incoming
message queue (or mailbox), returning the process ID pid. As before, the login function is
triggered by pressing the button, and retrieves the credentials from the web page. Instead
of communicating on the channel directly, it sends a SubmitLogin message containing the
credentials to the process ID of handler process, written pid ! SubmitLogin(user, pass). The
handler process retrieves the message from its mailbox (get ()), and can then communicate
with the server over the linear endpoint. Such an approach also scales to the “forgotten
password” extension, by adding another GUI message.

The above approach is used by Fowler et al. [20], who provide the first integration of
session types and web application development, including the ability to gracefully handle
failures such as the user closing their browser mid-session. Unfortunately, the approach is

ECOOP 2020

14:4 Model-View-Update-Communicate

brittle and ad-hoc. All interaction with the web page occurs using imperative operations such
as getContents and setContents; contrary to best practices such as the Model-View-Controller
(MVC) [30] pattern, the state of the web page is not derived directly from the data contained
by the application. Furthermore, there is no connection between the state of the handler
process and what is displayed on the web page: this can easily lead to mismatches between
the possible GUI messages which can be sent and which can be handled.

Model-View-Update. This paper is about doing better. Our approach is to formalise
Model-View-Update, an architectural pattern for GUI development popularised by the Elm
programming language [1], and extend it to support linear resources. MVU is an appealing
starting point as it is particularly suited to functional programming. Furthermore, MVU has
directly inspired popular technologies such as Redux [5] and the Flux architecture [4], which
are used with the popular React [2] frontend web framework for JavaScript.

The Elm programming language [1] is a functional programming language designed for
writing web applications. Elm was originally designed to use functional reactive programming
(FRP) [14], where time-varying signals can be used to construct reactive web applications. A
paper describing Elm, and its core formal semantics, was published at PLDI 2013 [12].

For many languages, that would be the end of the story. But unusually for a research
language, Elm gained a user community, and a standard architectural pattern known as The
Elm Architecture grew organically to such a point that Elm abandoned FRP altogether [11].
At its core, The Elm Architecture is a descendant of MVC where a model contains the state
of the application; a view function renders the model; and the rendered model produces
messages which are handled by an update function to produce a new model. More generally,
this pattern has been referred to as Model-View-Update, or MVU for short [3, 40].

Consider the following web application, where a user enters text into a text box, and the
application displays the text, reversed:

We can write this example using MVU as follows:

Model , (contents : String)
Message , UpdateBox(String)

model : Model
model , (contents = "")

update : (Message×Model)→ Model
update , λ(UpdateBox(str),m).(contents = str)

view : Model→ Html(Message)
view , λmodel.html

<input type = “text” value = {model.contents}
onInput = {λstr.UpdateBox(str)}></input>

<div>
{htmlText (reverseString (model.contents))}

</div>

(model, view, update)

We define two type aliases: the Model captures the state of the application and is defined
as a record with a single String field, contents. Messages are produced as a result of user
interaction. The Message type is defined as a singleton variant type with constructor
UpdateBox, containing the updated value of the text box.

The view function renders a model. It has the type Model→ Html(Message), which is a
function taking a Model as its argument, and returning HTML which may produce messages
of type Message. The value = {model.contents} attribute of the input box states that the
contents of the text box should reflect the contents field of the model. The onInput attribute
is an event handler : its body is a function taking the current value of the input box (str) and
producing an UpdateBox message containing the updated contents of the box. The contents
of the div tag are derived from the reversed contents.

S. Fowler 14:5

Syntax

Types A,B,C ::= 1 | A→ B | A×B | A+B | String | Int
| Html(A) | Attr(A)

String literals s

Integers n

Terms L,M,N ::= x | λx.M | rec f(x) . M | M N | () | s | n
| (M,N) | let (x, y) = M inN
| inl x | inr x | case L {inl x 7→M ; inr y 7→ N}
| htmlTag tM N | htmlTextM | htmlEmpty
| attr ak M | attrEmpty | M ?N

Tag names t Attribute keys ak ::= at | h
Attribute names at Event handler names h

Typing rules for terms Γ `M : A

T-HtmlTag
Γ `M : Attr(A) Γ ` N : Html(A)

Γ ` htmlTag tM N : Html(A)

T-HtmlText
Γ `M : String

Γ ` htmlTextM : Html(A)

T-HtmlEmpty
Γ ` htmlEmpty : Html(A)

T-Attr
Γ `M : String

Γ ` attr at M : Attr(A)

T-EvtAttr
Γ `M : ty(h)→ A

Γ ` attr hM : Attr(A)

T-AttrEmpty
Γ ` attrEmpty : Attr(A)

T-HtmlAppend
Γ `M : Html(A) Γ ` N : Html(A)

Γ `M ?N : Html(A)

T-AttrAppend
Γ `M : Attr(A) Γ ` N : Attr(A)

Γ `M ?N : Attr(A)

Figure 1 Syntax and typing rules for λMVU terms

The update function takes a message and previous model as its arguments, and produces a
new model. In this case, the update function constructs a new model where the contents field
is set to the payload of the UpdateBox message. Finally, the program is a 3-tuple containing
the initial model, and the view and update functions.

To achieve our goal of a formal integration of session typing and GUI programming,
we first formalise MVU, and then generalise the architecture to support linear models and
messages. Supporting linearity poses some challenges, as we will see in §3.

1.1 Contributions.

The overarching contribution of this paper is the first principled integration of session-typed
communication with a GUI framework. Concretely, we make three contributions:

1. We introduce the first formal model of the MVU architecture, λMVU (§2). We prove (§2.3)
that λMVU satisfies preservation and event progress properties.

2. We extend λMVU with commands, linearity, and model transitions (§3), which allow λMVU
to support GUIs incorporating session-typed communication, and we prove the soundness
of the extended calculus.

3. We implement the architecture in the Links web programming language. We show an
extended example of a chat application where client code uses the linear MVU framework,
and where client-server communication happens over session-typed channels (§4).
The implementation and examples are available in the paper’s companion artifact.

ECOOP 2020

14:6 Model-View-Update-Communicate

Event name ev Event Handler h
(handler(ev))

Payload type
(ty(ev), ty(h))

Payload Description

click onClick 1 Unit value
input onInput String Updated contents of a text field
keyUp onKeyUp Int Key code

keyDown onKeyDown Int Key code

Figure 2 Example event signatures

2 Model-View-Update, Formally

In this section, we formalise MVU as a core calculus, λMVU, an extension of the simply-typed
λ-calculus with products, sums, HTML, and event handling. Even without extensions, λMVU
is expressive enough to support many common applications such as form handling.

2.1 Syntax
Types. Figure 1 shows the syntax and typing rules for λMVU. Types are ranged over by
A,B,C, and consist of the unit type 1, functions A→ B, products A×B, sums A+B, and
string and integer types. Types Html(A) and Attr(A) are the type of HTML elements and
attributes which can produce messages of type A.

Terms. Terms, ranged over by L,M,N , include variables, λ abstractions, anonymous
recursive functions, function application, the unit value, string literals, integers, and sum
and pair introduction and elimination. The remaining terms encode HTML elements and
attributes. The htmlTag tM N construct denotes an HTML element with tag name t (for
example, div), attributes M , and children N ; the htmlTextM construct describes a text
node with text M ; and htmlEmpty defines an empty HTML node.

The attr ak M construct describes an attribute with key ak and body M , where the key
ak is either an attribute name at or an event handler name h. The attrEmpty construct
defines an empty attribute.

The M ? N operator appends two HTML elements or attributes. Since both HTML
elements and attributes support a unit element (htmlEmpty and attrEmpty respectively),
elements and attributes together with ? form two monoids.

Events. We model interaction with the Document Object Model (DOM) through events,
which model those dispatched by a browser. An event signature is a 3-tuple (ev, h, A)
consisting of an event name ev, handler name h, and payload type A. We require a bijective
mapping between event and handler names. Figure 2 describes example event signatures
used in the remainder of the paper. We consider four primitive events: click, which is fired
when an element is clicked; input, which is fired when the contents of a text field are changed;
and keyUp and keyDown, which are fired when a key is pressed while focused on an element.

Event handlers are attached to elements as attributes, and generate a message in response
to an event. We write handler(ev) to refer to the handler for ev: for example, handler(click) =
onClick. We write ty(ev) to refer to the payload type of ev and write ty(h) for the payload
type of an event handled by h. As an example, both ty(click) = 1 and ty(onClick) = 1.

Term typing. Term typing rules for λ-calculus constructs are standard, so are omitted.
Rule T-HtmlTag states that htmlTag tM N can be given type Html(A) if its attributes M
have type Attr(A) and children have type Html(A). Text nodes htmlTextM do not produce

S. Fowler 14:7

Values U, V,W ::= λx.M | rec f(x) . M | () | (V,W) | inl V | inr V | s | n
| htmlTag t V W | htmlEmpty | htmlText V
| attr ak V | attrEmpty | V ?W

Events e ::= ev(V)
DOM Pages D ::= domTag(−→e) t V D | domText V | domEmpty | D ?D′

Active thread T ::= idle Vm | M
Function state F ::= (Vv, Vu)
Processes P,Q ::= runM | 〈T | F 〉 | ((M)) | P ‖ Q
Configurations C ::= P # D

Process contexts P ::= [] | P ‖ P
DOM contexts D ::= [] | domTag(−→e) t V D | D ? D | D ?D
Thread contexts T ::= run E | 〈E | F 〉 | ((E))

Figure 3 Runtime syntax for λMVU

any messages, and so have type Html(A) if M has type String (T-HtmlText); similarly,
htmlEmpty has type Html(A) (T-HtmlEmpty).

