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Abstract. Modern web applications are heavily dynamic. Several ap-
proaches, including functional reactive programming and data binding,
allow a presentation layer to automatically reflect changes in a data layer.
However, many of these techniques are prone to unpredictable memory
performance, do not make guarantees about node identity, or cannot
easily express dynamism in the dataflow graph.
We identify a point in the design space for the creation of statically-
typed, reactive, dynamic, single-page web applications for the WebSharper
framework in the functional-first language F#. We provide an embedding
abstraction to link a dynamic dataflow graph to a DOM presentation
layer in order to implement dynamic single-page applications, and show
how the technique can be used to support declarative animation.
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1 Introduction

The web has grown from a collection of static, textual websites to a platform
allowing complex, fully-fledged applications to run in a browser. A key advance
has been the ability of page content to change, in particular as a result of changes
to underlying data.

Changing the DOM via callback functions is adequate for small applications,
but the inversion of control introduced by callback functions makes it difficult
to maintain larger applications, and the code to update the presentation layer
invariably becomes entangled with application logic. Techniques such as data
binding allow mutable data to be inserted into the DOM, with the presentation
layer automatically reflecting these changes. Functional reactive programming
(FRP) [7] introduces Signals and Behaviours, where values can be treated as a
function of time. Several successful implementations exist: React [1] provides an
efficient data-binding system, and Elm [5] is a popular language designed for
creating reactive web applications using FRP.

The design space, however, is vast. FRP, while having an extremely clean and
expressive semantics, is prone to memory leaks when using higher-order signals.



As a result, Elm’s type system forbids higher-order signals and the creation
of new signals, using signal transformers from arrowised FRP [13] to achieve
dynamism. Applications written with React are not statically-typed and make
few guarantees about the preservation of the identity, including internal state,
such as focus, of DOM nodes.

WebSharper3 is a framework allowing web applications to be written entirely
in the functional-first language F# [17]. This is achieved by compiling quoted F#
expressions to JavaScript, with raw DOM elements and events encapsulated using
a functional interface. Designing a framework, UI.Next, for reactive single-page
applications in WebSharper required us to identify a point in the design space
fulfilling the following key properties.

Dynamism It must be possible for the dataflow graph to consist of dynamic
sub-graphs, where the structure of these sub-graphs may change over the
course of the application’s execution.

Predictable Memory Usage Purely monadic FRP systems must sometimes
retain the entire history of a value in order to use higher-order signals. The
framework must not mandate such memory leaks in order to preserve the
semantics of the reactive system.

Composability It should be simple to compose elements in both the dataflow
and presentation layers. Layers in the dataflow layer should compose using
applicative and monadic abstractions, and it should be simple to integrate
the dataflow and presentation layers.

Standard Type Systems The system should not require any non-standard
type system features in order to fulfil the above properties.

Control over Node Identity The user should be able to explicitly specify
whether DOM nodes are shared or regenerated upon changes in data.

1.1 Contributions

As a result of our design and implementation guided by the above principles, we
report on the following scientific contributions.

– We describe a dynamic dataflow graph consisting of parameterised views of
data sources, connected in a weak fashion by Snaps, a specialised extension of
the IVar primitive [15]. This connects parameterised views of data sources in
the dataflow graph, supporting asynchronous loading of variables, preventing
glitches, and ensuring the graph is amenable to garbage collection (Section 3).

– We introduce a monoidal API for specifying DOM elements, provide abstrac-
tions to integrate this reactive DOM layer with the dynamic dataflow graph,
and describe the implementation of this integration (Section 4).

– We demonstrate how a declarative animation API can be integrated with the
DOM layer, making use of limited history-dependence, and can be backed by
the dataflow graph (Section 5).

3
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UI.Next is freely available online at http://www.github.com/intellifactory/websharper.

ui.next. Example applications can be found at http://intellifactory.github.io/

websharper.ui.next.samples; the samples site itself is also written using UI.Next.

2 UI.Next by Example

UI.Next focuses on the creation of reactive, single-page applications. Before de-
scribing the implementation in detail, we provide an example of a calculator
application, with standard and scientific modes.

