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Actor languages such as Erlang and Elixir are widely used for implementing scalable and reliable distributed

applications, but the informally-specified nature of actor communication patterns leaves systems vulnerable

to costly errors such as communication mismatches and deadlocks. Multiparty session types (MPSTs) rule out

communication errors early in the development process, but until now, the nature of actor communication

has made it difficult for actor languages to benefit from session types.

This paper introducesMaty, the first actor language design supporting both static multiparty session typing

and the full power of actors taking part in multiple sessions. Our main insight is to enforce session typing

through a flow-sensitive type-and-effect system, combined with an event-driven programming style and

first-class message handlers. Using MPSTs allows us to guarantee communication safety: a process will never

send or receive an unexpected message, nor will it ever get stuck waiting for a message that will never arrive.

We extend Maty to support both Erlang-style cascading failure handling and the ability to proactively

switch between sessions. We implementMaty in Scala using an API generation approach, and evaluate our

implementation on a series of microbenchmarks, a factory scenario, and a chat server.

1 INTRODUCTION
The infrastructure underpinning our daily lives is powered by distributed software. Unfortunately,

writing distributed software is difficult: developers must reason about a host of issues such as

deadlocks, failures, and adherence to complex communication protocols.

Actor languages such as Erlang and Elixir, and frameworks such as Akka, are popular
tools for writing scalable and resilient distributed applications: Erlang in particular powers

the servers of WhatsApp, which has billions of users worldwide. Actor languages support light-

weight processes that communicate through point-to-point asynchronous explicit message passing

as opposed to shared memory, making them easy to implement in a distributed setting and enabling

them to support failure recovery strategies like supervision hierarchies.
Nevertheless, actor languages are not a silver bullet: it is still possible—easy, even—to intro-

duce subtle bugs that can lead to errors that are difficult to detect, debug, and fix. Examples

include waiting for a message that will never arrive, sending a message that cannot be handled, or

sending an incorrect payload. Multiparty session types (MPSTs) are types for protocols and allow us

to reason about structured interactions between communicating participants. If each participant

typechecks against its session type, then the system is statically guaranteed to correctly implement

the associated protocol, in turn catching communication errors before a program is run.

MPSTs therefore offer a tantalising promise for actor languages: by combining the fault-

tolerance and ease-of-distribution of actor languages with the correctness guarantees given by

MPSTs, users can fearlessly write robust and scalable distributed code, confident in the absence

of protocol errors. Unfortunately, there is a spanner in the works: MPSTs have been primarily

studied for channel-based languages, which have a significantly different communication model,

and present approaches to using session types in actor languages are severely limited in
expressiveness. Other behavioural type disciplines for actors make it difficult to express structured
interactions, and cannot adequately handle failure.
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In this paper we present Maty, the first actor-based programming language fully supporting

statically-checked multiparty session types and failure handling, allowing developers to benefit

from both the error prevention mechanism of session types and the scalability and fault tolerance

of actor languages. Our key insight is to adopt an event-driven programming style and enforce

session typing through a flow-sensitive effect system.

1.1 Actor Languages
Actor languages and frameworks are inspired by the actor model [2, 21], where an actor reacts to

incoming messages by spawning new actors, sending a finite number of messages to other actors,

and changing the way it reacts to future messages. Consider the following Akka implementation of

an ID server, which generates a fresh number for every client request:

def idServer(count: Int): Behavior[IDRequest] = {
Behaviors.receive { (context , message) =>

message.replyTo ! IDResponse(count)
idServer(count + 1)

}
}

The idServer function records the current request count as its state, and responds to an incoming

IDRequest by sending the current count before recursing with an incremented request counter.

It is straightforward to specify the client-server protocol for this example as a session type between
these two roles, but there are key problems implementing and verifying even this simple example

in standard MPST frameworks. First, actor programming is inherently reactive: computation is

driven by the reception of a new message, and actors must be able to respond to requests from

a statically-unknown number of clients. Second, each response depends on some common state.
Classical MPSTs are instead based on session 𝜋-calculus, which is effectively a model of proactive
multithreading as opposed to reactive event handling. A standard MPST server process relies on

replication to spawn a separate (𝜋-calculus) process to handle each client session concurrently. For

reference, common notations/patterns include:

Server = 𝑎(𝑥).(𝑃thread (𝑥) | Server) or Server = !𝑎(𝑥) .𝑃thread (𝑥)

def idServer(count: Int , locked: Boolean ):
Behavior[IDServerRequest] = {

Behaviors.receive { (context , message) =>
message match {

case IDRequest(replyTo) =>
if (locked) {

replyTo ! Unavailable ()
idServer(count , locked)

} else {
replyTo ! IDResponse(count)
idServer(count + 1, locked)

}
case LockRequest(replyTo) =>

if (locked) {
replyTo ! Unavailable ()
idServer(count , locked)

} else {
replyTo ! Locked(context.self)
idServer(count , true)

}
case Unlock () =>

idServer(count , false)
}

}
} Fig. 1. ID server extended with locking

This model has no direct support for coordinating

a dynamically variable number of such separate

client-handler processes/sessions, and—crucially—

key safety properties of standard MPSTs such as

deadlock-freedom only hold when each process
engages in a single session and each session can
be conducted fully independently from the oth-
ers (i.e., an embarrassingly parallel situation). Intro-

ducing any method to synchronise shared state be-

tween these processes, be it through an intricate web

of additional internal sessions or some out-of-band

(i.e., non-session-typed) method, means deadlock-

freedom is no longer guaranteed.

Besides safety concerns, the 𝜋-calculus based pro-

gramming model makes it difficult to express im-

portant patterns such as a single process waiting

to reactively receive from senders across multiple

sessions, since inputs are normally modelled as direct, blocking operations.
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Fig. 2. Channel- and actor-based languages [15]

A locking ID server. Figure 1 shows a simple extension of our ID server, where a participant can

choose to lock the server to prevent it from generating fresh IDs until the lock is released.

In this example, replies depend on whether the ID server is locked. Upon receiving an IDRequest

message, if the server is locked, then it will respond with Unavailable; otherwise, it will reply as

before. If an unlocked server receives a LockRequest message, it responds with Locked and sets the

locked flag. A subsequent Unlock message resets the locked flag.

This small extension to the example reveals some intricacies: once a client has received a lock, it

is in a different state of the protocol to the remaining clients. First, there is no straightforward way

of guaranteeing that the client ever sends an Unlock message, nor that the Unlock message was sent

by the same actor that acquired the lock. Second, the server must always be able to handle an Unlock

message, even when it is already unlocked—permitting an invalid state. Both of these issues can be

straightforwardly solved using session types in Maty.

1.2 Channels vs. Actors
Session types were originally developed for channel-based languages like Go and Concurrent ML

(Figure 2a). Channel-based languages languages support anonymous processes that communicate

over channel endpoints, supporting either synchronous or asynchronous communication. In actor

languages (Figure 2b) such as Erlang or Elixir, named processes send messages directly to each

others’ mailboxes. The difference in communication models has significant consequences for

distribution and typing. We can easily give a channel endpoint precise types, e.g., Chan(Int) or
a session type such as !Int.!Int.?Bool.end to state that the channel should be used to send two

integers and receive a Boolean. However, efficiently implementing channels requires us to store

buffered data at the same location that it is processed, but difficulties arise when sending channel

endpoints as part of a message (known as distributed delegation). Furthermore, implementing even

basic channel idioms such as choosing between multiple channels requires complex distributed

algorithms [7]. In short, channel-based languages are easy to type but difficult to distribute.
In contrast, actor languages are much easier to distribute, since every message will always be

stored at the process that will handle it. But typing an actor is harder, requiring large variant types,

and behavioural typing is difficult since we can only send to process IDs and receive from mailboxes.

Thus, actors are easy to distribute but hard to type.

1.3 Key Principles
For session types to be useful for real-world actor programs, we argue that a programming model

and session type discipline must satisfy the following key principles:

(KP1) Reactivity Following the actor model, frameworks like Akka, and Erlang behaviours like

gen_server, computation should be triggered by incoming messages.

(KP2) No Explicit Channels Channel-based languages impose a significantly different program-

ming style, so the programming model should not expose explicit channels to a developer.
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(KP3) Multiple Sessions Actors must be able to simultaneously take part in an unbounded and

statically-unknown number of sessions, in order to support server applications. It must be

possible for different participants to be at different states of a protocol.

(KP4) Interaction Between Sessions Much like our ID server example, interactions in one ses-

sion should be able to affect the behaviour of an actor in other sessions.

(KP5) Failure Handling and Recovery The programming model and type discipline should

support failure recovery via supervision hierarchies.

No previous work that applies session types to actor languages satisfies the key principles above.
Mostrous and Vasconcelos [34] investigated session typing for Core Erlang by emulating session-

typed channels using unique references and selective receive. Their approach was unimplemented,

not reactive, exposed a channel-based discipline, and does not support failure, violating KP1, 2,
5. Francalanza and Tabone [16] implemented a binary session typing system for Elixir, but their

approach is limited to typing interactions between isolated pairs of processes and is therefore

severely limited in expressiveness, violating KP1–5. Harvey et al. [20] used multiparty session

types in an actor language to support safe runtime adaptation, each actor can only take part in a

single session at a time. It is therefore difficult to write server applications and so the language does
not support general-purpose actor programming, violating KP1, 3, 4.
Neykova and Yoshida [37] and Fowler [12] implement programming frameworks closer to

following our key principles: each actor is programmed in a reactive style and can be involved in

multiple sessions, but both works use dynamic verification of actors using session types as a notation
for generating runtime monitors. They do not consider any formalism, session type system, nor

metatheoretical guarantees, and so there is a significant gap between their conceptual framework

and a concrete static programming language design.