Rule T-Attr assigns attributes attr at M type Attr(A) for any A if M has type String.
Rule T-EvtAttr types event handler attributes attr hM : if the event handler M has type
ty(h)→ A (i.e., it produces messages of type A), then the attribute can be given type Attr(A).
Finally, T-AttrEmpty states that the empty attribute attrEmpty has type Attr(A) for
any type A. We overload the ? operator to append both HTML elements and attributes
(T-HtmlAppend and T-AttrAppend).

Syntactic sugar. We assume the usual encodings of records as pairs and variant types as
binary sums, and use pattern matching notation. It is useful to be able to write HTML using
XML-like notation, where an antiquoted expression {M} allows a term M to be embedded
within an HTML tree. The view function from the introduction desugars to:

λmodel.
(htmlTag input

((attr type “text”) ? (attr value model.contents)?
(attr onInput (λstr.UpdateBox(str)))) htmlEmpty) ?

htmlTag div attrEmpty (htmlText reverseString (model.contents))

The formal definitions and desugaring translations are unsurprising; the details can be found
in the extended version [18].

2.2 Operational Semantics
We can now provide λMVU with a small-step operational semantics.

2.2.1 Runtime Syntax
Figure 3 describes the runtime syntax of λMVU. Values, ranged over by U, V,W , are standard.
An event ev(V) consists of event name ev and payload V . We write ε for an empty meta-level
sequence, and use · for sequence concatenation. DOM pages, ranged over by D, are the
runtime representation of HTML, where tags domTag(−→e) t V D contain an event queue −→e
of events dispatched to the element.

Concurrency. Concurrency is vital when modelling GUI applications as event handling
is asynchronous: computation triggered by a user interaction should not block the UI.

ECOOP 2020

14:8 Model-View-Update-Communicate

Meta-level definitions

handle(m, (v, u),msg) ,
letm′ = u (msg,m) in
(m′, v m′)

handlers(ev, attrEmpty) = ε
handlers(ev, V ? W) = handlers(ev, V) · handlers(ev,W)

handlers(ev, attr at V) = ε

handlers(ev, attr h V) =
{
V if handler(ev) = h

ε otherwise

Process reduction P −→ P ′

EP-Handle 〈idle Vm | F 〉 ‖ ((V)) −→ 〈handle(Vm, F, V) | F 〉
EP-Par P1 ‖ P2 −→ P ′1 ‖ P2 if P1 −→ P ′1
EP-LiftT T [M] −→ T [N] if M −→M N

Configuration reduction C −→ C′

E-Run P[run (Vm, Vv, Vu)] # D −→ P[〈(Vm, Vv Vm) | (Vv, Vu)〉] # D
E-Update P[〈(Vm, U) | F 〉] # D −→ P[〈idle Vm | F 〉] # D′ where diff(U,D) = D′

E-Interact P # D[domTag(−→e) t U D] −→ P # D[domTag(−→e · ev(V)) t U D]
for some ev, V such that ` ev(V)

E-Evt
P # D[domTag(ev(W) · −→e) t U D] −→ P ‖ ((V1 W)) ‖ · · · ‖ ((VnW)) # D[domTag(−→e) t U D]

where handlers(ev, U) = −→V
E-Struct C −→ C′ if C ≡ C1, C1 −→ C2, and C2 ≡ C′

E-LiftP P # D −→ P ′ # D if P −→ P ′

Figure 4 Reduction rules for λMVU terms and configurations

Concurrency is also essential when considering session-typed communication. We therefore
formulate the calculus as a concurrent λ-calculus in the style of Niehren et al. [36], by
augmenting the simply-typed λ-calculus with processes and concurrent reduction.

Processes. An initialisation process runM evaluates the initial system state written by a
user, where M is a 3-tuple containing the initial model, view function, and update function.
An event loop process 〈T | F 〉 consists of an active thread T and function state F comprising
the view and update functions. The thread can either be idle Vm, meaning the process has
current model Vm and is waiting for another message to process, or evaluating a term M .
An event handler process ((M)) is spawned to generate a message in response to an event.

Configurations. Concurrent and event-driven reduction happens in the context of a system
configuration P # D, where P is the concurrent fragment of the system and D is the current
DOM page. An MVU program as written by a user is a term M specifying the initial model,
view function, and update function, of type (A × (A → Html(B)) × ((B × A) → A)). A
program is evaluated in the context of an initial configuration:

I Definition 1 (Initial configuration). An initial configuration for a term M is of the form
runM # domEmpty.

Evaluation contexts. Term evaluation contexts E (omitted) are set up for call-by-value,
left-to-right evaluation. Process contexts P allow reduction under parallel composition.
Thread contexts T allow reduction inside threads. DOM contexts D allow us to focus on
each element of a DOM forest; note that they deliberately allow non-unique decomposition
in order to support nondeterministic reduction.

S. Fowler 14:9

2.2.2 Reduction Rules
Figure 4 shows the reduction rules for λMVU processes and configurations; reduction on terms
is standard β-reduction. Reduction on configurations is defined modulo the associativity and
commutativity of parallel composition.

Diffing. As DOM pages include event queues, they contain strictly more information than
HTML. To avoid losing pending events, we require a diffing operation. Define erase(D) as the
operation erase(domTag(−→e) t U D) = htmlTag t U (erase(D)), with the other cases defined
recursively. DOM pages can be modified by adding a node with an empty queue, removing a
node, or updating a node’s attributes. We define operation diff(U,D) = D′ if erase(D′) = U ,
and D′ is obtained from D by the minimum number of insertions and deletions.

Semantics by example. Let us return to our original example from §1: a box and a text node
displaying the reversed box contents. We reuse the view and update functions and let Vm =
(contents = “”), Vv = view, and Vu = update. We extend the HTML syntactic sugar to pages,
letting J−K be a desugaring function and J<t−→a @−→e >

−→
DH</t>K = domTag(−→e) t J−→a K J−→DHK.

We write R+ for the transitive closure of a relation R. We begin by supplying the model,
view, and update parameters to an initial configuration. By E-Run, we get an event loop
process, and then term Vv Vm reduces to the initial rendered HTML. By diffing against the
empty page, we display the initial DOM page (E-Update).

run (Vm, Vv, Vu) # domEmpty
−→ (E-Run) 〈(Vm, Vv Vm) | (Vv, Vu)〉 # domEmpty
−→+

M

〈(Vm,
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}></input>
<div></div>

) | (Vv, Vu)〉 # domEmpty

−→ (E-Update)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ ε></input>
<div @ ε></div>

The system now does not reduce until a user interacts with the text box and presses the k
key, modelled by E-Interact. At this point, the event queue for the input box receives four
events: click, keyDown, keyUp, and input, which are are processed by rule E-Evt. The input
element does not have handlers for the click, keyDown, and keyUp events, so no processes are
spawned, but does contain an onInput handler, which handles the input event by spawning
((UpdateBox(“k”))).

−→+ (E-Interact)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ click(())·
keyDown(75) · keyUp(75) · input(“k”)></input>

<div @ ε></div>
−→+ (E-Evt)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ input(“k”)>
</input>
<div @ ε></div>

−→ (E-Evt)

〈idle Vm | (Vv, Vu)〉 ‖ ((UpdateBox(“k”))) #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

Since UpdateBox("k") is already a value and the event loop process is idle, we can process
the message (E-Handle). The handle meta-function calculates a new model m′ by applying

ECOOP 2020

14:10 Model-View-Update-Communicate

Typing rules for events ` e

TE-Evt
· ` V : ty(ev)
` ev(V)

Typing rules for active threads ` T : EvtLoop(A,B)

TS-Idle
· ` Vm : A

` idle Vm : EvtLoop(A,B)

TS-Processing
· `M : (A× Html(B))
`M : EvtLoop(A,B)

Typing rules for processes and configurations `φ P :A ` C

TP-Run
· `M : (A× (A→ Html(B))× ((B ×A)→ A))

`• runM : B

TP-EventLoop
` T :EvtLoop(A,B)

· ` Vv:A→Html(B) · ` Vu:(B ×A)→ A

`• 〈T | (Vv, Vu)〉 : B

TP-Thread
· `M :A
`◦ ((M)):A

TP-Par
`φ1 P1:A `φ2 P2:A
`φ1+φ2 P1 ‖ P2:A

TC-System
`• P : A ` D : Page(A)

` P # D

Combination of flags φ1 + φ2

◦+ ◦ = ◦ ◦+• = • ◦+• = • •+ • undefined

Figure 5 Runtime typing for λMVU

the update function to a pair of the previous model and the message, calculates a new HTML
value v′ by applying the view function to m′, and returns the pair (m′, v′). Finally, the page
is diffed against the previous DOM page to generate a new DOM page D′, and the event
loop process reverts to being idle:

−→ (EP-Handle)

〈handle(Vm, (Vv, Vu),UpdateBox(“k”)) | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

−→+
M

〈(

(contents = “k”),
<input type = “text” value = “k”

onInput = {λstr.UpdateBox(str)}>
</input>
<div>k</div>

) | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

−→ (E-Update)

〈idle (contents = “k”) | (Vv, Vu)〉 #
<input type = “text” value = “k”

onInput = {λstr.UpdateBox(str)}@ ε></input>
<div @ ε>k</div>

2.3 Metatheory
Runtime typing. To reason about the metatheory, we require runtime typing rules, shown
in Figure 5. Judgement ` e states that the payload of an event e has the payload type
specified by its signature. Judgement ` T : EvtLoop(A,B) can be read “Active thread T
has model type A and message type B”. An idle thread idle Vm has type EvtLoop(A,B) if
Vm has type A (TS-Idle). An active thread M currently processing a message has type
EvtLoop(A,B) if M has type (A×Html(B)), i.e., computes a pair of a new model with type
A and HTML which produces messages of type B (TS-Processing).