We begin by defining data types for modes, a set of binary and unary opera-
tions, and a record to model the calculator. The calculator has one number in
its memory in order to support binary operations, and a current operand and
operation. We also define functions to execute the numerical operations.

type Mode = Standard | Scientific

type BinOp = Add | Sub | Mul | Divide | Exp | Mod

type UnOp = Sin | Cos | Tan | Squared

type Op = BinaryOp of BinOp | UnaryOp of UnOp

type Calculator = { Memory : float ; Operand : float ; Operation : Op }

let binOpFn = function

| Add -> (+) | Sub -> (-)

| Mul -> ( * ) | Divide -> (/)

| Exp -> ( ** ) | Mod -> (%)

let unOpFn = function

| Squared -> fun x -> pown x 2

| Sin -> sin | Cos -> cos

| Tan -> tan

There are two main reactive primitives in UI.Next: Vars, which can be thought of
as observable mutable reference cells, and Views, which are read-only projections
of Vars in the dataflow graph, and can be combined using applicative and monadic
functional abstractions. In the following functions, rvCalc is a Var containing the
current calculator state. Var.Update updates a variable based on its current value.

When a number button is pressed, the number is added to the current operand
multiplied by 10 (pushInt). Pressing a unary operation button applies it to the
current operand. When a binary operation is pressed, the number is placed into
the memory, the operation is stored, and the operand is set to zero (shiftToMem).
The user can then type another number, and pressing the equals button will
apply the operation to the number in memory and current operand (calculate).

let pushInt x rvCalc =

Var.Update rvCalc (fun c -> { c with Operand = c.Operand * 10.0 + x})

let shiftToMem op rvCalc =

Var.Update rvCalc (fun c ->

{ c with Memory = c.Operand; Operand = 0.0; Operation = op }

let calculate rvCalc =

Var.Update rvCalc (fun c ->

let ans =

match c.Operation with

| BinaryOp op -> binOpFn op c.Memory c.Operand

| UnaryOp op -> unOpFn op c.Operand

{ c with Memory = 0.0 ; Operand = ans ; Operation = BinaryOp Add } )



The next step is to create a view for the model, allowing it to be embedded
into a web page. In order to do this, we create and combine elements of type Doc,
a monoidally-composable representation of a DOM tree, which may contain both
static and reactive fragments.

The “screen” of the calculator should display the current operand. This is
done by mapping a serialisation function onto the current operand, converting
it to a string (resulting in a type of View<string>), and creating a Doc.TextView

representing a DOM text node which will update every time the View updates.
We make use of the F# ‘pipe’ operator (a |> f = f a).

let numberDisplay rvCalc =

let rviCalc = View.FromVar rvCalc

View.Map (fun c -> string c.Operand) rviCalc |> Doc.TextView

We next define the “keypad” of the calculator. We define several button
creation functions using the Doc.Button function, which takes as its arguments a
caption, list of attributes, and a callback function to update the calculator state.
Div0 constructs a Doc representing a <div> tag, without attributes.

let calcBtn i rvCalc = Doc.Button (string i) [] (fun _ -> pushInt i rvCalc)

let cbtn rvCalc = Doc.Button "C" [] (fun _ -> Var.Set rvCalc initCalc)

let eqbtn rvCalc = Doc.Button "=" [] (fun _ -> calculate rvCalc)

let uobtn o rvCalc = Doc.Button (showOp o) [] (fun _ -> setOp o rvCalc; calculate

rvCalc)

let bobtn o rvCalc = Doc.Button (showOp o) [] (fun _ -> shiftToMem o rvCalc)

let keypad rvCalc =

let btn num = calcBtn num rvCalc

Div0 [

Div0 [btn 1.0 ; btn 2.0 ; btn 3.0 ; bobtn (BinaryOp Add) rvCalc]

Div0 [btn 4.0 ; btn 5.0 ; btn 6.0 ; bobtn (BinaryOp Sub) rvCalc]

Div0 [btn 7.0 ; btn 8.0 ; btn 9.0 ; bobtn (BinaryOp Mul) rvCalc]

Div0 [btn 0.0 ; cbtn rvCalc; eqbtn rvCalc; bobtn (BinaryOp Divide) rvCalc]

]

We may then declare the operations which are present in scientific mode, and
two rendering functions, standardCalc and scientificCalc, composing each set of
components.

let scientificOps rvCalc =

Div0 [

bobtn (BinaryOp Exp) rvCalc ; bobtn (BinaryOp Mod) rvCalc

uobtn (UnaryOp Sin) rvCalc ; uobtn (UnaryOp Cos) rvCalc

uobtn (UnaryOp Tan) rvCalc ; uobtn (UnaryOp Squared) rvCalc

]

let standardCalc rvCalc = Div0 [ numberDisplay rvCalc; keypad rvCalc ]

let scientificCalc rvCalc =

Div0 [ numberDisplay rvCalc; scientificOps rvCalc; keypad rvCalc ]