In contrast, Maty supports our key principles by reacting to incoming messages rather than

having an explicit receive operation (KP1); enforcing session typing through a flow-sensitive effect

system rather than explicit channel handles (KP2); using the reactive design to support interleaved

handling of messages from different sessions (KP3); supporting interaction between sessions using

state, self-messages, and an explicit session switching construct (KP4); and supporting graceful

session failure and failure recovery via supervision hierarchies (KP5).

1.4 Contributions
Concretely, we make three specific contributions:

(1) We introduce Maty, the first actor language design with full support for multiparty session

types (§3). We show that Maty enjoys a strong metatheory including type preservation,

progress, and global progress; in practice this means that Maty programs are free of com-

munication mismatches and deadlocks (§4).

(2) We describe two extensions toMaty: the ability to proactively switch to another session,

and support for Erlang-style process supervision and cascading failure (§5).

(3) We detail our implementation of Maty using an API generation approach in Scala (§6), and

demonstrate our implementation on a real-world case study from the factory domain as

well as a chat server application.

Section 7 discusses related work, and Section 8 concludes.Wewill submit our implementation
and examples as an artifact.

2 A TOUR OF MATY
In this section we introduce Maty by example, first by considering how to write our ID server, and

then by considering a larger online shop example.
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Global Type for ID Server

IDServer ≜
Client → Server : {
IDRequest( ) .

Server → Client : {
IDResponse(Int) . IDServer,
Unavailable( ) . IDServer

},
LockRequest( ) .

Server → Client : {
Locked( ) .AwaitUnlock,
Unavailable( ) . IDServer

},
Quit( ) . end

}
AwaitUnlock ≜
Client → Server : Unlock( ) . IDServer

Local Type for Server Role

ServerTy ≜
Client&{
IDRequest( ) .

Client ⊕{
IDResponse(Int) . ServerTy,
Unavailable( ) . ServerTy

},
LockRequest( ) .

Client ⊕{
Locked( ) . ServerLockTy
Unavailable( ) . ServerTy

},
Quit( ) . end

}
ServerLockTy ≜

Client&Unlock( ) . ServerTy
Fig. 3. Session types for the ID server example.

2.1 The Basics: ID Server
Session types. Figure 3 shows the session types for the ID server example. The global type describes

the interactions between the ID server and a client. For simplicity, we assume a standard encoding

of mutually recursive types and use mutually recursive definitions in our examples. The client

starts by sending one of IDRequest, LockRequest, orQuit to the server. On receiving IDRequest,

the server replies with IDResponse if it is unlocked, or Unavailable if it is locked; in both cases,

the protocol then repeats. On receiving LockRequest, the server replies with Locked (if it locks

successfully), and the client must then send Unlock before repeating. If already locked, the server

responds with Unavailable. The protocol ends when the server receives a Quit message.

A global type can be projected to local types that describe the protocol from the perspective of

each participant. The local type on the right details the protocol from the server’s viewpoint: the &

operator denotes offering a choice, and the ⊕ operator denotes making a selection. The (omitted)

ClientTy type is similar, but implements the dual actions: where the server offers a choice, the
client makes a selection, and vice-versa.

We define a protocol 𝑃 as a mapping from role names to local session types. In our example we

define IDServerProtocol ≜ {Client : ClientTy, Server : ServerTy}.

Programming model. TheMaty programming model is as follows:

• Maty is faithful to the actor model, which has a single thread of execution per actor. This

allows access to shared statewithout needing concurrency control mechanisms like mutexes.

• An actor registers with an access point to register to take part in a session.

• Once a session is established, the actor can send messages according to its session type.

• Once an actor is ready to receive a message, it suspends by installing a message handler,
and reverts to an idle state. Suspension acts as a yield point to the event loop, and occurs at

precisely the same point as in real-world actor languages.
• The event loop can then invoke other installed handlers for anymessages in its mailbox—this
is the key mechanism that allows Maty to support multiple sessions.

Implementing the ID server. Figure 4 shows an implementation of the ID server inMaty; we allow

ourselves the use of mutually-recursive definitions, taking advantage of the usual encoding into

anonymous recursive functions. Although we use an effect system that annotates function arrows,

we sometimes omit effect annotations where they are not necessary.
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idServer : AP(IDServerProtocol) → Unit

idServer = 𝜆ap.
register ap Server

(idServer ap; suspend requestHandler)

unlockHandler : Handler(ServerLockTy, (Int × Bool) )
unlockHandler =

handler Client {
Unlock() ↦→

let (currentID, locked ) = get in
set (currentID, false) ;
suspend requestHandler

}

main : Unit

main =

let idServerAP = newAP[IDServerProtocol] in
spawn (idServer idServerAP) (0, false) ;
spawn (client idServerAP) ( )

requestHandler : Handler(ServerTy, (Int × Bool) )
requestHandler =

handler Client {
IDRequest( ) ↦→

let (currentID, locked ) = get in
if locked then

Client ! Unavailable( ) ;
suspend requestHandler

else
Client ! IDResponse (currentID) ;
set (currentID + 1, locked ),

LockRequest( ) ↦→
let (locked, currentID) = get in
if locked then

Client ! Unavailable( ) ;
suspend requestHandler

else
set (currentID, true) ;
Client ! Locked( ) ;
suspend unlockHandler,

Quit( ) ↦→ ()
}

Fig. 4. Maty implementation of ID Server

The idServer takes an access point [17] for the IDServerProtocol protocol as an argument, and

registers for the Server role. An access point can be thought of as a “matchmaking service”. Actors

register to play a role in a session, and the access point establishes a session once at least one actor

has registered for every role. The register construct takes three arguments: an access point, the

role to register for, and a callback to be invoked when the session is established.

Once the callback is invoked, the actor can perform session communication actions for the given
role: in this case, the actor can communicate according to the ServerTy type, namely receiving the

initial item request from a client. The callback first recursively registers to be involved in future

sessions, and then suspends awaiting a message from a client, by installing requestHandler.

A message handler (or simply handler) is a first-class construct that describes how an actor

handles an incoming message. An actor installs a message handler for the current session by

invoking the suspend construct, which reverts the actor back to being idle and states that the

given handler should be invoked when a message is received from the Client.

Tying the example together. The requestHandler has type Handler(ServerTy, (Int × Bool)): han-
dlers are parameterised by an input session type and the type of the actor’s state. The handler has

three branches, one for each possible incoming message.

Maty uses a flow-sensitive effect system [3, 11, 18] to enforce session typing using pre-
and post-conditions on expressions. In the IDRequest branch, the pre-condition

Client ⊕{IDResponse(Int) . ServerTy,Unavailable() . ServerTy} means that the actor can only send
IDResponse or Unavailable messages; all other communication actions are rejected statically. After

either message is sent, the pre-condition becomes ServerTy, allowing the handler to suspend re-

cursively. The LockRequest branch works similarly; since suspend aborts the current evaluation

context, both branches can be given type Unit with post-condition end to match the Quit branch.

The unlockHandler handles Unlock by updating the state, reinstalling requestHandler, and sus-

pending. Implementing a client is similar (we omit the details). Finally, main sets up the access point

(associating Client with ClientTy and Server with ServerTy), then spawns idServer(idServerAP)
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Customer Shop PaymentProcessor

RequestItems()

Items(ItemSummary)

GetItemInfo(ItemID)

ItemInfo(ItemDetails)

Checkout(ItemIDs, PaymentDetails)

ProcessingPayment()

Buy(PaymentDetails, Cost)

OK

OK(DeliveryDate)

PaymentDeclined()

PaymentDeclined()

OutOfStock()

loop

alt

alt

alt

• A Shop can serve many Customers at once.
• The Customer begins by requesting a list of items from

the Shop, which sends back a list of pairs of an item’s

identifier and name.

• The Customer can then repeatedly either request full

details (including description and cost) of an item,

or proceed to checkout.

• To check out, the Customer sends their payment details

and a list of item IDs to the Shop.
• If any items are out of stock, then the Shop notifies the

customer who can then try again. Otherwise, the

Shop notifies the Customer that it is processing
the payment, and forwards the payment details and

total cost to the Payment Processor.
• The Payment Processor responds to the Shop with

whether the payment was successful.

• The Shop relays the result to the Customer, with a

delivery date if the purchase was successful.

• Separately, Staff can also log in using a different system

and adjust the stock.

Fig. 5. Online Shop Scenario

and client(idServerAP). The server starts with state (0, false); the client uses a dummy state. Both

then register with the access point, which establishes the session.

2.2 A Larger Example: A Shop
Our ID server example demonstrated many of the important parts of Maty, but only considers

interactions between two roles. Let us now consider a larger example of an online shop, depicted

in Figure 5, that we will use as a running example throughout the rest of the paper. In short, the

scenario involves multiple clients interacting with a single shop, and where the shop connects with

an external payment processor.

Session types. Figure 6 shows the local types for the Shop role; we omit the ClientTy and PPTy

types for the Client and PaymentProcessor respectively, but they follow a similar pattern. The

global type closely follows the sequence diagram. Note that ShopAdminTy is a different type of

session altogether, detailing the interactions between the shop and the admin interface.

Shop message handlers. Figure 7 shows the shop’s message handlers. After spawning, the shop

suspends with itemReqHandler, awaiting a requestItems message. On receipt, it retrieves the

current stock from its state, sends a summary to the customer, and installs custReqHandler.

custReqHandler handles the getItemInfo and checkout messages. For getItemInfo, the shop

sends item details and suspends recursively. For checkout, it checks availability: if all items are in

stock, it notifies the customer, updates the stock, sends buy to the payment processor, and installs

paymentHandler; otherwise, it sends outOfStock and reinstalls custReqHandler.