Judgement `φ P : A states that process P is well typed and produces or consumes
messages of type A. The parallel composition of two processes P1 ‖ P2 has message type
A if both P1 and P2 have message type A (TP-Par). An event handler process ((M)) has
message type A if term M has type A (TP-Thread).

S. Fowler 14:11

An initialisation process runM is well-typed ifM is a product type where each component
has the correct model, view, and update types. An event loop process 〈T | (Vv, Vv)〉 has
message type B if its active thread T has model type A and message type B; its view function
Vv has type A→ Html(B); and its update function has type (B×A)→ A (TP-EventLoop).
Thread flags φ ensure that there is precisely one initialisation process or event loop process
in a process typeable under flag •.

Judgement ` C states that configuration C is well-typed: a system configuration P # D is
well-typed if process P has precisely one event loop process with message type A and page D
has type Page(A). The omitted typing rules for pages (of shape ` D : Page(A)) are similar
to those for terms of type Html(A).

Note that we consider only closed configurations and processes since it makes little sense
for DOM pages D to contain free variables, and because processes do not bind variables.

We are now well-placed to state some formal results. We omit proofs in the main body of
the paper; full proofs can be found in the extended version [18].

Preservation. Reduction preserves typing.

I Theorem 2 (Preservation). If ` C and C −→ C′, then ` C′.

Progress. The system vacuously satisfies a progress property as it can always reduce by
E-Interact due to user input. It is more interesting to consider the event progress property
enjoyed by the system without E-Interact: either there are no events to process and the
system is idle, or the system can reduce. Functional reduction satisfies progress.

I Lemma 3 (Progress (Terms)). If · `M : A, then either M is a value, or there exists some
N such that M −→M N .

Let −→E be the relation −→ without rule E-Interact. The concurrent fragment of the
language will reduce until all event handler threads have finished evaluating, and there are
no more messages to process. By appeal to Lemma 3, we can show event progress.

I Theorem 4 (Event Progress). If ` C, either:
1. there exists some C′ such that C −→E C′; or
2. C = 〈idle Vm | (Vv, Vu)〉 # D where D cannot be written D[domTag(−→e) t V W] for some

non-empty −→e .

3 λMVU with Session Types

In this section, we extend λMVU to support session types. We require three extensions:
commands, to perform side-effects; linearity, to implement session types safely; and transitions,
to allow multiple model and message types. We begin by showing each extension by example,
and show the extended formalism in §3.4.

3.1 Commands
Real-world applications require side-effects. To this end, Elm supports commands which
describe side-effects to be performed in the event loop. Although commands in Elm are more
general, for our purposes, it is particularly useful to be able to spawn a process which will
run concurrently and eventually return a message. As an example, we may want to await the
result of an expensive computation, and display the result when the computation completes.

ECOOP 2020

14:12 Model-View-Update-Communicate

Letting naïveFib(x) be the naïve Fibonacci function and assuming an intToString function,
we can write:

Model , Maybe(Int) Message , StartComputation | Result(Int)
view : Model→ Html(Message)
view = λmodel.html

<html>
<body>
{casemodel {

Just(result) 7→ htmlText intToString(result);
Nothing 7→ htmlText “Waiting ...” } }

<button onClick = {λ().StartComputation}>Start!</button>
</body>

</html>

update : (Message×Model)→ (Model,Cmd(Message))
update = λ(message,model).
casemessage {

StartComputation 7→ (Nothing, cmdSpawn Result(naïveFib(1000)))
Result(x) 7→ (Just(x), cmdEmpty)

}

The model is of type Maybe(Int), with value Just(V) for some integer value V if the result
has been computed, or Nothing if the application is awaiting the result. The Message type is
a variant type consisting of StartComputation which is sent to start the computation, and
Result(Int), which is sent to return a result. The view function renders either the result, or
“Waiting...” if no result is available.

The type of the update function is changed to return a pair of an updated model and
a command. In our case, the StartComputation message results in a pair of Nothing and
cmdSpawn Result(naïveFib(1000)), which spawns Result(naïveFib(1000)) to evaluate in a
separate thread. When the function (eventually) completes, the thread will have evaluated
to a Result message, which can be processed by the update function to update the model and
display the result.

3.2 Linearity
As we showed in §1, safely implementing session types requires linearity: we therefore require
linear model and message types. Linearity would also prove useful for other linear resources
such as functional arrays with in-place update [44]. Unfortunately, λMVU as defined so far
does not support linearity. Consider handle:

handle(m, (v, u),msg) , letm′ = u (msg,m) in (m′, v m′)

The updated model, m′, is used non-linearly as it is returned for use in subsequent requests,
and also used to render the model as HTML.

Extraction. Linear resources are needed only when updating the model—not when rendering
the webpage—as we will not need to communicate on session channels when rendering. If
the developer implements a function:

extract : A→ (A×B)

where A is the type of a model, and B is the unrestricted fragment of the model, we can
restore linear usage of the model (letting e be the extraction function):

handle(m, (v, u, e),msg) , letm′ = u (msg,m) in
let (m′, unrM) = e m′ in (m′, v unrM)

S. Fowler 14:13

Model , (Bool× Chan(Ping)× Chan(Pong)) Message , Click | Ponged

view : Model→ Html(Message)
view , λ(pinging,_,_).
let attr =
if pinging then
attrEmpty

else
attr “disabled” “true” in

html
<html>

<body>
<button {attr} onClick = {λ().Click}>

Send Ping!

</button>
</body>

</html>

update : (Message×Model)→ Model
update , λ(msg, (_, pingCh, pongCh)).
casemsg {

Click 7→
let cmd =
cmdSpawn (send (Ping, pingCh);

let Pong = receive pongCh in
Ponged) in

((false, pingCh, pongCh), cmd)
Ponged 7→ ((true, pingCh, pongCh), cmdEmpty)

}

server : (Chan(Ping)× Chan(Pong))→ (1→ A)
server , λ(pingCh, pongCh).

(rec f() .
let Ping = receive pingCh in
send (Pong, pongCh); f ())

Figure 6 PingPong application using simply-typed channels

An alternative approach would be to assign the view function type A → (A × Html(B)),
returning the linear model and allowing it to be re-bound. We would need to modify handle:

handle(m, (v, u),msg) , letm′ = u (m,msg) in v m′

A key disadvantage of this approach is that rendering is no longer a read-only operation,
breaking an important abstraction barrier.

Example. We can now write our first session-typed λMVU application. Our web client
consists of a button which, when clicked, triggers the sending of a Ping message to the server.
Once clicked, the button is disabled. The server then receives the Ping message and responds
with a Pong message; upon receiving the response, the client then re-enables the button.

Pinging: Waiting:

Simply-typed channels. Before considering a session-typed version of the application, it
is instructive to consider a version without session typing, shown in Figure 6. Let Chan(A)
be the type of a simply-typed channel over which one can send and receive values of type
A. The model is a 3-tuple containing a Boolean value which is true when waiting for the
user to click the “Send Ping!” button, and false when waiting for a response; a channel for
Ping messages; and a channel for Pong messages. There are two types of UI message: Click
denotes that the button has been clicked, and Ponged denotes that a Pong message has been
received along the Pong channel.

The view function displays the page, adding the disabled attribute to the button if we are
waiting for a Pong message. The update function case-splits on the UI message: in the case
of a Click message raised by the button, the model is updated to set the pinging flag to false,
and the function creates a command to send a Ping message along pingCh, receive a Pong
message from pongCh, and return a Ponged UI message. In the case of a Ponged message,
the model is updated to set the pinging flag to true, enabling the button again. The server
function models a server thread, which repeatedly receives Ping messages from pingCh and
sends Pong messages to pongCh.

ECOOP 2020

14:14 Model-View-Update-Communicate

PingPong , µt.!Ping.?Pong.t Model , Pinging(PingPong) | Waiting
UModel , UPinging | UWaiting Message , Click | Ponged(PingPong)

view : UModel→ Html(Message)
view , λuModel.
let attr =
case uModel {

UPinging 7→ attrEmpty
UWaiting 7→ attr “disabled” “true”

} in
html

<html>
<body>

<button {attr} onClick = {λ().Click}>
Send Ping!