Finally, we create two radio buttons to switch between standard and scientific
modes, which set the rvMode variable accordingly, and create a View of rvMode. We
then map the appropriate rendering function to create a View<Doc>, which can be
embedded using the Doc.EmbedView: View<Doc> -> Doc function.



let calcView rvCalc rvMode =

let modeButtons =

[Div0 [Doc.Radio [] Standard rvMode ; Doc.TextNode "Standard"]

Div0 [Doc.Radio [] Scientific rvMode ; Doc.TextNode "Scientific"]] |> Doc.Concat

View.FromVar rvMode

|> View.Map (fun mode ->

let body =

match mode with | Standard -> standardCalc | Scientific -> scientificCalc

[body rvCalc; modeButtons] |> Doc.Concat

) |> Doc.EmbedView

3 Dataflow Layer

The dataflow layer exists to model data dependencies and consequently to perform
change propagation. The layer is specified completely separately from the reactive
DOM layer, and as such may be treated as a render-agnostic data model.

The dataflow layer consists of two primitives: reactive variables, Vars, and
reactive views, Views. A Var is a data source, parameterised over a type: this is
equivalent to a mutable reference cell with the notable exception that it may be
observed by Views. A View represents a snapshot of a Var, and may be composed
using applicative and monadic functional combinators.

In terms of the dataflow graph, a Var is a source node, and can have no
incoming edges. A View is a node which must have at least one incoming edge.
Edges in the graph are not direct pointers between nodes: nodes can be abstractly
considered as communicating processes using a Snap, a novel, specialised variation
of the Concurrent ML IVar primitive. As a result, the dataflow layer is amenable
to garbage collection: if a Var or View becomes eligible for garbage collection, all
dependent Views in the dataflow graph will be automatically garbage collected
without the need for explicit unsubscription.

type View =

static member Const : 'T -> View<'T>

static member FromVar : Var<'T> -> View<'T>

static member Sink : ('T -> unit) -> View<'T> -> unit

static member Map : ('A -> 'B) -> View<'A> -> View<'B>

static member MapAsync : ('A -> Async<'B>) -> View<'A> -> View<'B>

static member Map2 : ('A -> 'B -> 'C) -> View<'A> -> View<'B> -> View<'C>

static member Apply : View<'A -> 'B> -> View<'A> -> View<'B>

static member Join : View<View<'T>> -> View<'T>

static member Bind : ('A -> View<'B>) -> View<'A> -> View<'B>

Vars can be initialised, their values can be set, or they can be marked as
finalised if their value no longer changes. FromVar creates a View which observes a
Var, and Const creates a View which consists of a static, non-changing value. The
Sink function acts as an imperative observer of the View – that is, the possibly
side-effecting callback function of type ('T -> unit) is executed whenever the
value being observed changes. We use the Sink function to integrate the dataflow
layer with the reactive DOM layer, which is further explained in Section 4.



The remaining abstractions are standard combinators for applicative and
monadic composition. Monadic composition allows dynamism in the dataflow
graph, which is crucial for implementing dynamic single-page applications.

3.1 Implementation

In this section, we describe the implementation of the dataflow layer. A Var

consists of a current value, a flag describing whether or not the Var is finalised
and will not change, and a Snap.

type Var<'T> = { mutable Const : bool; mutable Current : 'T; mutable Snap : Snap<'T> }

A Snap can be thought of as an observable and stateful snapshot of the contents
of a Var. At its core, a Snap is based on the notion of an immutable variable, or
IVar [15]. An IVar is created as an empty cell, which can be written to only
once. Attempting to read from a ‘full’ IVar will immediately yield the value
contained in the cell, whereas attempting to read from an ‘empty’ IVar will result
in the thread blocking until such a variable becomes available. This is shown in
Figure 1a.
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Fig. 1: State Transition Diagrams for IVars and Snaps

A simple way of implementing change propagation using IVars instead of pointers
is to associate Vars and Views with an IVar obsolete of unit type. Dependent nodes
read an initial value from the data source, attempt to perform the Get operation
on obsolete, and block since obsolete is empty4. Upon changing the value, Put is
called on obsolete, and all dependent nodes are notified and can fetch the latest
value. Finally, obsolete is replaced by a fresh IVar, and the process repeats.

This model is intuitive and conveys the essence of the approach. The realisation
of this technique in UI.Next, a Snap, is slightly more complex in order to support
applicative and monadic combinators, perform certain optimisations, prevent
certain classes of leaks, and to better support asynchronously populating a View

from an external data source using the MapAsync operation. A Snap can be thought
of as a state machine consisting of four states:
4 We make use of the F# asynchronous programming model on the client by using
a custom scheduler built into the WebSharper runtime: creating threads is done by
queueing functions for execution, which are executed in a round-robin style.