The paymentHandler waits for the processor’s reply: if it receives ok, it sends the delivery

date; if it instead receives paymentDeclined, it restores the previous stock. Both branches reinstall

custReqHandler to handle future requests.

Tying the example together. Finally, we can show how to establish a session using the Shop actors.

Let CustomerProtocol = {Shop : ShopTy,Client : ClientTy, PaymentProcessor : PPTy}, and let

StaffProtocol = {Shop : ShopAdminTy, Staff : StaffTy}.
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ShopTy ≜
Customer& requestItems( ) .
Customer ⊕ items( [ (ItemID × ItemName) ] ) .
ReceiveCommand

ReceiveCommand ≜
Customer&{

getItemInfo(ItemID) .
Customer ⊕ itemInfo(Description) .
ReceiveCommand,

checkout( ( [ItemID] × PaymentDetails) ) .
Customer ⊕{

paymentProcessing( ) .
PaymentProcessor ⊕

buy( (PaymentDetails × Price) ) .
PaymentResponse,

outOfStock( ) .
Customer ⊕ outOfStock( ) .
ReceiveCommand

}
}

PaymentResponse ≜
PaymentProcessor&{

ok( ) .
Customer ⊕ ok(DeliveryDate) .
ReceiveCommand,

paymentDeclined( ) .
Customer ⊕ paymentDeclined( ) .
ReceiveCommand

}

ShopAdminTy ≜
Staff&{

addItem( (Name × Description × Price × Stock) ) .
ShopAdminTy,

removeItem(ItemID) . ShopAdminTy}

Fig. 6. Local types for the Shop role

itemReqHandler : Handler(ShopTy, [Item] )
itemReqHandler ≜

handler Customer {
requestItems( ) ↦→
let items = get in
Customer ! itemSummary(summary(items) ) ;
suspend custReqHandler

}

custReqHandler : Handler(ReceiveCommand, [Item] )
custReqHandler ≜

handler Customer {
getItemInfo(itemID) ↦→

let items = get in
Customer ! itemInfo(lookupItem(itemID, items) ) ;
suspend custReqHandler

checkout( (itemIDs, details) ) ↦→
let items = get in
if inStock(itemIDs, items) then

Customer ! paymentProcessing( ) ;
let total = cost(itemIDs, items) in
set decreaseStock(itemIDs, items) ;
PaymentProcessor ! buy( (total, details) ) ;
suspend paymentHandler(itemIDs)

else
Customer ! outOfStock( ) ;
suspend custReqHandler

}

paymentHandler : [ItemID] →
Handler(PaymentResponse, [Item] )

paymentHandler(itemIDs) ≜
handler PaymentProcessor {

ok( ) ↦→
Customer ! ok(deliveryDate(itemIDs) ) ;
suspend custReqHandler

paymentDeclined( ) ↦→
Customer ! paymentDeclined( ) ;
let items = get in
set increaseStock(itemIDs, items) ;
suspend custReqHandler

}

staffReqHandler : Handler(ShopAdminTy, [Item] )
staffReqHandler ≜

handler Staff {
addItem( (name, description, price, stock) ) ↦→

let items = get in
set add(name, description, price, stock, items)
suspend staffReqHandler

removeItem(itemID) ↦→
let items = get in
set remove(itemID, items) ;
suspend staffReqHandler

}

Fig. 7. Implementation of Shop message handlers in Maty

main ≜
let custAP = newAP[CustomerProtocol] in
let staffAP = newAP[StaffProtocol] in
spawn shop(custAP, staffAP ) initialStock;
spawn staff(staffAP ) ( ) ;
spawn customer(custAP ) ( )

registerForever(ap, role, callback) ≜
register ap role (registerForever(ap, role, callback) ) ;
callback ( )

shop(custAP, staffAP ) ≜
register custAP Shop

(registerForever(custAP, Shop, 𝜆 ( ) . suspend itemReqHandler) ) ;
register staffAP Shop

(registerForever(staffAP, Shop, 𝜆 ( ) . suspend staffReqHandler) )
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Syntax of types and type environments

Output session types 𝑆 ! ::= p ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖
Input session types 𝑆? ::= p&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖
Session types 𝑆,𝑇 ::= 𝑆 ! | 𝑆? | 𝜇 𝑋 .𝑆

| 𝑋 | end

Types 𝐴, 𝐵,𝐶 ::= 𝐷 | 𝐴
𝑆,𝑇−−→
𝐶

𝐵 | AP( (p𝑖 : 𝑆𝑖 )𝑖 )
| Handler(𝑆?, 𝐴)

Base types 𝐷 ::= Unit | Bool | Int | · · ·
Type envs. Γ ::= · | Γ, 𝑥 : 𝐴

Value typing Γ ⊢𝜑 𝑉 : 𝐴

TV-Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

TV-Const

𝑐 has base type 𝐷

Γ ⊢ 𝑐 : 𝐷

TV-Lam

Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵

TV-Rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴
𝑆,𝑇−−→
𝐶

𝐵 ⊳ 𝑇

Γ ⊢ rec 𝑓 (𝑥 ) .𝑀 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵

TV-Handler

(Γ, 𝑥 : 𝐴𝑖 | 𝐶 | 𝑆𝑖 ⊲ 𝑀𝑖 :Unit ⊳ end)𝑖
Γ ⊢ handler p {ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 }𝑖 : Handler(p&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖 ,𝐶 )

Computation typing Γ | 𝐶 | 𝑆 ⊲𝜑 𝑀 :𝐴 ⊳ 𝑇

T-Let

Γ | 𝐶 | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆2 ⊲ 𝑁 :𝐵 ⊳ 𝑆3

Γ | 𝐶 | 𝑆1 ⊲ let 𝑥 ⇐ 𝑀 in 𝑁 :𝐵 ⊳ 𝑆3

T-Return

Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ return 𝑉 :𝐴 ⊳ 𝑆

T-App

Γ ⊢ 𝑉 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵 Γ ⊢ 𝑊 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ 𝑉 𝑊 :𝐵 ⊳ 𝑇

T-If

Γ ⊢ 𝑉 : Bool Γ | 𝐶 | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ | 𝐶 | 𝑆1 ⊲ 𝑁 :𝐴 ⊳ 𝑆2

Γ | 𝐶 | 𝑆1 ⊲ if 𝑉 then𝑀 else 𝑁 :𝐴 ⊳ 𝑆2

T-Get

Γ | 𝐴 | 𝑆 ⊲ get :𝐴 ⊳ 𝑇

T-Set

Γ ⊢ 𝑉 : 𝐴

Γ | 𝐴 | 𝑆 ⊲ set 𝑉 :Unit ⊳ 𝑆

T-Spawn

Γ | 𝐴 | 𝑇 ⊲ 𝑀 :Unit ⊳ end

Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 𝑉 :Unit ⊳ 𝑆

T-Send

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : 𝐴𝑗

Γ | 𝐶 | p ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 ⊲ p ! ℓ𝑗 (𝑉 ) :Unit ⊳ 𝑆 𝑗

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶 )
Γ | 𝐶 | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑆 ′

T-NewAP

𝜑 is a safety property 𝜑 ( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 )
Γ | 𝐶 | 𝑆 ⊲ newAP[ (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 ] :AP( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 ) ⊳ 𝑆

T-Register

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : AP( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 )
Γ | 𝐶 | 𝑇𝑗 ⊲ 𝑀 :Unit ⊳ end

Γ | 𝐶 | 𝑆 ⊲ register 𝑉 p𝑗 𝑀 :Unit ⊳ 𝑆

Fig. 8. Maty Static Semantics

The shop definition takes the two access points and then proceeds to register to take part both in

a session to interact with customers, and also to interact with staff. The registerForever meta-level

definition ensures that the actor re-registers whenever a session is established, meaning that the

shop can accept an unlimited number of clients. After each session has been established, the session

type for the shop states that it needs to receive a message from a client, so the shop suspends with

itemReqHandler and staffReqHandler respectively.

3 MATY: A CORE ACTOR LANGUAGEWITH MULTIPARTY SESSION TYPES
3.1 Syntax and Typing Rules
Figure 8 shows the static semantics of Maty. We let p, q range over roles, and 𝑥,𝑦, 𝑧, 𝑓 range over

variables. We stratify the calculus into values𝑉 ,𝑊 and computations𝑀, 𝑁 in the style of fine-grain
call-by-value [30], with different typing judgements for each. Unlike many session type systems,
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we do not need linear types when typing values or computations as session typing is enforced by

effect typing; our approach is inspired by that of Harvey et al. [20].

Session types. Although global types are convenient for describing protocols, we instead fol-

low Scalas and Yoshida [44] and base our formalism around local types (projection of global types

onto roles is standard [22, 42]; the local types resulting from a projecting a global type satisfy

the properties that we will see in §4 [44]). Selection session types p ⊕{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 indicate that a
process can choose to send a message with label ℓ𝑗 and payload type 𝐴 𝑗 to role p, and continue as

session type 𝑆 𝑗 (assuming 𝑗 ∈ 𝐼 ). Branching session types p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 indicate that a process
must receive a message. We let 𝑆 ! range over selection (or output) session types, and let 𝑆? range

over branching (or input) session types. Session type 𝜇 𝑋 .𝑆 indicates a recursive session type that

binds variable 𝑋 in 𝑆 ; we take an equi-recursive view of session types and identify each recursive

session type with its unfolding. Finally, end denotes a session type that has finished.

Types. Base types 𝐷 are standard. Since our type system enforces session typing by pre- and

post-conditions and also allows effectful state updates, a function type 𝐴
𝑆,𝑇−−→
𝐶

𝐵 states that the

function takes an argument of type 𝐴 where the current session type is 𝑆 , and produces a result of

type 𝐵 with resulting session type 𝑇 , and can manipulate state of type 𝐶 . An access point has type

AP((p𝑖 : 𝑆𝑖 )𝑖 ), mapping each role to a local type. Finally, a message handler has typeHandler(𝑆?, 𝐴)
where 𝑆? is an input session type and 𝐴 is the type of the actor state.