</button>
</body>

</html>

handleClick(model) ,
casemodel {

Pinging(c) 7→
let cmd =
cmdSpawn (let c = send (Ping, c) in

let (pong, c) = receive c in
Ponged(c)) in

(Waiting, cmd)
Waiting 7→ (Waiting, cmdEmpty)

}

update : (Message×Model)→
(Model× Cmd(Message))

update , λ(msg,model).
casemsg {

Click 7→
handleClick(model)

Ponged(c) 7→
handlePonged(model, c)

}

extract : Model→ (Model× UModel)
extract , λmodel.
casemodel {

Pinging(c) 7→ (Pinging(c),UPinging)
Waiting 7→ (Waiting,UWaiting)
}

handlePonged(model, c) ,
casemodel {

Pinging(c′) 7→
cancel c′;
(Pinging(c), cmdEmpty)

Waiting 7→
(Pinging(c), cmdEmpty)

}

Figure 7 PingPong application

Even in this simple example, it is very easy to communicate incorrectly: if the client
neglected to send a Ping message before trying to receiving a Pong message along pongCh,
then the command would hang forever and the GUI would never re-enable the button. A
similar situation would arise if the server received the Ping message but failed to respond.

Session types. Session types S range over output !A.S, input ?A.S, the completed session
End, recursive session types µt.S, and (possibly dualised) recursive type variables t. We take
an equi-recursive treatment of recursive session types, identifying a recursive session type
with its unfolding. We omit types and constructs for branching and selection as they can
be encoded [13, 28]. The send constant sends a value of type A over an endpoint of type
!A.S and returns the continuation of the session, S. The close constant closes a completed
session endpoint. The receive constant takes an endpoint of type ?A.S and receives a pair
of a value of type A and endpoint of type S. The cancel constant allows an endpoint to be
discarded safely [20, 35].

Session types S ::= !A.S | ?A.S | µt.S | t | t | End

send : (A× !A.S)→ S receive : ?A.S → (A× S) close : End→ 1 cancel : S → 1

Figure 7 shows the PingPong client written in λMVU. We can encode the PingPong
protocol as a session type, µt.!Ping.?Pong.t. The Model type encodes the two states of the
application: Pinging(c) is the state where the “Send Ping!” button is enabled and the user
can send a Ping message along session channel c, whereas Waiting is the state where the
button is disabled and awaiting a Pong message from the other party. The UModel type is
the unrestricted model type which does not include the session channel. Again, the Message

S. Fowler 14:15

Pinging state
PModel , Pinging(PingPong)
PUModel , 1
PMessage , Click
pView : PUModel→ Html(PMessage)
pView , λ(). html

<html>
<body>

<button onClick = {λ().Click}>
Send Ping!

</button>
</body>

</html>
pUpdate : (PMessage× PModel)→

Transition(PModel,PMessage)
pUpdate , λ(Click,Pinging(c)).
let cmd =
cmdSpawn (let c = send (Ping, c) in

let (pong, c) = receive c in
Ponged(c)) in

transition Waiting wView wUpdate wExtract cmd
pExtract : PModel→ (PModel× PUModel)
pExtract , λx.(x, ())

Waiting state
WModel , Waiting
WUModel , 1
WMessage , Ponged(c)

wView : WUModel→ Html(WMessage)
wView , λ(). html

<html>
<body>

<button disabled = “true”>
Send Ping!

</button>
</body>

</html>

wUpdate : (WMessage×WModel)→
Transition(WModel,WMessage)

wUpdate , λ(Ponged(c),Waiting).
transition Pinging(c) pView

pUpdate pExtract cmdEmpty

wExtract : WModel→
(WModel×WUModel)

wExtract , λx.(x, ())

Figure 8 PingPong application using model transitions

type encodes the UI messages in the application: the Click UI message is produced when
the button is pressed, whereas the Ponged(PingPong) UI message is produced when a Pong
session message has been received. Note that the Ponged UI message now contains a session
channel of type PingPong as a parameter.

The view function takes an unrestricted model and displays a button, which is disabled
in the Waiting state but enabled in the Pinging state. The extract function pairs the linear
model with the associated unrestricted model.

The update function case-splits on the message. The handleClick function handles the
Click message, and case-splits on the model. If the model is in the Pinging(c) state, then
the function creates a command to spawn a process which will send a Ping message along c,
receive a Pong message along c, and generate a Ponged UI message when the Pong message
is received. The function finally updates the model to the Waiting state. If the model is in
the Waiting state—which should not occur, since the button is disabled—then the model
remains the same and no command is created.

The handlePonged function handles a Ponged(c) message. Again, we must case split on
the model. If the model is in the Waiting state, then we can change to the Pinging state,
given endpoint c. However, if the model is in the Pinging(c′) state and a Ponged message is
received—which should not occur, since according to the session type, there is no way for the
peer to send a Pong message while we are waiting to send a Ping—we now have two linear
resources. We choose to discard c′ using cancel, and change the model to Pinging(c′), but
this is an arbitrary choice to satisfy a code path that must exist, but should never be used.

3.3 Model transitions
Our proposal is still not quite satisfactory: as we saw with the PingPong example, we need
to include cases in the update function which cannot arise. We highlight these in red. This
is even more pronounced when dealing with linear resources, such as needing to handle a
Ponged message when waiting to send a Ping.

ECOOP 2020

14:16 Model-View-Update-Communicate

Kinds κ ::= L | U
Types A,B,C ::= 1 | A→κ B | A×B | A+B | String | Int | S

| Html(A) | Attr(A) | Cmd(A) | Transition(A,B)
Session types S ::= !A.S | ?A.S | µt.S | t | t | End

Terms L,M,N ::= x | λx.M | M N | K M | () | s | n
| (M,N) | let (x, y) = M inN
| inl x | inr x | case L {inl x 7→M ; inr y 7→ N}
| htmlTag tM N | htmlTextM
| attr ak M | attrEmpty
| cmdSpawnM | cmdEmpty | M ?N
| transitionMmMv MuMeMc | noTransitionMmMc

| raise | try L as x inM otherwiseN
Constants K ::= send | receive | new | cancel | close

Figure 9 Syntax of extended calculus

The problem is that we are encoding the Model type using a sum type, whereas in fact
we require multiple model types, and a way to transition between them.

Example. Figure 8 shows how we can modify PingPong to use multiple model types. The
left-hand side of the figure shows the Pinging state: the model type consists of the singleton
variant tag Pinging(PingPong) containing an endpoint of type PingPong, the unrestricted
model is the unit type, and the only message that the Pinging state can receive is Click. The
pView function is similar to before, and the pExtract function returns a pair of the current
state and the unit value. The pUpdate function is more interesting. Given the current
state and a Click message, the function constructs a command which will send the Ping
session message, receive the Pong session message, and then generate a Ponged(c) UI message
containing the session channel. The function transitions into the Waiting state using the
transition primitive, which allows the developer to specify new model, view, update, extract
functions, and a command to evaluate. The functions for the Waiting state follow a similar
pattern. Session types rule out the communication errors besetting the example in Figure 6,
and model transitions eliminate the redundant code paths arising due to illegal states.

3.4 λMVU with Commands, Linearity, and Transitions
Commands, linearity, and transitions are the three key ingredients needed to extend MVU to
support models which include session-typed channels. In this section, we introduce a calculus
which combines all three extensions, and prove that the extended calculus is sound.

3.4.1 Syntax and Typing
Figure 9 shows the syntax of λMVU extended with commands, linearity, and transitions.

Types and kinds. To support linearity, types are assigned kinds, ranged over by κ. Types
can either be linear (L) or unrestricted (U). A value of linear type must be used precisely
once, whereas a value of unrestricted type can be used many times.

We modify function types to include a kind annotation: linear functions may close over
linear variables and so must be used once. To support commands, we introduce type Cmd(A)
which is the type of a command which produces messages of type A. To support transitions,
we introduce type Transition(A,B) which is parameterised by the current model type A and
message type B. Finally, we extend types to include session types S as described in §3.2.

S. Fowler 14:17

Terms. Term cmdSpawnM is a command which can spawn term M as a thread, and is
monoidally composable using ? and cmdEmpty.

There are two terms for transitions: the noTransitionMm Mc term denotes that no
transition is to occur, and that the model should be updated to Mm and command Mc

should be evaluated; and transitionMmMvMuMeMc denotes that a transition should occur,
with new model Mm, view function Mv, update function Mu, extraction function Me, and
command Mc to be run once the transition has taken place.

To support session typing, we introduce session typing constants, ranged over by K, as
described in §3.2. We also introduce an application form for constants, K M .

Finally, as discussed in §3.2, it is useful to be able to explicitly discard (or cancel) a
session channel. In particular, cancellation is crucial in order to handle the interplay between
linearity and transitions, as all unprocessed messages (which may contain linear resources)
must be safely discarded when a transition occurs.

Following Mostrous and Vasconcelos [35] and Exceptional GV (EGV) by Fowler et al.
[20], if a thread tries to receive from an endpoint whose peer has been cancelled, an exception
is raised (raise). Exceptions can be handled using the tryL as x inM otherwiseN construct,
which tries to evaluate term L, and binds the result to x in M if the term evaluates to a
value, and evaluates N if the term raises an exception.

Kinding and subkinding. The kinding relation A :: κ assigns kind κ to type A; our
formulation is inspired by that of Padovani [38]. Base types and HTML and attribute types
are unrestricted. The kind of a function type is determined by its kind annotation. Session
types are linear. The kinds of product, sum, command and transition types are determined
by the kinds of their type parameters. The reflexive subkinding rule U ≤ L combined with
the kinding subsumption rule states that if a value can be used many times, then it can also
be treated as only being used once. We write Γ :: κ if A :: κ for each x : A ∈ Γ.