Ready: A Snap containing an up-to-date value, and a list of threads to notify
when the value becomes obsolete.

Waiting: A Snap without a current value. Contains a list of threads to notify
when the value becomes available, and a list of threads to notify should
the Snap become obsolete prior to receiving a value. This is required for the
implementation of the MapAsync combinator, and represents a Snap wherein a
request has been made for a value, but it has not yet been received.

Forever: A Snap containing a value that will never change. This prevents nodes
waiting for the Snap to become obsolete when this will never be the case.

Obsolete: A Snap containing obsolete information, signifying that the View should
obtain a new snapshot.

The state transition diagram for a Snap is shown in Figure 1b. Snaps can be
modified by three operations. MarkForever updates the Snap with a value which
will never change, transitioning to the Forever state. MarkReady marks the Snap as
containing a new value, notifying all waiting threads. Finally, MarkObsolete marks
the Snap as obsolete. An additional operation MarkDone checks if the Snap is in the
Forever state, and if not, transitions to the Ready state. Snaps support a variety
of applicative and monadic combinators in order to implement the operations
provided by Views: to implement Map2 for example, a Snap must be created which is
marked as obsolete as soon as either of the two dependent Snaps becomes obsolete.

Vars support an operation, SetFinal, which marks the value as finalised, pre-
venting further writes to the variable. This prevents a class of leaks wherein a
Var which remains static is continually observed.

Snaps are used to drive change propagation. When the value of a Var is updated,
the current Snap is marked as obsolete and replaced by a new Snap in the Ready

state.

type View<'T> = V of (unit -> Snap<'T>)

static member FromVar var = V (fun () -> var.Snap)

static member Set var val =

if var.Const then () // Invalid

else Snap.MarkObsolete var.Snap;

var.Current <- val; var.Snap <- Snap.CreateWithValue val

At its core, a View consists of a function observe to return a Snap. The simplest
View directly observes a single Var: this simply accesses the current Snap associated
with that Var, updating whenever the Snap becomes obsolete.

At a high level, implementing View combinators for applicative and monadic
composition involves creating a View with an observation function which uses the
underlying Snap combinators. Views are created lazily, and results are cached for
efficiency. When a Snap becomes obsolete, the observation functions are called to
yield new Snaps.

static member Map fn (V observe) =

View.CreateLazy (fun () -> observe () |> Snap.Map fn)

static member Map2 fn (V o1) (V o2) =

View.CreateLazy (fun () -> let s1 = o1 (); let s2 = o2 () Snap.Map2 fn s1 s2)



static member CreateLazy observe =

let cur = ref None

let obs () =

match !cur with

| Some s when not (Snap.IsObsolete s) -> s

| _ -> let sn = observe (); cur := Some sn; sn

V obs

In order to react to lifecycle events and trigger change propagation through
the dataflow graph, the When eliminator function is used.

val When : Snap<'T> -> ready: ('T -> unit) -> obsolete: (unit -> unit) -> unit

The When function takes a Snap and two callbacks: ready, which is invoked when
a value becomes available, and obsolete, which is invoked when the Snap becomes
obsolete. This is implemented by matching on the state of the Snap, and adding
the callback to the appropriate queue.

let Map fn sn =

let res = Create ()

When sn (fn >> MarkDone res sn) (fun () -> MarkObsolete res) ; res

let Map2 fn sn1 sn2 =

let res = Create (); let v1 = ref None; let v2 = ref None

let obs () = v1 := None; v2 := None; MarkObsolete res

let cont () =

match !v1, !v2 with

| Some x, Some y -> MarkReady res (fn x y) | _ -> ()

When sn1 (fun x -> v1 := Some x; cont ()) obs

When sn2 (fun y -> v2 := Some y; cont ()) obs ; res

The Snap.Map function takes a dependent Snap sn and a function fn to apply to
the value of sn when it becomes available. Firstly, an empty Snap, res, is created.
This is passed to the When eliminator along with two callbacks: the first, called
when sn is ready, marks res as ready, containing the result of fn applied to the
value of sn. The second, called when sn is obsolete, marks res as obsolete.

The Snap.Map2 function applies a function to multiple arguments, which can
in turn be used to implement applicative combinators. In order to do this, a
Snap res and two mutable reference cells, v1 and v2, are used. When either of the
dependent Snaps sn1 or sn2 update, the corresponding reference cell is updated
and the continuation function cont is called. If both of the reference cells contain
values, then the continuation function marks res ready, containing the result of
fn applied to sn1 and sn2. If either of the dependent Snaps become obsolete, then
res is marked as obsolete. This avoids glitches, which are intermediate states
present during the course of change propagation, and avoids such intermediate
states being observed by the reactive DOM layer.