Values. The value typing judgement has the form Γ ⊢𝜑 𝑉 : 𝐴 (we will return to behavioural

properties 𝜑 in §4, and omit 𝜑 from the rules to avoid clutter). Typing rules for variables and

constants are standard (we assume constants include at least the unit value () of type Unit),

and typing rules for anonymous functions and anonymous recursive functions are adapted to

include session pre- and postconditions. A message handler handler p {ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 }𝑖 specifies an
actor’s behaviour when a message is received from role p; for each clause with message label ℓ𝑖 ,

the payload is bound to 𝑥𝑖 in 𝑀𝑖 . Rule TV-Handler states that the handler is typable with type

Handler(p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖 ,𝐶) if each continuation𝑀𝑖 is typable with session precondition 𝑆𝑖 where

the environment is extended with 𝑥𝑖 of type 𝐴𝑖 , and all branches have the postcondition end.

Computations. The computation typing judgement has the form Γ | 𝑆 | 𝑀 ⊲𝜑 𝐴 :𝑇 ⊳ 𝐶 , read as

“under type environment Γ, and session precondition 𝑆 , term𝑀 has type𝐴 and postcondition𝑇 and

manipulates state of type 𝐶”. Again, 𝜑 refers to a behavioural property and will be discussed in §4.

A let-binding let 𝑥 ⇐ 𝑀 in 𝑁 evaluates 𝑀 and binds its result to 𝑥 in 𝑁 , with the session

postcondition from typing𝑀 used as the precondition when typing 𝑁 (T-Let); note that this is the

only evaluation context in the system. The return 𝑉 expression is a trivial computation returning

value 𝑉 and has type 𝐴 if 𝑉 also has type 𝐴 (T-Return). A function application 𝑉 𝑊 is typable

by T-App provided that the precondition in the function type matches the current precondition,

and advances the postcondition to that of the function type. Rule T-If types a conditional if its

condition is of type Bool and both continuations have the same return type and postcondition.

Rules T-Get and T-Set handle state access and mutation.

The spawn 𝑀 𝑉 term spawns a new actor that evaluates term 𝑀 and has initial state 𝑉 ; rule

T-Spawn states that computation𝑀 must have return type Unit and pre- and postconditions end

(since the spawned computation is not yet in a session and so cannot communicate). Note that

the computation’s state type can differ to that of the current actor. Rule T-Send types a send

computation p ! ℓ (𝑉 ) if ℓ is contained within the selection session precondition, and if 𝑉 has the

corresponding type; the postcondition is the session continuation for the specified branch. There is

no receive construct, since receiving messages is handled by the event loop. Instead, when an actor
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Runtime syntax

Actor names 𝑎,𝑏

Session names 𝑠

AP names 𝑝

Init. tokens 𝜄

Runtime names 𝛼 ::= 𝑎 | 𝑠 | 𝑝 | 𝜄

Values 𝑈 ,𝑉 ,𝑊 ::= · · · | 𝑝

Type env. Γ ::= · · ·
| Γ, 𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 )

Reduction labels 𝑙 ::= 𝑠 | 𝜏

Configurations C, D ::= (𝜈𝛼 ) C | C ∥ D
| ⟨𝑎, T, 𝜎, 𝜌,𝑈 ⟩ | 𝑝 (𝜒 ) | 𝑠 ⊲ 𝛿

Message queues 𝛿 ::= 𝜖 | (p, q, ℓ (𝑉 ) ) · 𝛿
Stored handlers 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉

Initialisation states 𝜌 ::= 𝜖 | 𝜌, 𝜄 ↦→ 𝑀

Thread states T ::= idle | (𝑀 )𝑠 [p] | 𝑀

Access point states 𝜒 ::= (p𝑖 ↦→ 𝜄𝑖 )𝑖
Evaluation contexts E ::= [ ] | let 𝑥 ⇐ E in 𝑀

Thread contexts M ::= E | (E)𝑠 [p]
Top-level contexts Q ::= [ ] | ( [ ] )𝑠 [p]

Structural congruence (configurations) C ≡ D

C ∥ D ≡ D ∥ C C ∥ (D ∥ D′ ) ≡ (C ∥ D) ∥ D′ 𝛼 ∉ fn(C)
C ∥ (𝜈𝛼 )D ≡ (𝜈𝛼 ) (C ∥ D) (𝜈𝑠 ) (𝑠 ⊲ 𝜖 ) ∥ C ≡ C

p1 ≠ p2 ∨ q1 ≠ q2

𝑠 ⊲ 𝜎1 · (p1, q1, ℓ1 (𝑉1 ) ) · (p2, q2, ℓ2 (𝑉2 ) ) · 𝜎2 ≡ 𝑠 ⊲ 𝜎1 · (p2, q2, ℓ2 (𝑉2 ) ) · (p1, q1, ℓ1 (𝑉1 ) ) · 𝜎2

Fig. 9. Operational semantics (1)

wishes to receive a message, it must suspend itself and install a message handler using suspend 𝑉 .

The T-Suspend rule states that suspend 𝑉 is typable if the handler is compatible with the current

session type precondition and state type; since the computation does not return, it can be given an

arbitrary return type and postcondition.

Sessions are initiated using access points: we create an access point for a session with roles and

types (p𝑖 : 𝑆𝑖 )𝑖 using newAP[(p𝑖 : 𝑆𝑖 )𝑖 ], which must annotated with the set of roles and local types

to be involved in the session (T-NewAP). The rule ensures that the session types satisfy a safety
property; we will describe this further in §4, but at a high level, if a set of session types is safe then

the types are guaranteed never to cause a runtime type error due to a communication mismatch.

An actor can register to take part in a session as role p on access point 𝑉 using register 𝑉 p 𝑀 ;

term𝑀 is a callback to be invoked once the session is established. Rule T-Register ensures that the

access point must contain a session type 𝑇 associated with role p, and since the initiation callback

will be evaluated when the session is established,𝑀 must be typable under session type 𝑇 . Since

neither newAP nor register perform any communication, the session types are unaltered.

3.2 Operational semantics
Figure 9 introduces runtime syntax (i.e., syntax that is introduced during reduction), along with

structural congruence.

Runtime syntax. To model the concurrent behaviour of Maty processes, we require additional

runtime syntax. Runtime names are identifiers for runtime entities: actor names 𝑎 identify actors;

session names 𝑠 identify established sessions; access points 𝑝 identify access points; and initialisation
tokens 𝜄 associate registration entries in an access point with registered initialisation continuations.

We model communication and concurrency through a language of configurations (reminiscent of

𝜋-calculus processes). A name restriction (𝜈𝛼)C binds runtime name 𝛼 in configuration C, and the

right-associative parallel composition C ∥ D denotes configurations C and D running in parallel.

An actor is represented as a 5-tuple ⟨𝑎,T , 𝜎, 𝜌,𝑈 ⟩, where T is a thread that can either be idle; a
term𝑀 that is not involved in a session; or (𝑀)𝑠 [p] denoting that the actor is evaluating term𝑀

playing role p in session 𝑠 . We say that an actor is active if its thread is𝑀 or (𝑀)𝑠 [p] (for some 𝑠 , p,

and𝑀), and idle otherwise. A handler state 𝜎 maps endpoints to handlers, which are invoked when
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Configuration reduction C 𝑙−−→ D
E-Get

⟨𝑎,M[get], 𝜎, 𝜌,𝑉 ⟩ 𝜏−−→ ⟨𝑎,M[return 𝑉 ], 𝜎, 𝜌,𝑉 ⟩

E-Set

⟨𝑎,M[set𝑊 ], 𝜎, 𝜌,𝑉 ⟩ 𝜏−−→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑊 ⟩

E-Send

⟨𝑎, (E[q ! ℓ (𝑉 ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿 𝑠−−→
⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 ) )

E-React

(ℓ (𝑥 ) ↦→ 𝑀 ) ∈ −→
𝐻

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 } ], 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 ) ) ·𝛿 𝑠−−→
⟨𝑎, (𝑀 {𝑉 /𝑥 })𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿

E-Suspend

⟨𝑎, (E[suspend 𝑉 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ 𝜏−−→
⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌,𝑈 ⟩

E-Spawn

⟨𝑎,M[spawn 𝑀 𝑉 ], 𝜎, 𝜌,𝑈 ⟩ 𝜏−−→
(𝜈𝑏 ) (⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑈 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖,𝑉 ⟩)

E-Reset

⟨𝑎, Q[return ( ) ], 𝜎, 𝜌,𝑈 ⟩ 𝜏−−→
⟨𝑎, idle, 𝜎, 𝜌,𝑈 ⟩

E-NewAP

𝑝 fresh

⟨𝑎,M[newAP[ (p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ] ], 𝜎, 𝜌,𝑈 ⟩ 𝜏−−→
(𝜈𝑝 ) (⟨𝑎,M[return 𝑝 ], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈𝐼 ) )

E-Register

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑀 ], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ] ) 𝜏−−→
(𝜈𝜄 ) (⟨𝑎,M[return ( ) ], 𝜎, 𝜌 [𝜄 ↦→ 𝑀 ],𝑈 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄} ] ) )

E-Init

𝑠 fresh

(𝜈𝜄p𝑖 )𝑖∈1..𝑛 (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ]𝑖∈1..𝑛,𝑈 ⟩) 𝜏−−→
(𝜈𝑠 ) (𝑝 ( (p𝑖 ↦→ 𝜄′

p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , (𝜌𝑖 )𝑖∈1..𝑛,𝑈 ⟩)