I Definition 5 (Kinding and subkinding). We define the subkinding relation as the reflexive
relation on kinds ≤ such that U ≤ L. We define the kinding relation A :: κ as the largest
relation between types and kinds such that:

A :: κ′ if A :: κ and κ ≤ κ′

S :: L
A :: U if A ∈ {1,String, Int,Html(B),Attr(B)}
A→κ B :: κ
Cmd(A) :: κ if A :: κ
C :: κ if C ∈ {A×B,A+B,Transition(A,B)} and both A :: κ and B :: κ

Term typing. Figure 10 shows the typing rules for the extended calculus. The splitting
relation Γ = Γ1 + Γ2 [8] splits a typing context Γ into two subcontexts which may share only
unrestricted variables. We support linearity by changing T-Var to only type a variable in
an unrestricted context, and by using the context splitting judgement when typing subterms.
The adaptation of the remaining rules to use context splitting is standard, so we omit them.

The constant application rule T-AppK types term KM and makes use of the type schema
function Σ(K) to ensure that the argument M is of the correct type. Rule T-CmdSpawn
assigns term cmdSpawnM type Cmd(A) if term M has type A, and rules T-CmdEmpty
and T-CmdAppend allow commands to be composed monoidally.

Rule T-Transition types a transition term. The typing rule ensures that the types
of the new model, and view, update and extract functions are compatible. Note that the
type parameters of the Transition(A′, B′) need not match the types of the new model and

ECOOP 2020

14:18 Model-View-Update-Communicate

Context splitting Γ = Γ1 + Γ2

· = ·+ ·
A :: U

Γ, x : A =
(Γ1, x : A) + (Γ2, x : A)

Γ1 + Γ2, x : A =
(Γ1, x : A) + Γ2

Γ1 + Γ2, x : A =
Γ1 + (Γ2, x : A)

Modified typing rules for terms Γ `M : A

T-Var
Γ :: U

Γ, x :A ` x :A

T-Abs
Γ, x :A `M :B Γ :: κ

Γ ` λx.M :A→κ B

T-AppK
Σ(K) = A→U B Γ `M :A

Γ ` K M :B

T-Cmd
Γ `M :A

Γ ` cmdSpawnM :Cmd(A)

T-CmdEmpty
Γ :: U

Γ ` cmdEmpty:Cmd(A)

T-CmdAppend
Γ1 `M :Cmd(A) Γ2 ` N :Cmd(A)

Γ1 + Γ2 `M ?N :Cmd(A)

T-Transition
Γ1 `Mm : A Γ2 `Mv : A→U Html(B) Γ3 `Mu : (B ×A)→U Transition(A,B)

Γ4 `Me : A→U (A× C) Γ5 `Mc : Cmd(A) C :: U
Γ1 + . . .+ Γ5 ` transitionMmMv MuMeMc : Transition(A′, B′)

T-EvtAttr
Γ `M : ty(h)→U A

Γ ` attr hM : Attr(A)

T-NoTransition
Γ1 `M :A Γ2 ` N :Cmd(B)

Γ1 + Γ2 ` noTransitionM N :Transition(A,B)

T-Try
Γ1 ` L:A

Γ2, x:A `M :B Γ2 ` N :B
Γ1 + Γ2 ` try L as x inM otherwiseN :B

T-Raise
Γ :: U

Γ ` raise:A
(other rules modified to split contexts)

Typing of constants Σ(c)

Σ(send) = (A× !A.S)→U S
Σ(receive) = ?A.S →U (A× S)

Σ(new) = 1→U (S × S)
Σ(cancel) = S →U 1 Σ(close) = End→U 1

Duality S

!A.S = ?A.S ?A.S = !A.S

µt.S = µt.S{t/t} t = t End = End

Figure 10 Term typing for extended calculus.

functions. Rule T-NoTransition assigns term noTransitionM N type Transition(A,B) if
new model M has type A, and N is a command of type Cmd(B). Note that in this way, the
noTransitionM N term replaces the standard result of the update function.

Rule T-Try types an exception handler: the continuations share a typing environment,
but the success continuation is augmented with the a variable of the type of the possibly-failing
continuation. Finally, raise can have any type as is it does not return (T-Raise).

The type and kinding system ensures that the kind of type A determines the kind of the
typing environment needed to type a term of type A.

I Lemma 6. If Γ `M : A and A :: κ, then Γ :: κ.

Duality. The duality relation for session types is standard: output types are dual to input
types; we use a self-dual End type; and we use the formulation of the duality of recursive
session types advocated by Lindley and Morris [32].

3.4.2 Operational Semantics
Runtime syntax. Figure 11 shows the runtime syntax for the combined calculus. We
introduce runtime names c, d which identify session channel endpoints.

S. Fowler 14:19

Runtime syntax

Runtime names c, d

Values U, V,W ::= · · · | c | cmdSpawnM | noTransition V W

| transition Vm Vv Vu Ve Vc
Active thread T ::= idle Vm | updatingM | extracting[Vc]M

| extractingT[F, Vc]M | rendering[Vm, Vc]M
| transitioning[Vm, F, Vc]M

Versions ι

Processes P,Q ::= runM | 〈T | F 〉ι | ((M))ι | P ‖ Q
| (νcd)P | bMc | c | halt

Function state F ::= (Vv, Vu, Ve)
Configurations C ::= P # D

Process contexts P ::= [] | P ‖ P | (νcd)P
Evaluation contexts E ::= · · · | K E | noTransition E M | noTransition V E

| transition E Mv MuMeMc | · · · | transition Vm Vv Vu Ve E
| try E as x inM otherwiseN

Pure contexts EP ::= (as E, but without exception handling frames)
Active thread contexts TA ::= updating E | rendering[Vm, Vc] E | extracting[Vc] E

| extractingT[Vc, F ′] E | transitioning[Vm, F ′, Vc] E
Pure active thread contexts TP ::= (as TA, but for pure contexts)
Thread contexts T ::= run E | 〈TA | F 〉ι | ((E))ι | bEc

Active thread state machine

idle updating

extracting rendering

extractingT transitioning

(No model transition)

(Model transition)

Figure 11 Runtime syntax for extended calculus

The biggest departure is that we require a richer structure on active threads, which form
a state machine based on whether a model transition occurs. The idle state is as before, and
the updating state evaluates the update function. If there is no model transition, then the
thread moves to the extracting state to extract the unrestricted model, and the rendering
state to render the new HTML. If there is a model transition, then the thread moves to
the extractingT state followed by the transitioning state to calculate the new HTML to be
displayed after the transition. Each state records values which are required in later states:
for example, the rendering[Vm, Vc]M state records the new model Vm and the command to
be executed upon updating the page Vc.

We introduce four new types of process. To model client-server communication, we
introduce server processes bMc to model a process M running on the server; the thread
to spawn is given as an argument to run. As an example, we could write a Ponger server
process for the PingPong example, which immediately responds with a Pong message:

let (c, s) = new () in
(Pinging(c), pView, pUpdate, pExtract,
cmdEmpty, ponger(s))

ponger(s) , λ().
(rec f(s) .
let (Ping, s) = receive s in
let s = send (Pong, s) in f s) s

A name restriction (νcd)P binds runtime names c and d in process P , following the
double-binder formulation due to Vasconcelos [43]. A zapper thread c denotes an endpoint c

ECOOP 2020

14:20 Model-View-Update-Communicate

Additional term reduction rule M −→M N

E-Try
try V as x inM otherwiseN −→M M{V/x}

Additional meta-level definitions
procs(cmdEmpty) = ε

procs(cmdSpawnM) = M
procs(V ?W) = procs(V) · procs(W)

Equivalence of processes P ≡ P ′

(νcd)(νc′d′)P ≡ (νc′d′)(νcd)P P ‖ ((νcd)Q) ≡ (νcd)(P ‖ Q) if c, d 6∈ fn(P) (νcd)P ≡ (νdc)P

P1 ‖ P2 ≡ P2 ‖ P1 P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3 (νcd)(c ‖ d) ‖ P ≡ P b()c ‖ P ≡ P

Reduction of processes P −→ P ′

MVU reduction rules
E-Discard 〈T | F 〉ι ‖ ((V))ι′ −→ 〈T | F 〉ι ‖ V if ι 6= ι′

E-DiscardHalt halt ‖ ((V))ι −→ halt ‖ V
E-Handle 〈idle Vm | (Vv, Vu, Ve)〉ι ‖ ((V))ι −→ 〈updating Vu (V, Vm) | (Vv, Vu, Ve)〉ι
E-Extract 〈updating (noTransition Vm Vc) | F 〉ι −→ 〈extracting[Vc] (Ve Vm) | F 〉ι

where F = (Vv, Vu, Ve)
E-ExtractT

〈updating (transition Vm Vv Vu Ve Vc) | F 〉ι −→ 〈extractingT[(Vv, Vu, Ve), Vc] (Ve Vm) | F 〉ι
E-Render 〈extracting[Vc] (Vm, Vum) | F 〉ι −→ 〈rendering[Vm, Vc] (Vv Vum) | F 〉ι

where F = (Vv, Vu, Ve)
E-RenderT 〈extractingT[F ′, Vc] (Vm, Vum) | F 〉ι −→ 〈transitioning[Vm, F ′, Vc] (Vv Vum) | F 〉ι

where F ′ = (Vv, Vu, Ve)
Session reduction rules

E-New T [new()] −→ (νcd)(T [(c, d)]) where c, d fresh
E-Comm (νcd)(T [send (V, c)] ‖ T ′[receive d]) −→ (νcd)(T [c] ‖ T ′[(V, d)])
E-Close (νcd)(T [close c] ‖ T ′[close d]) −→ T [()] ‖ T ′[()]
E-Cancel T [cancel c] −→ T [()] ‖ c
E-SendZap (νcd)(T [send (V, c)] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ V ‖ d)
E-RecvZap (νcd)(T [receive c] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ d)
E-CloseZap (νcd)(T [close c] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ d)