3.2 Identity-Preserving Conversion Functions

We provide several transformation functions on reactive collections, which allow
stateful conversion by using shallow memoisation: that is, where inputs are equal,



previous outputs are re-used. Only one previous value for each entry in the
sequence is stored, meaning that the memory usage of these functions is linear in
the size of the longest sequence in the View. This allows identity to be preserved:
this is particularly useful for sharing Docs upon updates, preventing needless
DOM node regeneration and loss of internal DOM node state. This allows the
transformations to have an amount of history-dependence: this is important when
incorporating the notion of identity into animations, for example, as described
in Section 5.2. Conversion functions are parameterised over either two or three
type parameters; ’A and ’B are the input and output types respectively, while ’K

is the type of an equality key. The when ’A : equality constraint specifies that the
’A type must support equality testing.

static member Convert<'A,'B when 'A : equality>:

('A -> 'B) -> View<seq<'A>> -> View<seq<'B>>

static member ConvertBy<'A,'B,'K when 'K : equality>:

('A -> 'K) -> ('A -> 'B) -> View<seq<'A>> -> View<seq<'B>>

static member ConvertSeq<'A,'B when 'A : equality>:

(View<'A> -> 'B) -> View<seq<'A>> -> View<seq<'B>>

static member ConvertSeqBy<'A,'B,'K when 'K : equality>:

('A -> 'K) -> (View<'A> -> 'B) -> View<seq<'A>> -> View<seq<'B>>

The Convert function can be thought of as converting a sequence of values, and
re-using output values from the previous step should the inputs be determined
to be equal. The ConvertSeq function is an extension of this notion, wherein the
conversion function accepts a reactive view: changes to each individual item
of the collection (as detected by either a machine- or user-specified notion of
equality) are propagated on the item-level using this View.

4 Reactive DOM Layer

The Reactive DOM layer exists as a presentation layer for the dynamic dataflow
graph, allowing changes in the dataflow graph to be automatically propagated
to the DOM. In this section, we detail the design and implementation of the
reactive DOM layer, showing how an in-memory representation of the DOM
can be linked with the dataflow graph. We show how this can be used to batch
updates, prevent visual glitches, and preserve the identity (internal state such
as focus) of nodes. The simplest example of the integration of the dataflow and
DOM layers is a text label which mirrors the contents of an input text box.

let rvText = Var.Create "" ; let inputField = Doc.Input [] rvText

let label = Doc.TextView rvText.View ; Div0 [ inputField; label ]

We begin by declaring a variable rvText of type Var<string>, which is a reactive
variable to hold the contents of the input box. Secondly, we create an input box
which is associated with rvText, meaning that whenever the contents of the input
field changes, rvText will be updated accordingly. Next, we create a label using
Doc.TextView, which we associate with a view of rvText. Finally, we construct a
<div> tag using a monoidal DOM API.



Another example is that of a to-do list, where the item should be rendered
with a strikethrough if the task has been completed. Arguably the most important
function within the Reactive DOM layer is the Doc.EmbedView function:

static member EmbedView : View<Doc> -> Doc

Semantically, this allows us to embed a reactive DOM fragment into a larger
DOM tree. This is the key to creating reactive DOM applications using the
dataflow layer: by using View.Map to map a rendering function onto a variable, we
can create a value of type View<Doc> to be embedded using EmbedView.

We begin by defining a simple type, with a reactive variable of type Var<bool>

which is set to true if the task has been completed. An item can be rendered by
mapping a rendering function onto a View of this variable; note that in the code
listing below, Del0 is a notational shorthand for an HTML <del> element without
any attributes, and Doc.TextNode creates a DOM text node.

type TodoItem = { Done : Var<bool> ; TodoText : string }

View.FromVar todo.Done

|> View.Map (fun isDone ->

if isDone then Del0 [ Doc.TextNode todo.TodoText ] else Doc.TextNode todo.TodoText)

|> Doc.EmbedView

4.1 Design

Reactive elements are created using the Doc.Element function, which takes as its
arguments a tag name, a sequence of attributes, and a sequence of child elements.

static member Element : name: string -> seq<Attr> -> seq<Doc> -> Doc

Reactive attributes have type Attr and can be static, dynamic, or animated.
Static attributes correspond to simple key-value pairs, as found in traditional
static sites, whereas dynamic attributes are instead backed by a View<string>. We
defer discussion of animation attributes to Section 5.