E-Par

C 𝑙−−→ C′

C ∥ D 𝑙−−→ C′ ∥ D

E-Lift

𝑀 −→M 𝑁

⟨𝑎,M[𝑀 ], 𝜎, 𝜌,𝑈 ⟩ 𝜏−−→ ⟨𝑎,M[𝑁 ], 𝜎, 𝜌,𝑈 ⟩

E-Nu

C 𝑙−−→ D

(𝜈𝛼 ) C 𝑙−𝛼−−→ (𝜈𝛼 )D

E-Struct

C ≡ C′ C′ 𝑙−−→ D′ D′ ≡ D

C 𝑙−−→ D
where 𝑙 − 𝛼 = 𝜏 if 𝑙 = 𝛼, and 𝑙 otherwise

Fig. 10. Operational semantics (2)

an incoming message is received and the actor is idle. The initialisation state 𝜌 maps initialisation

tokens to callbacks to be invoked whenever a session is established. Finally,𝑈 is a value representing

the actor’s state. Our reduction rules (Figure 10) make use of indexing notation as syntactic sugar

for parallel composition: for example, ⟨𝑎𝑖 ,T𝑖 , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩𝑖∈1..𝑛 is syntactic sugar for the configuration

⟨𝑎1,T1, 𝜎1, 𝜌1,𝑈1⟩ ∥ · · · ∥ ⟨𝑎𝑛,T𝑛, 𝜎𝑛, 𝜌𝑛,𝑈𝑛⟩.
An access point 𝑝 (𝜒) has name 𝑝 and state 𝜒 , where the state maps roles to lists of initialisation

tokens for actors that have registered to take part in the session. Finally, each session 𝑠 is associated

with a queue 𝑠 ⊲ 𝛿 , where 𝛿 is a list of entries (p, q, ℓ (𝑉 )) denoting a message ℓ (𝑉 ) sent from p to q.

Initial configurations. A well-typed static term𝑀 is run by placing it in an initial configuration of

the form (𝜈𝑎) (⟨𝑎,𝑀, 𝜖, 𝜖, ()⟩).

Structural congruence and term reduction. Structural congruence is the smallest congruence

relation defined by the axioms in Figure 9. As with the 𝜋-calculus, parallel composition is associative

and commutative, and we have the usual scope extrusion rule; we write fn(C) to refer to the set

of free names in a configuration C. We also include a structural congruence rule on queues that

allows us to reorder unrelated messages; notably this rule maintains message ordering between

pairs of participants. Consequently, the session-level queue representation is isomorphic to a set of

queues between each pair of roles. Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction (omitted).
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Runtime types, environments, and labels
Polarised initialisation tokens 𝜄± ::= 𝜄+ | 𝜄−

Queue types 𝑄 ::= 𝜖 | (p, q, ℓ (𝐴) ) · 𝑄
Runtime type environments Δ ::= · | Δ, 𝑎 | Δ, 𝑝 | Δ, 𝜄± : 𝑆 | Δ, 𝑠 [p] : 𝑆 | Δ, 𝑠 : 𝑄

Labels 𝛾 ::= 𝑠 : p ↑ q::ℓ | 𝑠 : p ↓ q::ℓ | end(𝑠, p)

Structural congruence (queue types) 𝑄 ≡ 𝑄 ′

p1 ≠ p2 ∨ q1 ≠ q2

𝑄1 · (p1, q1, ℓ1 (𝐴1 ) ) · (p2, q2, ℓ2 (𝐴2 ) ) · 𝑄2 ≡ 𝑄1 · (p2, q2, ℓ2 (𝐴2 ) ) · (p1, q1, ℓ1 (𝐴1 ) ) · 𝑄2

Runtime type environment reduction Δ
𝛾
−→ Δ′

Lbl-Send Δ, 𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄
𝑠 :p↑q::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗 ) ) (if 𝑗 ∈ 𝐼 )

Lbl-Recv Δ, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : (q, p, ℓ𝑗 (𝐴𝑗 ) ) · 𝑄
𝑠 :q↓p::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 (if 𝑗 ∈ 𝐼 )

Lbl-End Δ, 𝑠 [p] : end
end(𝑠,p)
−−−−−−→ Δ

Lbl-Rec Δ, 𝑠 [p] : 𝜇 𝑋 .𝑆
𝛾
−→ Δ′ (if Δ, 𝑠 [p] : 𝑆 {𝜇 𝑋 .𝑆/𝑋 }

𝛾
−→ Δ′ )

Fig. 11. Labelled transition system on runtime type environments

Communication and concurrency. It is convenient for our metatheory to annotate each communi-

cation reduction with the name of the session in which the communication occurs, although we

sometimes omit the label where it is not relevant. Rule E-Send describes a process playing role p in

session 𝑠 sending a message ℓ (𝑉 ) to role q: the message is appended to the session queue and the

operation reduces to return (). The E-React rule captures the event-driven nature of the system:

if an actor is idle, has a stored handler ℓ (𝑥) ↦→ 𝑀 for 𝑠 [p], and there exists a matching message in

the session queue, then the message is dequeued and the message handler is activated. If an actor

is currently evaluating a computation in the context of a session 𝑠 [p], rule E-Suspend evaluates

suspend 𝑉 by installing handler 𝑉 for 𝑠 [p] and returning the actor to the idle state.

Rule E-Spawn spawns a fresh actor with empty handler and initialisation state, and E-Reset

returns an actor to the idle state once it has finished evaluating.

Session initialisation. Rule E-NewAp creates an access point with a fresh name 𝑝 and empty map-

pings for each role. Rule E-Register evaluates register 𝑝 p 𝑀 by creating an initialisation token 𝜄,

storing a mapping from 𝜄 to the callback 𝑀 in the requesting actor’s initialisation environment,

and appending 𝜄 to the participant set for p in 𝑝 . Finally, E-Init establishes a session when idle

participants are registered for all roles: the rule discards all initialisation tokens, creates a session

name restriction and empty session queue, and invokes all initialisation callbacks. The remaining

rules are administrative.

4 METATHEORY
In order to prove metatheoretical properties aboutMaty, we define an extrinsic [41] type system

for Maty configurations. Note that our configuration type system is purely metatheoretical
and used only to establish inductive invariants required for our proofs; we do not need to
implement it in a typechecker and we do not require runtime type checking.

Following Scalas and Yoshida [44] we begin by showing a type semantics for sets of local types.

Using this semantics we can define behavioural properties on types (such as safety, which ensures

that communicated messages are always compatible; and progress, which ensures communication is

deadlock-free). By making our configuration typing rules parametric in the particular behavioural

property used, we can customise the property to show that behavioural properties on types give

rise to corresponding guarantees about the behaviour of configurations.
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Relations. We write R?
, R+

, and R∗
for the reflexive, transitive, and reflexive-transitive closures

of a relation R respectively. We write R1R2 for the composition of relations R1 and R2.

Runtime types and environments. Runtime environments are used to type configurations and to

define behavioural properties on sets of local types. Unlike type environments Γ, runtime type

environments Δ are linear to ensure safe use of session channel endpoints, and also to ensure that

there is precisely one instance of each actor and access point. Runtime type environments can

contain access point names 𝑝 ; polarised initialisation tokens 𝜄± : 𝑆 (since each initialisation token is

used twice: once in the access point and one inside an actor’s initialisation environment); session

channel endpoints 𝑠 [p] : 𝑆 ; and finally session queue types 𝑠 : 𝑄 . Queue types mirror the structure

of queue entries and are a triple (p, q, ℓ (𝐴)). We include structural congruence on queue types to

match structural congruence on queues, and extend this to runtime environments.

Labelled transition system on environments. Figure 11 shows the LTS on runtime type environ-

ments. The Lbl-Send reduction gives the behaviour of an output session type interacting with

a queue: supposing we send a message with some label ℓ𝑗 from p to q, we advance the session

type for p to the continuation 𝑆 𝑗 and add the message to the end of the queue. The Lbl-Recv

rule handles receiving and works similarly, instead consuming the message from the queue. Rule

Lbl-End allows us to discard a session endpoint from the environment if it does not support any

further communication, and Lbl-Rec allows reduction of recursive session types by considering

their unrolling. We write Δ =⇒ Δ′
if Δ ≡

𝛾
−→≡ Δ′

for some synchronisation label 𝛾 .

Safety property. Safety is the minimum property we require for type preservation: it ensures that

communication does not introduce type errors. Intuitively a safety property ensures that a message

received from a queue is of the expected type, thereby ruling out communication mismatches;

safety properties must also hold under unfoldings of recursive session types and safety must be

preserved by environment reduction.

Definition 4.1 (Safety property). 𝜑 is a safety property of runtime type environments Δ if:

(1) 𝜑 (Δ, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖 ).𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄) with 𝑄 ≡ (q, p, ℓ𝑗 (𝐵 𝑗 )) ·𝑄 ′
implies 𝑗 ∈ 𝐼 and 𝐵 𝑗 = 𝐴 𝑗 ;

(2) 𝜑 (Δ, 𝑠 [p] : 𝜇 𝑋 .𝑆) implies 𝜑 (Δ, 𝑠 [p] : 𝑆{𝜇 𝑋 .𝑆/𝑋 }); and
(3) 𝜑 (Δ) and Δ =⇒ Δ′

implies 𝜑 (Δ′).
A runtime environment is safe, written safe(Δ), if 𝜑 (Δ) for a safety property 𝜑 .

We henceforth assume that all other properties are safety properties. Although checking safety

for an asynchronous multiparty protocol is undecidable in general [44], there are various com-

putationally tractable ways of ensuring that a protocol is safe. For example, syntactic projections

from global types produce safe and deadlock-free sets of local types [44]. Furthermore, multiparty

compatibility [10] allows safety to be verified by bounded model checking; this is the core approach

implemented in Scribble [25], used by our implementation.