Exception reduction rules

E-RaiseH T [try EP[raise] as x inM otherwiseN] −→ T [N] ‖ EP
E-RaiseURun run (EP[raise]) −→ halt ‖ EP
E-RaiseUMain 〈TP[raise] | F 〉ι −→ halt ‖ TP
E-RaiseUThread ((EP[raise]))ι −→ EP
E-RaiseUServer bEP[raise]c −→ EP

Administrative reduction rules
E-LiftT T [M] −→ T [N] if M −→M N
E-Nu (νab)P −→ (νab)P ′ if P −→ P ′

E-Par P1 ‖ P2 −→ P ′1 ‖ P2 if P1 −→ P ′1

Figure 12 Reduction rules for extended calculus (1)

that has been cancelled and cannot be used in future communications; we write V to mean
 c1 ‖ · · · ‖ cn for ci ∈ fn(V), where fn(V) enumerates the free runtime names in a value V ,
and extend this sugar to evaluation contexts. The halt process denotes that the event loop
process has terminated due to an unhandled exception.

We extend evaluation contexts in the standard way, and introduce a class of pure contexts
EP, which are evaluation contexts which do not contain any exception handling frames.

Versions. Versions ι ensure that threads spawned in a previous state do not deliver
incompatible messages. We annotate event loop processes and event handler threads with
versions: given an event loop 〈T | F 〉ι, a thread ((M))ι′ where ι 6= ι′ can be of arbitrary type
as it will be discarded. We write version(P) = ι if P contains a subprocess 〈T | F 〉ι.

Reduction. Figures 12 and 13 show the extended process equivalence and reduction rules.
Rule E-Try handles evaluation of the success continuation of an exception handler, and

S. Fowler 14:21

Reduction of configurations C −→ C′

E-Run
P[run (Vm, Vv, Vu, Ve, Vc, λ().M)] # D −→ 〈extracting[Vc] (Ve Vm) | (Vv, Vu, Ve)〉0 ‖ bMc # D

E-Update
P[〈rendering[V ′m, Vc] U | F 〉ι] # D −→ P[〈idle V ′m | F 〉ι ‖ ((M1))ι ‖ · · · ‖ ((Mn))ι] # D′

where diff(U,D) = D′ and procs(Vc) = −→M
E-Transition
P[〈transitioning[Vm, F ′, Vc] U | F 〉ι] # D −→ P[〈idle Vm | F ′〉ι′ ‖ ((M1))ι′ ‖ · · · ‖ ((Mn))ι′] # D′

where ι′ = ι+ 1, diff(U,D) = D′

and procs(Vc) = −→M
E-Evt

P # D[domTag(ev(W) · −→e) t U D] −→ P ‖ ((V1 W))ι ‖ · · · ‖ ((VnW))ι # D[domTag(−→e) t U D]
where handlers(ev, U) = −→V and version(P) = ι

(E-Interact, E-Struct, E-LiftP unchanged)

Cancellation of pure active thread contexts TP

 updatingEP = EP rendering[Vm, Vc]EP = Vm ‖ Vc ‖ EP extracting[Vc]EP = Vc ‖ EP

 extractingT[Vc, F] EP = Vc ‖ EP transitioning[Vm, F, Vc] EP = Vm ‖ Vc ‖ EP

Figure 13 Reduction rules for extended calculus (2)

the procs meta-definition returns a sequence of processes to be spawned by a command.
Process equivalence is extended to allow commutativity of name restrictions, reordering
of names in a binder, and scope extrusion. The final “garbage collection” equivalences
(νcd)(c ‖ d) ‖ P ≡ P and b()c ‖ P ≡ P allow us to discard a channel where both endpoints
have been cancelled, and a completed server thread, respectively.

Figure 12 details the extended MVU process reduction rules.

MVU reduction. MVU reduction rules are specific to MVU. Central to safely integrating
linearity and transitions are rules E-Discard, E-DiscardHalt, and E-Handle. Rule
E-Handle is modified so that the event loop process only handles a message if the message
has the same version. If the versions do not match, then E-Discard safely discards any
channel endpoints in the discarded message by generating zapper threads. Rules E-Extract,
E-ExtractT, E-Render, and E-RenderT handle the state machine transitions described
in Figure 11 and are used to calculate the new model and HTML.

Session reduction. Session reduction rules encode session-typed communication and are
mostly standard: E-New generates a name restriction and returns two fresh endpoints;
E-Comm handles synchronous communication; and E-Close discards the endpoints of a
completed session. The remaining session communication rules handle session cancellation,
and are a synchronous variant of Exceptional GV described by Fowler et al. [20]. Rule
E-Cancel discards an endpoint. Rules E-SendZap, E-RecvZap, and E-CloseZap raise
an exception if a thread tries to communicate along an endpoint whose peer is cancelled,
ensuring resources are discarded safely.

Exception reduction. Rule E-RaiseH describes exception handling: as raise occurs in a
pure context, the exception is handled by the innermost handler; the rule evaluates the failure
continuation and discards all linear resources in the aborted context. Rules E-RaiseURun
and E-RaiseUMain apply to unhandled exceptions in a main thread, generating the

ECOOP 2020

14:22 Model-View-Update-Communicate

Typing rules for names, events, and function state Γ `M : A ` e Ψ ` F : State(A,B,C)

T-Name
Γ :: U

Γ, c : S ` c : S

TE-Evt
` V : ty(ev)
ty(ev) :: U
` ev(V)

TF-State
Ψ1 ` Vv : A→U Html(B) Ψ2 ` Vu : (B ×A)→U Transition(A,B)

Ψ3 ` Ve : A→U (A× C) C :: U
Ψ1,Ψ2,Ψ3 ` (Vm, Vv, Vu) : State(A,B,C)

Typing rules for active threads Ψ ` T : EvtLoop(A,B,C)
TT-Idle

Ψ ` Vm:A
Ψ ` idle Vm:EvtLoop(A,B,C)

TT-Updating
Ψ `M :Transition(A,B)

Ψ ` updatingM :EvtLoop(A,B,C)

TT-Rendering
Ψ1 ` Vm:A Ψ2 ` Vc:Cmd(B) Ψ3 `M :Html(B)
Ψ1,Ψ2,Ψ3 ` rendering[Vm, Vc]M :EvtLoop(A,B,C)

TT-Extracting
Ψ1 ` Vc:Cmd(B) Ψ2 `M :(A× C)

Ψ1,Ψ2 ` extracting[Vc]M :EvtLoop(A,B,C)

TT-ExtractingT
Ψ1 ` F :State(A,B,C) Ψ2 ` Vc:Cmd(B) Ψ3 `M :(A× C)

Ψ1,Ψ2,Ψ3 ` extractingT[F, Vc]M :EvtLoop(A′, B′, C′)

TT-Transitioning
Ψ1 ` Vm:A Ψ2 ` F :State(A,B,C) Ψ3 ` Vc:Cmd(B) Ψ4 `M :Html(B)

Ψ1, . . . ,Ψ4 ` transitioning[Vm, F, Vc]M :EvtLoop(A′, B′, C′)

Typing rules for processes Ψ `φι P : A
TP-Run
Ψ `M : (A× (A→U Html(B))× ((B ×A)→U Transition(A,B))×

(A→U (A× C))× Cmd(B)× (1→L 1))
C :: U

Ψ `•ι runM : B

TP-EventLoop
Ψ1 ` T : EvtLoop(A,B,C)

Ψ2 ` F : State(A,B,C)
Ψ1,Ψ2 `•ι 〈T | F 〉ι : B

TP-Thread
Ψ `M : A

Ψ `◦ι ((M))ι : A

TP-OldThread
Ψ `M : B ι 6= ι′

Ψ `◦ι ((M))ι′ : A

TP-ServerThread
Ψ `M : 1

Ψ `◦ι bMc : A

TP-Par
Ψ1 `φ1

ι P1 : A Ψ2 `φ2
ι P2 : A

Ψ1,Ψ2 `φ1+φ2
ι P1 ‖ P2 : A

TP-Zap

c : S `◦ι c : A

TP-Halt

· `•ι halt : A

TP-Nu
Ψ, c : S, d : S `φι P : A

Ψ `φι (νcd)P : A

Figure 14 Runtime typing for extended calculus

halt configuration and cancelling any linear resources in the aborted context. Rules E-
RaiseUThread and E-RaiseUServer apply to unhandled exceptions in event loop thread
and server threads respectively, by cancelling any channels in the aborted continuation.

Configuration reduction. Figure 13 shows the modified configuration reduction rules. We
modify E-Run to take into account the new arguments, and spawn the given server thread.
We modify E-Update to spawn threads described by the returned command; E-Transition
is similar but changes the function state and increments the version. We modify E-Evt to
tag each spawned event handler thread with the version of the event handler process.