A key design decision is to use a monoidal interface for both DOM elements
and attributes. All DOM elements in the reactive DOM layer are of type Doc.
To form a monoid, Docs support Empty, and Append and Concat functions. Reactive
attributes of type Attr support the same interface.

4.2 Implementation

The Reactive DOM layer consists of a skeleton representation of the DOM tree
in memory. Each node in this skeleton representation contains a View of unit type,
and updates are propagated upwards through the tree. When the DOM skeleton
is marked as changed, a message is sent to an update process, which applies the
changes to the DOM.

DOM Skeleton Representation The internal structure of a Doc is a pair of
a DocNode, which indicates what the Doc represents, and a View updates of type
View<unit>, which is used to notify the update process that part of the tree has
changed.



type DocNode =

| AppendDoc of DocNode * DocNode | ElemDoc of DocElemNode

| EmbedDoc of DocEmbedNode | EmptyDoc | TextDoc of DocTextNode

type DocTextNode = { Text : TextNode; mutable Dirty : bool; mutable Value : string }

type DocElemNode = { Attr : Attrs.Dyn; Children : DocNode; El : Element; ElKey : int }

type DocEmbedNode = { mutable Current : DocNode; mutable Dirty : bool }

Moreover, DocNode is a discriminated union consisting of five possible types
of node. To support the monoidal interface, AppendDoc denotes two sibling nodes,
and EmptyDoc denotes the absence of an element.

An ElemNode represents a DOM element, consisting of the attributes associated
with the elements, the skeleton representation of the children of the element, the
DOM element itself, and a key which is used for equality testing.

A TextNode represents a DOM text node, consisting of the current value, the
current in-memory DOM node, and a Dirty flag used for DOM synchronisation.
Finally, an ElemNode is used to represent a reactive View embedded into the tree.
This consists of a mutable DocNode to represent the changes, and Dirty flag to
specify that either the entire subtree, or an element within the subtree has
changed.

Integration with Dataflow Layer The main entry point to a reactive ap-
plication is the Doc.Run function, which attaches a reactive DOM fragment of
type Doc with a standard DOM element. The Doc.Run function is implemented
by spawning an update process providing actor-like concurrency. Whenever a
message is received by this update process, the update process firstly performs
any animations that may be necessary (described further in Section 5.1), and
synchronises the in-memory DOM representation with the physical DOM.

The key to the integration between the dataflow and reactive DOM layers is
the Updates View associated with each Doc. The key idea for the integration of these
two layers is that a notification for an update is propagated upwards through
the tree. Once the notification propagates to the top of the Doc tree, the update
process is notified in order to trigger any animations and synchronise the virtual
and physical DOM representations.

Combining the Views associated with each Doc is done through the use of
the standard View combinators. As an example, consider the Doc.Append function,
which appends two Docs as siblings. The AppendDoc node requires an update either
of the two contained Docs require an update: this can be achieved using the Map2

combinator. Docs.Mk is simply a constructor for Doc. The ||> operator is similar to
|>, but takes a tupled argument, applying both arguments to the function.

static member Append a b =

(a.Updates, b.Updates) ||> View.Map2 (fun () () -> ())

|> Docs.Mk (AppendDoc (a.DocNode, b.DocNode))

EmbedView Implementation EmbedView allows a reactive DOM segment to
be embedded within the DOM tree, with any updates in this segment being
reflected within the DOM.



static member EmbedView view =

let node = Docs.CreateEmbedNode ()

view |> View.Bind (fun doc -> Docs.UpdateEmbedNode node doc.DocNode; doc.Updates)

|> View.Map ignore |> Docs.Mk (EmbedDoc node)

EmbedView works by creating a new entry in the dataflow graph, depend-
ing on the reactive DOM segment. Conceptually, this can be thought of as a
View<View<Doc>>, which would not be permissible in many FRP systems. Here,
the monadic Bind operation provided by the dynamic dataflow layer is crucial in
allowing us to observe not only changes within the Doc subtree (using doc.Updates),
but changes to the Doc itself: when either change occurs, the DocEmbedNode is marked
as dirty, and the update is propagated upwards through the tree.

Synchronisation The synchronisation algorithm recursively checks whether
any child nodes have been marked as dirty.

In the case of EmbedNodes, it is not only necessary to check whether the
EmbedNode itself is dirty but also whether the current subtree value represented by
the EmbedNode is dirty: this ensures that both global (entire subtree changes) and
local (changes within the subtree) changes have been taken into account. If so,
then the updates are propagated atomically to the DOM.