We have therefore designed our type system to be agnostic of any specific implementation

method for validating safety, as common in recent MPST language design papers (e.g., [20, 29]).

4.1 Configuration typing
Figure 12 shows the typing rules for Maty configurations.

Configuration typing rules. The configuration typing judgement Γ; Δ ⊢𝜑 C can be read, “under

type environment Γ and runtime type environment Δ, where the session types used in each session

must satisfy behavioural property 𝜑 , configuration C is well typed”. We omit 𝜑 from the rules to

avoid clutter, and write Γ; Δ ⊢ C when we wish to consider the largest safety property.
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Configuration typing rules Γ; Δ ⊢𝜑 C

T-APName

Γ, 𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ; Δ, 𝑝 ⊢ C
Γ; Δ ⊢ (𝜈𝑝 ) C

T-InitName

Γ; Δ, 𝜄+ : 𝑆, 𝜄− : 𝑆 ⊢ C
Γ; Δ ⊢ (𝜈𝜄 ) C

T-SessionName

Δ′ = {𝑠 [p𝑖 ] : 𝑆p𝑖 }𝑖 , 𝑠 : 𝑄 𝜑 (Δ′ ) 𝑠 ∉ Δ
Γ; Δ,Δ′ ⊢ C 𝜑 is a safety property

Γ; Δ ⊢ (𝜈𝑠 ) C

T-ActorName

Γ; Δ, 𝑎 ⊢ C
Γ; Δ ⊢ (𝜈𝑎) C

T-Par

Γ; Δ1 ⊢ C Γ; Δ2 ⊢ D
Γ; Δ1,Δ2 ⊢ C ∥ D

T-AP

𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ∈ Γ { (p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒

𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖 ) 𝜑 is a safety property

Γ; Δ, 𝑝 ⊢ 𝑝 (𝜒 )

T-Actor

Γ;Δ1 | 𝐴 ⊢ T
Γ;Δ2 | 𝐴 ⊢ 𝜎 Γ;Δ3 | 𝐴 ⊢ 𝜌 Γ ⊢ 𝑉 : 𝐴

Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑉 ⟩

T-EmptyQueue

Γ; 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖

T-ConsQueue

Γ ⊢ 𝑉 : 𝐴 Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎

Γ; 𝑠 : ( (p, q, ℓ (𝐴) ) · 𝑄 ) ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 ) ) · 𝜎

Access point state typing { (p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒

TA-Empty

{ (p𝑖 : 𝑆𝑖 )𝑖 } · ⊢ 𝑆

TA-Entry

𝑗 ∈ 𝐼 { (p𝑖 : 𝑆𝑖 )𝑖∈𝐼 } Δ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈𝐼 } Δ, �𝜄− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄̃ ]

Thread state typing Γ;Δ | 𝐴 ⊢ T
TT-Idle

Γ; · | 𝐴 ⊢ idle

TT-Sess

Γ | 𝐴 | 𝑆 ⊲ 𝑀 :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐴 ⊢ (𝑀 )𝑠 [p]

TT-NoSess

Γ | 𝐴 | end ⊲ 𝑀 :Unit ⊳ end

Γ; · | 𝐴 ⊢ 𝑀

Handler state typing Γ;Δ | 𝐴 ⊢ 𝜎

TH-Empty

Γ; · | 𝐴 ⊢ 𝜖

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆?, 𝐴) Γ;Δ | 𝐴 ⊢ 𝜎
Γ;Δ, 𝑠 [p] : 𝑆? | 𝐴 ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉 ]

Initialisation state typing Γ;Δ | 𝐴 ⊢ 𝜌

TI-Empty

Γ; · | 𝐴 ⊢ 𝜖

TI-Callback

Γ | 𝐴 | 𝑆 ⊲ 𝑀 :Unit ⊳ end Γ;Δ | 𝐴 ⊢ 𝜌

Γ;Δ, 𝜄+ : 𝑆 | 𝐴 ⊢ 𝜌 [𝜄 ↦→ 𝑀 ]

Fig. 12. Typing of Configurations

We have three rules for name restrictions: read bottom-up, T-APName adds 𝑝 to both the type

and runtime environments, and rule T-InitName adds tokens of both polarities to the runtime type

environment. Rule T-SessionName is key to the generalised multiparty session typing approach

introduced by Scalas and Yoshida [44]: the type environment Δ′
consists of a set of session channel

endpoints {𝑠 [p𝑖 ]}𝑖 with session types 𝑆p𝑖 , along with a session queue 𝑠 : 𝑄 . Environment Δ′
must

satisfy 𝜑 , where 𝜑 is at least a safety property.

Rule T-Par types the two parallel subconfigurations under disjoint runtime environments. Rule

T-AP types an access point: it requires that the access point reference is included in Γ and through

the auxiliary judgement {(p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒 ensures that each initialisation token in the access point

state has a compatible type. We also require that the collection of roles that make up the access

point satisfy a safety property in order to ensure that any established session is safe.

Rule T-Actor types an actor ⟨𝑎,T , 𝜎, 𝜌,𝑈 ⟩ using three auxiliary judgements. The thread state

typing judgement Γ;Δ | 𝐶 ⊢ T ensures that an active thread either performs all pending communi-

cation actions, or it suspends. The handler typing judgement Γ;Δ | 𝐶 ⊢ 𝜎 ensures that the stored

handlers match the types in the runtime environments, and the initialisation state typing judgement

Γ;Δ | 𝐶 ⊢ 𝜌 ensures that all initialisation callbacks match the session type of the initialisation token.

Finally, T-EmptyQueue and T-ConsQueue ensure that queued messages match the queue type.

4.2 Properties
With configuration typing defined, we can begin to describe the properties enjoyed by Maty.
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4.2.1 Preservation. Tying is preserved by reduction; consequently we know that communication

actions must match those specified by the session type. Full proofs can be found in Appendix C.

Theorem 4.2 (Preservation). Typability is preserved by structural congruence and reduction.
(≡) If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ; Δ′ ⊢ D.
(→) If Γ; Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

4.2.2 Progress. Progress states that if all protocols are deadlock-free, then a configuration can

either reduce, or it contains no sessions and no further sessions can be established. We start by

classifying a canonical form for configurations.

Definition 4.3 (Canonical form). A configuration C is in canonical form if it can be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘⟩𝑘∈1..𝑛)

Every well typed configuration can be written in canonical form; the result follows from the

structural congruence rules and Theorem 4.2. Next, we define progress on runtime environments,

which is a safety property on types that ensures all sent messages are eventually received.

Definition 4.4 (Progress). A runtime environment Δ satisfies progress, written prog(Δ), if
Δ=⇒ ∗ Δ′ ̸=⇒ implies that Δ′ = 𝑠 : 𝜖 .

If we require the session types in every session to satisfy progress, the property transfers to con-
figurations: a non-reducing closed configuration cannot be blocked on any session communication

and so cannot contain any sessions.

Theorem 4.5 (Progress). If ·; · ⊢prog C, then either there exists some D such that C −→ D, or C
is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ,𝑈 𝑗 ⟩𝑗∈1..𝑛)

4.2.3 Global Progress. In the absence of general recursion, the system in fact enjoys global progress:
every session will be able to reduce after a finite number of steps. The restriction on general

recursion aligns with the expectation that message handlers should not run indefinitely and block

the event loop. Nevertheless, finite recursive behaviour can be achieved using for example structural

recursion [32] or a natural number recursor as in System T (c.f. [19]). Let Γ ⊢f 𝑉 : 𝐴, Γ | 𝐶 | 𝑆 ⊲f

𝑀 :𝐴 ⊳ 𝑇 , and Γ; Δ ⊢f C be type judgements for finite values, terms, and configurations respectively,

where terms cannot contain recursive functions. Given a configuration typing derivation it is

sometimes useful to annotate session name restrictions with their associated runtime environments,

i.e., (𝜈𝑠 : Δ)C. The session progress theorem shows that for every session, any reduction in its

associated session typing environment can be (eventually) reflected by a session reduction.

Definition 4.6 (Active environment / session). We say that a runtime type environment Δ is active,
written active(Δ), if it contains at least one entry of the form 𝑠 [p] : 𝑆 where 𝑆 ≠ end.

Theorem 4.7 (Session Progress). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C where active(Δ𝑠 ), then C 𝜏−−→
∗ 𝑠−−→.

The proof introduces an LTS for reduction of computations; standard techniques such as ⊤⊤-
lifting [31] show the existence of a finite reduction sequence to either a value or suspend 𝑉 for

some𝑉 . Global progress follows as a consequence of an operational correspondence result between

the LTS and configurations, along with similar reasoning to that of Theorem 4.5.

Let us write activeSessions(C) for the set of names of sessions typable under active environments.

Since (by Theorem 4.2) we can always use the structural congruence rules to hoist a session name

restriction to the topmost level, global progress follows as an immediate corollary of Theorem 4.7.
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Corollary 4.8 (Global Progress). If ·; · ⊢fprog C, then for every 𝑠 ∈ activeSessions(C), C ≡
(𝜈𝑠)D for some D, and D 𝜏−−→

∗ 𝑠−−→.

5 EXTENSIONS
In this section we discuss extending Maty with the ability to switch between sessions (allowing a

message in one session to trigger communication in another), and the ability to support failure

handling and supervision hierarchies; we concentrate on the latter and give a mostly informal

description of session switching, but full details of both extensions can be found in Appendix A.

5.1 Switching Between Sessions
Suppose that we want to adapt our Shop example to maintain a long-running session with a supplier

and request a delivery whenever an item runs out of stock. The key difference to our original

example is that we need to switch to the Restock session as a consequence of receiving a buymessage

in a customer session. Whereas before we only needed to suspend an actor in a receiving state, this

workflow requires us to also suspend an actor in a sending state, and switch into the session at a

later stage. We call this extension Maty⇄. Below, we can see the extension of the shop example

with the ability to switch into the restocking session; the new constructs are shaded.