3.4.3 Metatheory
Runtime typing. Figure 14 shows the runtime typing rules for the extended calculus. Rule
T-Name types channel endpoints, and rule TE-Evt mandates that event payload types are
unrestricted. The rules for active threads ensure that the types of the terms being evaluated

S. Fowler 14:23

correspond to the state in the state machine (for example, that the updating state returns a
term of type Transition(A,B)), and that any recorded values have the correct types.

Let Ψ range over environments containing only runtime names: Ψ ::= · | Ψ, c : S. We
write Ψ1,Ψ2 for the disjoint union of environments Ψ1 and Ψ2.

We modify the shape of the process typing judgement to Ψ `φι P : A, which can be
read “under typing environment Ψ and thread flag φ, process P has type A and version ι”.
We modify rule TP-EventLoop to include the extraction function, and mandate that the
unrestricted model type C has kind U. We modify rule T-Thread to state that type of an
event handler thread ((M))ι has type A if term M has type A and the version matches that
of the event handler process. Rule TP-OldThread allows a thread to have a mismatching
type to the event handler process if the versions are incompatible. Finally, TP-Zap and
TP-Halt type zapper threads and the halt thread, and TP-Nu types a name restriction
(νcd)P by adding c and d with dual session types into the typing environment.

Properties. The extended calculus satisfies preservation.

I Theorem 7 (Preservation). If ` C and C −→ C′, then ` C′.

Although session types rule out deadlock within a single session, without imposing a
tree-like structure on processes [31, 45] (which is too inflexible for our purposes) or using
techniques such as channel priorities [29, 37, 39], it is not possible to rule out deadlocks when
considering multiple sessions. Since communication over multiple sessions can introduce
deadlocks, we begin by proving an error-freedom property, similar to that of Gay and
Vasconcelos [21]. An error process involves a communication mismatch.

I Definition 8 (Error process). A process P is an error process it contains one of the following
processes as a subprocess:
1. (νcd)(T [send (V, c)] ‖ T ′[send (W,d)])
2. (νcd)(T [send (V, c)] ‖ T ′[close d])
3. (νcd)(T [receive c] ‖ T ′[receive d])
4. (νcd)(T [receive c] ‖ T ′[close d])

Configuration typing ensures error-freedom.

I Theorem 9 (Error-freedom). If Ψ `φι P : A, then P is not an error process.

Error-freedom shows that session typing ensures the absence of communication mismatches.
What remains is to show that, apart from the possibility of deadlock, the additional features
do not interfere with the progress property enjoyed by λMVU. We begin by classifying the
notion of a blocked thread, which is a thread blocked on a communication action.

IDefinition 10 (Blocked thread). We say a thread T [M] is blocked if eitherM = send(V,W),
M = receive V , or M = close V .

Let us refer to halt, 〈T | F 〉ι, and runM as main threads, and ((M))ι, bMc, and c as
auxiliary threads. Each well-typed configuration has precisely one main thread.

We can now classify the notion of progress enjoyed by the extended calculus. Either the
configuration can reduce; is waiting for an event; has halted due to an unhandled exception;
or is deadlocked. Again, let −→E be the −→ relation without E-Interact.

I Theorem 11 (Weak Event Progress). Suppose ` C. Either there exists some C′ such that
C −→ C′, or there exists some C′ such that C ≡ C′ and:

ECOOP 2020

14:24 Model-View-Update-Communicate

(a) Login (b) Chat

Client session types

typename ClientConnect = ?([RoomName]).ClientSelect;

typename ClientSelect = !(RoomName, Nickname).

[&| JoinedOK: ?(Topic, [Nickname], ClientReceive) . ClientSend,

JoinedOKAsModerator: ?(Topic, [Nickname], ClientReceive, ModeratorSend). ClientSend,

Nope: ?ConnectError.End |&];

typename ClientReceive = [&|

IncomingChatMessage:

?(Nickname, Message). ClientReceive,

NewUser: ?(Nickname). ClientReceive,

NewTopic: ?(Topic). ClientReceive,

UserLeft: ?(Nickname). ClientReceive,

UserMuted: ?(Nickname). ClientReceive,

UserUnmuted: ?(Nickname). ClientReceive,

BecomeModerator: ?ModeratorSend. ClientReceive,

Kick: End |&];

typename ClientSend = [+|

ChatMessage: !(Message).ClientSend,

ChangeTopic: !(Topic).ClientSend,

Leaving: End |+];

typename ModeratorSend = [+|

KickUser: !(Nickname).ModeratorSend,

MuteUser: !(Nickname).ModeratorSend,

MakeModerator: !(Nickname).ModeratorSend

|+];

Figure 15 Chat server application

1. D cannot be written D[domTag(−→e) t V D] for a non-empty −→e .
2. If the main thread of C′ is halt, then all auxiliary threads are blocked or zapper threads.
3. If the main thread of C′ is runM , then M is blocked, and all auxiliary threads are either

blocked, values, or zapper threads.
4. If the main thread of C′ is 〈T | F 〉ι, then:

a. if T = idle Vm, then each auxiliary thread is either blocked or a zapper thread; or
b. if T = TA[L] then L is blocked, and each auxiliary thread is either blocked, a value, or

a zapper thread.

4 Implementation and Example Application

We have implemented an MVU library for the Links tierless web programming language,
which includes all extensions in the paper; Links already has a linear type system and
distributed session types, so is an ideal fit.

We now describe a chat application, extending the application presented by Fowler et al.
[20]. The application (Figure 15) has two main stages shown to the user: on the first, the
user is presented with a list of rooms, and enters a username and selects a room. If a user
with the given nickname is not already in the selected room, then the user joins the room,
receiving the current topic, a list of other nicknames, and a channel used to receive messages
from the server. The user can then send chat messages, change the topic, and leave the

S. Fowler 14:25

room. If the user is the first user in the room, then they join as a moderator and receive an
additional channel which can be used to kick, mute, or promote other users to moderators.
Users can receive incoming chat messages, and system messages detailing changes such as a
new topic or a user joining the room.

We can encode these interaction patterns using session types. Links session type notation
for offering a choice is [&|...|&], and making a choice is [+|...|+]. Type ClientConnect describes
the client receiving the room list. Type ClientSelect describes the client sending the room
name and nickname, and receiving the response from the server: either joining as a regular
user (JoinedOK); joining as a moderator (JoinedOKAsModerator); or an error (Nope). Types ClientSend

and ClientReceive detail the messages that the client can send to, and receive from the server,
respectively. Type ModeratorSend details privileged moderator actions.

Although the original version of Links [10] ran as a CGI script, modern Links applications
run as a persistent webserver. Upon execution, the chat application creates an access point for
sessions of type ClientConnect, which supports session establishment, and spawns an acceptor
thread to accept incoming requests on the access point. Each chat room is represented
as a process on the server. When an HTTP request is made, the response contains the
MVU application and the access point ID which can be used to establish a session of type
ClientConnect. After the initial HTTP response, further communication between the client and
server happens over a WebSocket [16].

The application has three states: connection, chatting, and a “waiting” state shown while
waiting for a response. For the purposes of the paper, we consider the connection state.

typename SelectedRoom =

[| NewRoom | SelectedRoom: String |];

typename NotConnectedModel =

(nickname: String, rooms: [RoomName],

selectedRoom: SelectedRoom,

newRoomText: RoomName, error: Maybe(Error));

typename NCModel =

(ClientSelect, NotConnectedModel);

typename NCMessage = [|

[| UpdateNickname: Nickname

| UpdateSelectedRoom: SelectedRoom

| UpdateNewRoom: RoomName | SubmitJoinRoom |];

The NotConnectedModel is the unrestricted part of the model, and contains the current
nickname (nickname), list of rooms (rooms), selected room (selectedRoom), value of the “new room”
text box (newRoomText), and an optional error message to display (error). The model, NCModel, is
a pair of a session endpoint of type ClientSelect and a NotConnectedModel. The UI messages are
described by the NCMessage type: for example, the UpdateNickname message is generated by the
onInput event of the nickname input box.

Upon receiving the SubmitJoinRoom UI message when the form is submitted, the application
can send the nickname and selected room along the ClientSelect channel, all of which are
contained in the model, without requiring ad-hoc messaging or imperative updates.

5 Related work

Flapjax [34] was the first web programming language to use functional reactive programming
(FRP) [14] in the setting of web applications. Flapjax provides behaviours, which are
variables whose contents change over time, and event streams, which are an infinite stream of
discrete events which change a behaviour. ScalaLoci [46] is a multi-tier reactive programming
framework written in Scala, where changes in reactive signals are propagated across tiers,
rather than using explicit message passing. Ur/Web [9] and WebSharper UI [19] store data
in mutable variables, and allow views of the data to be combined using monadic combinators.

Felleisen et al. [15] describe an earlier approach similar to MVU written in the DrScheme [17]
system. Similar to the MVU update function, events such as key presses and mouse
movements are handled using functions of type (Model × Event) → Model. The approach

ECOOP 2020

14:26 Model-View-Update-Communicate

handles “environment” events rather than events dispatched by individual elements, and the
approach is not formalised. Environment events can be handled using subscriptions in Elm,
which can be added to λMVU (see the extended version of the paper [18]).