An important consideration of the synchronisation algorithm is the preserva-
tion of node identity – that is, the internal state associated with an element such
as the current input in a text box, and whether the element is in focus. For this
reason, when updating the children of a node, simply removing and reinserting all
children of an element marked dirty is not a viable solution: instead we associate
a key with each item, which is used for equality checking, and perform a set
difference operation to calculate the nodes to be removed.

As the synchronisation process is only triggered when updates are required,
the synchronisation process applies updates in a batched fashion, meaning that
there is no visible ‘cascade’ of updates.

5 Declarative Animation

Animations in web applications are typically implemented as an interpolation
between attribute values over time. CSS has some native animation functionality,
but the approach founders when animations depend explicitly on dynamic data
and cannot be determined statically. The D3 library [4] provides more powerful
animation functionality, with a particular focus on data visualisation, but targets
a more imperative style of programming.

UI.Next animations can be attached directly to elements and therefore react
directly to changes within the dataflow graph. An animation is defined using
the Anim<'T> type, where the ’T type parameter defines the type of value to be
interpolated during the animation. An Anim<'T> type is internally represented as
a function Compute, mapping a normalised time to a value, and the duration of
the animation.



type Anim<'T> = { Compute : Time -> 'T; Duration : Time }

An animation can be constructed using the Anim.Simple function, which takes
as its arguments an interpolation strategy, an easing function, the duration of
the animation, the delay of the animation in milliseconds, and the start and end
values. Collections of animations can be described using a monoidal interface.

static member Anim.Simple :

Interpolation<'T> -> Easing -> duration: Time -> delay: Time -> startValue: 'T ->

endValue: 'T -> Anim<'T>

Transitions are specified using the Trans type.

static member Create : ('T -> 'T -> Anim<'T>) -> Trans<'T>

static member Trivial : unit -> Trans<'T>

static member Change : ('T -> 'T -> Anim<'T>) -> Trans<'T> -> Trans<'T>

static member Enter : ('T -> Anim<'T>) -> Trans<'T> -> Trans<'T>

static member Exit : ('T -> Anim<'T>) -> Trans<'T> -> Trans<'T>

A transition can either be created with the Trivial function, meaning that no
animation occurs on changes, or with an animation. Enter and exit transitions,
which occur when a node is added or removed from the DOM tree respectively,
can be specified using the Enter and Exit functions.

An animation is embedded within the reactive DOM layer as an attribute
through the Attr.Animated function:

static member Animated : string -> Trans<'T> -> View<'T> -> ('T -> string) -> Attr

This function takes the name of the attribute to animate, a transition, a view
of a value upon which the animation depends (for example, an item’s rank in an
ordered list), and a projection function from that value to a string, in such a way
that it may be embedded into the DOM.

5.1 Implementation

Animations are triggered as a result of transitions. In order to support transitions,
a set of nodes from the previous update is kept at each invocation of the update
process. The update process can perform the appropriate set difference operations
on these two sets in order to ascertain the sets of animations which must be
played as a result of nodes being added or removed.

The JavaScript requestAnimationFrame notifies the browser of the intent to per-
form an animation, and schedules a callback to be performed upon the next
browser redraw cycle. The argument provided to this callback is the current
timestamp: by calculating the difference between this timestamp and the times-
tamp at the beginning of the animation, the current point in the animation can
be passed to the Compute function to calculate the new attribute value.

Animated attributes have an Updates View, which is triggered whenever an
animation updates the current value of the attribute. This is linked with the
remainder of the DOM synchronisation function in the ElemNode to which the Attr

is attached, as the Updates View of the element is triggered whenever the element
or any of its attributes are updated.



5.2 Example: Object Constancy

Object Constancy is a technique for allowing an object representing a particular
datum to be tracked through an animation: consider the case where the underlying
data does not change, but can be filtered or sorted. In such a case, the objects
representing the data remaining in the visualisation should not be removed
and re-added, but instead should transition to their new positions: this relies
crucially on the preservation of node identity. Bostock [3] discusses an example
displaying the top ten US states for a particular age bracket, sorted by population
percentage. We begin by defining a data model.

type AgeBracket = AgeBracket of string; type State = State of string

type StateView = {

MaxValue : double; Position : int; State : string; Total : int; Value : double }

type DataSet =

{ Brackets : AgeBracket []; Population : AgeBracket -> State -> int;

States : State [] }

Here, AgeBracket and State are representations of age brackets and states
respectively, and DataSet represents data read from an external source. The
StateView record specifies details about how a state should be displayed based on
other visible items.