ShopRestock ≜
𝜇 loop.

Supplier ⊕ order( ( [ItemID] × Quantity) ) .
Supplier& ordered(Quantity) . loop

custReqHandler ≜
handler Customer {
getItemInfo(itemID) ↦→ [ . . .]
checkout( (itemIDs, details) ) ↦→

let items = get in
if inStock(itemIDs, items) then [ . . .]
else

Customer ! outOfStock( ) ;
become Restock itemIDs;
suspend

?
custReqHandler

}

shop(custAP, staffAP, restockAP ) ≜
register custAP Shop

(registerForever(custAP, Shop, 𝜆_. suspend
?
itemReqHandler) ( ) ) ;

register staffAP Shop

(registerForever(staffAP, Shop, 𝜆_. suspend
?
staffReqHandler) ( ) ) ;

register restockAP Shop (suspend
!
Restock restockHandler)

restockHandler ≜ 𝜆itemIDs .
Supplier ! order( (itemIDs, 10) ) ;
suspend

?
(

handler Supplier {
ordered(quantity) ↦→

increaseStock(itemIDs, quantity) ;
suspend

!
Restock restockHandler})

The program is implicitly parameterised by a mapping from static names like Restock to pairs

of session types and payload types (in our scenario, Restock maps to (ShopRestock, [ItemID]) to
show that an actor can suspend when its session type is ShopRestock, and must provide a list of

ItemIDs when switching back into the session). We split the suspend construct into suspend
?
𝑉

(to suspend awaiting an incoming message, as previously), and suspend
!
s 𝑉 (to suspend session

with name s given a function 𝑉 , until switched into), and introduce the become s𝑉 construct to

switch into a suspended session. Specifically, become s𝑉 queues s to run when the actor is next

idle. We modify the shop definition to also register with the restockAP access point, suspending

the session (in a state that is ready to send) with the restockHandler. The restockHandler takes an

item ID, sends an order message to the supplier, and suspends again.

Metatheory. Maty⇄ satisfies preservation. Since (by design) become operations are dynamic

and not encoded in the protocol (for example, we might wish to queue two invocations of a

send-suspended session to be executed in turn), there is no type-level mechanism of guaranteeing

that a send-suspended session is invoked, soMaty⇄ instead enjoys progress up-to invocation of

send-suspended sessions (see Appendix D).
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Syntax

Types 𝐴, 𝐵 ::= · · · | Pid

Values 𝑉 ,𝑊 ::= · · · | 𝑎

Computations 𝑀,𝑁 ::= · · · | suspend 𝑉 𝑀

| monitor𝑉 𝑀 | raise

Monitored processes 𝜔 ::= �(𝑎,𝑀 )
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌,𝑈 ,𝜔 ⟩

|  𝑎 |  𝑠 [p] |  𝜄

Modified typing rules for computations Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Spawn

Γ | 𝐴 | end ⊲ 𝑀 :Unit ⊳ end Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 𝑉 :Pid ⊳ 𝑆

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶 )
Γ | 𝐶 | end ⊲ 𝑀 :Unit ⊳ end

Γ | 𝐶 | 𝑆? ⊲ suspend 𝑉 𝑀 :𝐴 ⊳ 𝑇

T-Monitor

Γ ⊢ 𝑉 : Pid

Γ | 𝐶 | end ⊲ 𝑀 :Unit ⊳ end

Γ | 𝐶 | 𝑆 ⊲ monitor𝑉 𝑀 :Unit ⊳ 𝑆

T-Raise

Γ | 𝐶 | 𝑆 ⊲ raise :𝐴 ⊳ 𝑇

Modified configuration reduction rules C 𝑙−−→ D

E-React ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (handler q {−→𝐻 }, 𝑁 ) ], 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 ) ) ·𝛿
𝑠−−→ ⟨𝑎, (𝑀 {𝑉 /𝑥 })𝑠 [p] , 𝜎, 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 if (ℓ (𝑉 ) ↦→ 𝑀 ) ∈ −→

𝐻

E-Spawn ⟨𝑎,M[spawn 𝑀 𝑉 ], 𝜎, 𝜌,𝑈 ,𝜔 ⟩ 𝜏−−→ (𝜈𝑏 ) (⟨𝑎,M[return 𝑏 ], 𝜎, 𝜌,𝑈 ,𝜔 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖,𝑉 , 𝜖 ⟩)
E-Suspend ⟨𝑎, (E[suspend 𝑉 𝑀 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ,𝜔 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ], 𝜌,𝑈 ,𝜔 ⟩
E-Monitor ⟨𝑎,M[monitor 𝑏 𝑀 ], 𝜎, 𝜌,𝑈 ,𝜔 ⟩ 𝜏−−→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑈 ,𝜔 ∪ { (𝑏,𝑀 ) }⟩
E-InvokeM ⟨𝑎, idle, 𝜎, 𝜌,𝑈 ,𝜔 ∪ { (𝑏,𝑀 ) }⟩ ∥  𝑏 𝜏−−→ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 ,𝜔 ⟩ ∥  𝑏
E-Raise ⟨𝑎, E[raise], 𝜎, 𝜌,𝑈 ,𝜔 ⟩ 𝜏−−→  𝑎 ∥  𝜎 ∥  𝜌
E-RaiseS ⟨𝑎, (E[raise] )𝑠 [p] , 𝜎, 𝜌,𝑈 ,𝜔 ⟩ 𝜏−−→  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌
E-CancelMsg 𝑠 ⊲ (p, q, ℓ (𝑉 ) ) · 𝛿 ∥  𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
E-CancelAP (𝜈𝜄 ) (𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄 ) 𝜏−−→ 𝑝 (𝜒 [p ↦→ 𝜄′ ] )

E-CancelH ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (handler q {−→𝐻 }, 𝑀 ) ], 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
𝜏−−→ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] ∥  𝑠 [p] if messages(q, p, 𝛿 ) = ∅

where messages(p, q, 𝛿 ) = {ℓ (𝑉 ) | (r, s, ℓ (𝑉 ) ) ∈ 𝛿 ∧ p = r ∧ q = s}
Structural congruence C ≡ D
(𝜈𝑠 ) ( 𝑠 [p𝑖 ]𝑖∈1..𝑛 ∥ 𝑠 ⊲ 𝜖 ) ∥ C ≡ C

(𝜈𝑎) ( 𝑎) ∥ C ≡ C

Syntactic sugar
 𝜎 ≜  𝑠1 [p1 ] ∥ · · · ∥  𝑠𝑛 [p𝑛 ] (where dom(𝜎 ) = {𝑠𝑖 [p𝑖 ] }𝑖∈1..𝑛 )
 𝜌 ≜  𝜄1 ∥ · · · ∥  𝜄𝑛 (where dom(𝜌 ) = {𝜄𝑖 }𝑖∈1..𝑛 )

Fig. 13. Maty : Modified syntax and reduction rules

5.2 Supervision & Cascading Failure
A major factor in the success of actor languages is their support for the let-it-crash philosophy:

actors encountering errors should crash and be restarted by a supervisor actor. So far, we have not

accounted for failure. A crashed actor cannot send messages, so we need a mechanism to prevent

sessions from getting ‘stuck’. Our solution builds on affine sessions [14, 20, 29, 35]: the core idea
is that a role can be marked as cancelled, preventing further participation. Trying to receiving

from a cancelled participant when there are no pending messages in the queue raises an exception,

triggering a crash and propagating the failure.

Figure 13 shows the additional syntax, typing rules, and reduction rules needed for supervision

and cascading failure; we call this extensionMaty . We make actors addressable, so spawn returns

process identifier (PID) of type Pid. Themonitor𝑉 𝑀 construct installs a callback𝑀 to be evaluated

should the actor referred to by 𝑉 crash; and raise causes an actor to crash and cancels all the

sessions in which it is involved. We also modify the suspend construct to take an additional

computation 𝑀 to be run if the sender fails and the message is never sent; a sensible piece of

syntactic sugar would be suspend 𝑉 ≜ suspend 𝑉 raise to propagate the failure.
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We can make our shop actor robust by using a shopSup actor that restarts it upon failure:

shopSup(custAP, staffAP ) ≜ monitor (spawn shop(custAP, staffAP ) ) (shopSup(custAP, staffAP ) )

The shopSup actor spawns a shop actor and monitors the resulting PID. Any failure of the shop

actor will be detected by the shopSupwhich will restart the actor and monitor it again. The restarted

shop actor will re-register with the access points and can then take part in subsequent sessions.

Configurations. To capture the additional runtime behaviour we need to extend the language of

configurations. The actor configuration becomes ⟨𝑎,T , 𝜎, 𝜌,𝑈 , 𝜔⟩, where 𝜔 pairs monitored PIDs

with callbacks to be evaluated should the actor crash. We also introduce three kinds of “zapper

thread”,  𝑎,  𝑠 [p],  𝜄 to indicate the cancellation of an actor, role, or initialisation token respectively.