React [2] is a popular JavaScript UI framework. In React, a user defines data models
and rendering functions, and similar to Elm, updates are propagated to the DOM by
diffing. Differently to MVU, there is no notion of a message, and a page consists of multiple
components rather than being derived from a single model. We expect some technical
machinery from λMVU (e.g., event queues, DOM contexts, and diffing) could be reused when
formalising React. Redux [5] is a state container for JavaScript applications: to modify the
state, one dispatches an action, and a function takes the previous state and an action and
produces a new state. In combination with React, the approach strongly resembles MVU.

Hop.js [41] is a multi-tier web framework written in JavaScript. Hop.js services allow
remote function invocation, and the framework supports client-side message-passing concurrency
using Web Workers [22], but there is no cross-tier message-passing concurrency.

Session types were introduced by Honda [23] and were first considered in a linear functional
language by Gay and Vasconcelos [21]; Wadler [45] later introduced a session-typed functional
language GV and a logically-grounded session-typed calculus CP (following Caires and
Pfenning [7]), and translated GV into CP. Lindley and Morris [31] introduced an operational
semantics for GV, and showed type- and semantics-preserving translations between GV and
CP. GV inspires FST [33], which is the core calculus for Links’ treatment of session typing.

Fowler et al. [20] extend GV with failure handling, and extend Links with cross-tier
session-typed communication. They do not formally consider GUI development, and their
approach to frontend web programming using session types (described in Section 1) leads to
a disconnect between the state of the page and the application logic. We build upon their
approach to session-typed web programming, while also allowing idiomatic GUI development.

King et al. [27] present a toolchain for writing web applications which respect multiparty
session types [25]. Protocols are compiled to PureScript [42] using a parameterised monad [6]
to guarantee linearity, and the authors integrate their encoding of session types with the
Concur UI framework [26]. Each application may only have a single session connecting
the client and server, whereas in our system there may be multiple; our approach supports
first-class linearity and cross-tier typechecking; our approach is formalised; and our approach
supports failure handling. Links does not yet support multiparty session types.

6 Conclusion

Session types allow conformance to protocols to be checked statically. The last few years
have seen a flurry of activity in implementing session types in a multitude of programming
languages, but linearity—a vital prerequisite for implementing session types safely—is difficult
to reconcile with the asynchronous nature of graphical user interfaces. Consequently, the
vast majority of implementations using session types are command line applications, and the
few implementations which do integrate session types and GUIs do so in an ad-hoc manner.

In this paper, we have addressed this problem by extending the Model-View-Update
architecture, pioneered by the Elm programming language. We have presented the first formal
study of MVU by introducing a core calculus, λMVU. Leveraging our formal characterisation
of MVU, we have introduced three extensions: commands, linearity, and model transitions,
enabling us to present the first formal integration of session-typed communication with a
GUI framework. Informed by our formal model, we have implemented our approach in Links.
As future work, we will investigate how to encode allowed transitions as a behavioural type.

REFERENCES 14:27

References

1 Elm: A delightful language for reliable webapps, 2019. URL http://www.elm-lang.org.
Accessed on 2019-07-04.

2 React – a JavaScript library for building user interfaces, 2019. URL http://www.reactjs.org.
Accessed on 2019-09-02.

3 WebSharper.Mvu, 2019. URL https://github.com/dotnet-websharper/mvu. Accessed on 2019-
07-04.

4 Flux, 2020. URL https://facebook.github.io/flux/. Accessed on 2020-01-08.
5 Redux - a predictable state container for JavaScript apps, 2020. URL https://redux.js.org/.

Accessed on 2020-01-08.
6 Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):

335–376, 2009.
7 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of Lecture Notes in Computer Science, pages 222–236. Springer,
2010.

8 Iliano Cervesato and Frank Pfenning. A linear logical framework. In LICS, pages 264–275.
IEEE Computer Society, 1996.

9 Adam Chlipala. Ur/Web: A simple model for programming the web. In POPL, pages
153–165. ACM, 2015.

10 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In FMCO, volume 4709 of Lecture Notes in Computer Science, pages
266–296. Springer, 2006.

11 Evan Czaplicki. Farewell to FRP, 2016. URL https://elm-lang.org/news/farewell-to-frp.
Accessed on 2019-09-02.

12 Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming
for GUIs. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, pages 411–422. ACM, 2013. doi: 10.1145/2491956.2462161.
URL https://doi.org/10.1145/2491956.2462161.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf.
Comput., 256:253–286, 2017.

14 Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP, pages 263–273.
ACM, 1997.

15 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi.
A functional I/O system or, fun for freshman kids. In ICFP, pages 47–58. ACM, 2009.

16 Ian Fette and Alexey Melnikov. The WebSocket protocol, 2011.
17 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram

Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming
environment for Scheme. J. Funct. Program., 12(2):159–182, 2002.

18 Simon Fowler. Model-View-Update-Communicate: Session types meet the Elm
architecture (Extended version), 2019. URL https://arxiv.org/abs/1910.11108.

19 Simon Fowler, Loïc Denuzière, and Adam Granicz. Reactive single-page applications
with dynamic dataflow. In PADL, volume 9131 of Lecture Notes in Computer Science,
pages 58–73. Springer, 2015.

20 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. PACMPL, 3(POPL):28:1–28:29, 2019. doi:
10.1145/3290341. URL https://doi.org/10.1145/3290341.

ECOOP 2020

http://www.elm-lang.org
http://www.reactjs.org
https://github.com/dotnet-websharper/mvu
https://facebook.github.io/flux/
https://redux.js.org/
https://elm-lang.org/news/farewell-to-frp
https://doi.org/10.1145/2491956.2462161
https://arxiv.org/abs/1910.11108
https://doi.org/10.1145/3290341

14:28 REFERENCES

21 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19–50, 2010.

22 Ido Green. Web Workers - Multithreaded Programs in JavaScript. O’Reilly, 2012.
23 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes

in Computer Science, pages 509–523. Springer, 1993.
24 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives

and type discipline for structured communication-based programming. In ESOP, volume
1381 of Lecture Notes in Computer Science, pages 122–138. Springer, 1998.

25 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. J. ACM, 63(1):9:1–9:67, 2016.

26 Anupam Jain. Concur, 2019. URL https://ajnsit.github.io/concur. Accessed on 2019-09-
02.

27 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web
development with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages
35–46, 2019.

28 Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium
of UNU/IIST, volume 2757 of Lecture Notes in Computer Science, pages 439–453. Springer,
2002.

29 Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR, volume
4137 of Lecture Notes in Computer Science, pages 233–247. Springer, 2006.

30 Glenn E. Krasner and Stephen T. Pope. A Cookbook for using the Model-view Controller
user interface paradigm in Smalltalk-80. J. Object Oriented Program., 1(3):26–49, August
1988. ISSN 0896-8438. URL http://dl.acm.org/citation.cfm?id=50757.50759.

31 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In ESOP,
volume 9032 of Lecture Notes in Computer Science, pages 560–584. Springer, 2015.

32 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session
types. In ICFP, pages 434–447. ACM, 2016.

33 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural
Types: from Theory to Tools. River Publishers, pages 265–286, 2017.

34 Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming language for
Ajax applications. In OOPSLA, pages 1–20. ACM, 2009.

35 Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. Logical Methods in Computer
Science, 14(4), 2018. doi: 10.23638/LMCS-14(4:14)2018. URL https://doi.org/10.23638/

LMCS-14(4:14)2018.
36 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus

with futures. Theor. Comput. Sci., 364(3):338–356, 2006.
37 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS, pages

72:1–72:10. ACM, 2014.
38 Luca Padovani. Context-free session type inference. In ESOP, volume 10201 of Lecture

Notes in Computer Science, pages 804–830. Springer, 2017.
39 Luca Padovani and Luca Novara. Types for deadlock-free higher-order programs. In

FORTE, volume 9039 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015.
40 Adam Pedley. Functional Model-View-Update Architecture for Flutter, 2019. URL

https://buildflutter.com/functional-model-view-update-architecture-for-flutter/. Accessed
on 2019-09-24.

41 Manuel Serrano and Vincent Prunet. A glimpse of Hopjs. In ICFP, pages 180–192. ACM,
2016.

https://ajnsit.github.io/concur
http://dl.acm.org/citation.cfm?id=50757.50759
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.23638/LMCS-14(4:14)2018
https://buildflutter.com/functional-model-view-update-architecture-for-flutter/

REFERENCES 14:29

42 The PureScript Contributors. PureScript, 2019. URL http://www.purescript.org/. Accessed
on 2019-09-02.

43 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
44 Philip Wadler. Linear types can change the world! In Programming Concepts and

Methods, page 561. North-Holland, 1990.
45 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:

10.1017/S095679681400001X. URL https://doi.org/10.1017/S095679681400001X.
46 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system

development with ScalaLoci. PACMPL, 2(OOPSLA):129:1–129:30, 2018.

ECOOP 2020

http://www.purescript.org/
https://doi.org/10.1017/S095679681400001X

	Introduction
	Contributions.

	Model-View-Update, Formally
	Syntax
	Operational Semantics
	Runtime Syntax
	Reduction Rules

	Metatheory

	MVU with Session Types
	Commands
	Linearity
	Model transitions
	MVU with Commands, Linearity, and Transitions
	Syntax and Typing
	Operational Semantics
	Metatheory

	Implementation and Example Application
	Related work
	Conclusion