let SimpleAnimation x y =

Anim.Simple Interpolation.Double Easing.CubicInOut 300.0 x y

let SimpleTransition = Trans.Create SimpleAnimation

let InOutTransition = SimpleTransition

|> Trans.Enter (fun y -> SimpleAnimation Height y)

|> Trans.Exit (fun y -> SimpleAnimation y Height)

Using this, it is possible to define an animation lasting for 300ms between
2 given values. With the animation, we can then create two transitions: an
unconditional transition SimpleTransition, and a transition InOutTransition which
is triggered when a DOM entry is added (Enter) and removed (Exit). The Enter

and Exit transitions interpolate the y co-ordinate of a bar between the bottom of
the SVG graphic (Height) and a given position. The element will transition from
the origin position to the desired position on, and to the origin on exit.

We now specify a rendering function taking a View<StateView> and returning a
Doc to be embedded within the tree.

let Render (state: View<StateView>) =

let anim name kind (proj: StateView -> double) =

Attr.Animated name kind (View.Map proj state) string

let x st = Width * st.Value / st.MaxValue

let y st = Height * double st.Position / double st.Total

let h st = Height / double st.Total - 2.

S.G [Attr.Style "fill" "steelblue"] [

S.Rect [

"x" ==> "0"; anim "y" InOutTransition y; anim "width" SimpleTransition x

anim "height" SimpleTransition h ] []

]



We specify three projection functions for the width, Y position, and height of
the bar, and animated attributes for each. Finally, we create a selection box to
allow the user to modify the age bracket. To implement object constancy, we use
a key which uniquely identifies the data [9]. For StateView, this is State, used when
embedding the current set of visible elements using ConvertSeqBy. The shownData

argument is a View of the data to be displayed, of type View<seq<StateView>>.

S.Svg ["width" ==> string Width; "height" ==> string Height] [

shownData |> View.ConvertSeqBy (fun s -> s.State) Render

|> View.Map Doc.Concat |> Doc.EmbedView ]

6 Related Work

Functional Reactive Programming [7] provides Behaviours or Signals, representing
values as a function of time. Early implementations of FRP [7] supported higher-
order signals by storing every signal value, creating a memory leak. Arrowised
FRP [13] allows only combinators on primitive signals, manipulated using the
Arrow abstraction [10], but avoids memory leaks as a result. The lack of first-class
signals makes many GUI programming patterns difficult to implement.

Elm [5] is an FRP-based web programming language. Higher-order signals are
forbidden by Elm’s type system, allowing history-dependent transformations and
avoiding memory leaks. In order to achieve dynamism, Elm implements arrowised
FRP. Elm’s history-dependence allows the elegant implementation of applications
such as games, but without first-class signals and monadic composition, does not
support our dynamic SPA pattern. UI.Next does not implement FRP signals, but
retains first-class dataflow nodes and monadic composition as a result.

Krishnaswami [11] describes a language implementing FRP semantics while
guaranteeing leak freedom by dividing expressions into those which may be eval-
uated immediately, and those which depend on future values; obsolete behaviour
values are aggressively deleted. The approach relies on a specialised type system.

React [1] is a reactive DOM library which uses an automated ‘diff’ algorithm
driven by browser redraw cycles instead of the approach we have described. We
decided on a dataflow-backed system instead of a diff algorithm to retain complete
control over DOM node identity. Flapjax [12] provides similar functionality to
UI.Next, but has an entirely different approach to the dataflow graph and integrates
with the DOM layer differently: signals are instead inserted manually.

The iTask framework [14] allows applications to be developed using workflows.
Interconnected forms are combined using a rich set of combinators. Task-oriented
programming is high-level, but is not our target in the design space; abstractions
such as Flowlets [2] can handle scenarios such as dependent sequential forms.

SMLtoJS [8] also compiles an ML language (SML) to JavaScript and provides
an interface to the DOM API.

7 Conclusion and Future Work

In this paper, we have presented a framework in F#, UI.Next, facilitating the
creation of reactive applications backed by a dynamic dataflow graph. Snaps, an



extension IVars, are used as weak links within the dataflow graph to make the
graph more amenable to garbage collection and prevent glitches. The DOM layer
allows reactive DOM fragments to be embedded using the EmbedView function, and
uses a monoidal interface. Finally, we have presented an interface for declarative
animation which integrates directly into the reactive DOM layer as reactive
attributes. We are currently investigating the use of an F# type provider [16] for
reactive templating, and are working on formalising the semantics of UI.Next, to
give a semantics to reactive abstractions such as Flowlets [2] and Piglets [6].
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