Reduction rules by example. Consider the supervised Shop example (with state stock) after

the Customer has sent a Checkout request and is awaiting a response. Instead of suspending

to handle the request, the Shop raises an exception. This scenario can be represented by the

following configuration, where shop, cust, and pp are actors playing the Shop, Customer, and

PaymentProcessor in session s, and sup is monitoring shop:

(𝜈sup) (𝜈shop) (𝜈cust ) (𝜈pp) (𝜈s)
©­­­­«

⟨shop, (raise)𝑠 [Shop] , 𝜖, 𝜖, stock, 𝜖 ⟩
∥ ⟨cust, idle, 𝑠 [Customer] ↦→ (checkoutHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PaymentProcessor] ↦→ (buyHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ 𝑠 ⊲ (Customer, Shop, checkout( ( [123], 510) ) )
∥ ⟨sup, idle, 𝜖, 𝜖, ( ), (shop, shopSup(cAP, sAP ) ) ⟩

ª®®®®¬
For brevity we shorten Shop, Customer, and PaymentProcessor to S, C, and PP respectively. We

also define configuration contexts G ::= [ ] | (𝜈𝛼)G | G ∥ C; and concretely let

G = (𝜈sup) (𝜈shop) (𝜈cust) (𝜈pp) (𝜈s) ( [ ] ∥ ⟨sup, idle, 𝜖, 𝜖, (), (shop, shopSup(cAP, sAP))⟩).
Since the shop actor is playing role 𝑠 [S] and raising an exception, by E-RaiseS the actor is

replaced with zapper threads  shop and  𝑠 [S].

G


⟨shop, (raise)𝑠 [S] , 𝜖, 𝜖, stock, 𝜖 ⟩
∥ ⟨cust, idle, 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout( ( [123], 510) ) )

 −→ G

 shop ∥  𝑠 [S]
∥ ⟨cust, idle, 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, ( ), 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout( ( [123], 510) ) )


Next, since 𝑠 [S] has been cancelled, the checkout message can never be received and so is

removed from the queue (E-CancelMsg). Similarly since both C and PP are waiting for messages

from cancelled role S, they both evaluate their failure computations, raise (E-CancelH). In turn this
results in the cancellation of the cust and pp actors, and the 𝑠 [C] and 𝑠 [PP] endpoints (E-RaiseS).

−→+ G

 shop ∥  𝑠 [S]
∥ ⟨cust, idle, (raise)𝑠 [C] , 𝜖, ( ), 𝜖 ⟩
∥ ⟨pp, idle, (raise)𝑠 [PP] , 𝜖, ( ), 𝜖 ⟩
∥ 𝑠 ⊲ 𝜖

 −→+ G
[
 shop ∥  𝑠 [S] ∥  cust ∥  𝑠 [C] ∥  pp ∥  𝑠 [PP] ∥ 𝑠 ⊲ 𝜖

]
At this point the session has failed and can be garbage collected, leaving the supervisor actor

and the zapper thread for shop. Since the supervisor was monitoring shop, which has crashed, the

monitor callback is invoked (E-InvokeM) which finally re-spawns and monitors the Shop actor.

−→ (𝜈shop) (𝜈sup)
(
 shop
∥ ⟨sup, shopSup(cAP, sAP ), 𝜖, 𝜖, ( ), 𝜖 ⟩

)
−→+ (𝜈shop′ ) (𝜈sup)

(
⟨shop′, shop(cAP, sAP ), 𝜖, 𝜖, stock, 𝜖 ⟩
∥ ⟨sup, idle, 𝜖, 𝜖, ( ), (shop′, shopSup(cAP, sAP ) ) ⟩

)

Metatheory. All metatheoretical properties continue to hold in the presence of failure (see Ap-

pendix D). A modified version of global progress holds: in every active session, a finite number of

reductions will either lead to a communication action or result in all endpoints being cancelled.



20 Simon Fowler and Raymond Hu

1

2 3

4

5

6

7

8

9

C?
RI

C!Is

C?
GI

C!
II

C?
CO

C!
OO

S
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PP
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y

P?OK

P?IF

C!
OK

C!
IF

State State types Methods (send, suspend) or Input cases (extends state type trait)
1 S1Suspend suspend[D](d: D, f: (D, S1) => Done.type): Done.type

S1 case class RequestItems(sid, pay, succ: S2) extends S1
2 S2 Customer_sendItems(pay: ItemList): S3Suspend
3 S3Suspend suspend[D](d: D, f: (D, S3) => Done.type): Done.type

S3 case class GetItemInfo(sid, pay, succ: S4) extends S3
case class Checkout(sid, pay, succ: S5) extends S3

4 S4 Customer_sendItemInfo(pay): S3Suspend
5 S5 Customer_sendProcessingPayment(): S6

Customer_sendOutOfStock(): S3Suspend
6 S6 PaymentProcessor_sendBuy(pay): S7Suspend
7 S7Suspend suspend[D](d: D, f: (D, S7) => Done.type): Done.type

S7 case class OK(sid, pay, succ: S8) extends S7
case class InsufficientFunds(sid, pay, succ: S9) extends S7

8 S8 Customer_sendOK(pay): S3Suspend
9 S9 Customer_sendInsufficientFunds(pay): S3Suspend

Fig. 14. (left) CFSM for the Shop role in the Customer-Shop-PaymentProcessor protocol, and (right) summary

of state types and methods in the toolchain-generated Scala API for this role.

// d can be used for internal, _session-specific_ actor data
def custReqHandler[T: S1orS3](d: DataS, s: T): Done.type = {
s match {
case c: S1 => c match {
// pay is message payload; succ is successor state
case RequestItems(sid, pay, succ) =>
succ.Customer_sendItems(d.summary())

.suspend(d, custReqHandler[S3]) }
case c: S3 => c match {
case GetItemInfo(sid, pay, succ) =>
succ.Customer_sendItemInfo(d.lookupItem(pay))

.suspend(d, custReqHandler[S3])
case Checkout(sid, pay, succ) =>
if (d.inStock(pay)) {
succ.Customer_sendProcessingPayment()

.PaymentProcessor_sendBuy(d.total(pay))

.suspend(d, paymentResponseHandler)

// ...continuing on from the left column
} else {
val sus = succ.Customer_sendOutOfStock()
// d.staff: LOption[R1] -- this is a..
// .."frozen" instance of state type R1
d.staff match {
// R1 is the Restock protocol state type
case x: LSome[R1] =>
ibecome(d, x, restockHndlr)

case _: LNone =>
// Error handling
throw new RuntimeException

}
sus.suspend(d, custReqHandler[S3])

}
}}}

Fig. 15. Example handler code from a Maty actor implemented in Scala using the toolchain-generated API

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation
Based on our formal design, we have implemented a toolchain for Maty-style event-driven actor

programming in Scala. It adopts the state machine based API generation approach of Scribble [24]:

(1) The user specifies global types in the Scribble protocol description language [48].

(2) Our toolchain internally uses Scribble to validate global types according to the MPST-based

safety conditions, project them to local types for each role, and construct a representation of

each local type based on communicating finite state machines (CFSM) [5].

(3) From each CFSM, the toolchain generates a typed, protocol-and-role-specific API for the user to
implement that role as an event-driven Maty actor in native Scala.

Typed APIs for Maty actor programming. Consider the Shop role in our running example (Fig. 6).

Fig. 14 shows the CFSM for Shop (with abbreviated message labels) and a summary of the main

generated types and operations (omitting the type annotations for the sid and pay parameters,

which match those in Fig. 5). The toolchain generates Scala types for each CFSM state: non-blocking

states (sends or suspends) are coloured blue, whereas blocking states (inputs) are red.
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Non-blocking state types provide methods for outputs and suspend actions, with types specific

to each state. The return type corresponds to the successor state type, enabling chaining of session

actions: e.g., state type S2 has method Customer_sendItems for the transition C!Is. The successor

state type S3Suspend includes a suspend method to install a handler for the input event of state 3,

and to yield control back to the event loop. The Done.type type ensures that each handler must

either complete the protocol or perform a suspend. Input state types are traits implemented by

case classes generated for each input message. The event loop calls the user-specified handler with

the corresponding case class upon each input event, with each case class carrying an instance of

the successor state type. For example, S3 (state 3) is implemented by case classes GetItemInfo and

Checkout for its input transitions, which respectively carry instances of successor states S4 and S5.

Fig. 15 demonstrates a user implementation of an event handler in a Shop actor, for the extended

Shop+Restock protocols, using the generated APIs. This code can be compared with Fig. 7 and §5.1.

The API guides the user through the protocol to construct aMaty actor with compliant handlers for

every possible input event. For example, Fig. 15 handles state S1 and could be safely supplied to the

suspend method of S1Suspend immediately following a new session initiation. It further handles S3
(so could also be supplied to S3Suspend), where the shop receives either GetItemInfo or Checkout.

For user convenience, our toolchain supports an inline version of become, as used in Fig. 15. It

allows the callback for a session switching behaviour to be performed inline with the currently

active handler. For this purpose, the API allows the user to “freeze” unused state type instances as

a type LOption[S] and resume them later by an inline ibecome. The trade-off is this entity must be

treated linearly, which our current framework checks dynamically (see below).

The runtime for our APIs executes sessions over TCP and uses the Java NIO library to run the

actor event loops. It supports fully distributed sessions between remoteMaty actors.

Discussion. Following our formal model, our generated APIs support a conventional style of

actor programming where non-blocking operations are programmed in direct-style, in contrast to

approaches that invert both input and output actions [46, 49] through the event loop.

Static Scala typing ensures that handlers safely handle all possible input events at every stage

(by exhaustive matching of case classes), and that state types offer only the permitted operations at

each state (by method typing). However, our API design requires linear usage of state type objects
(e.g., s and succ). Following other works [6, 24, 39, 43, 47], we check linearity in a hybrid fashion:

the Done return types in Fig. 14 statically require suspend to be invoked at least once, but our APIs

rule out multiple uses dynamically. We exploit our formal support for failure handling (Sec. 5.2) to

treat dynamic linearity errors as failures and retain safety and progress.

In summary, our toolchain enables Scala programming of Maty actors that support concurrent

handling of multiple heterogeneously-typed sessions, and ensures their safe execution. A statically

well-typed actor will never select an unavailable branch or send/receive an incompatible payload

type, and an actor system will never become stuck due to mismatching I/O actions. As in the theory,

the system will enjoy global progress provided every handler is terminating.

6.2 Evaluation
Table 1 summarises selected examples from the Savina [27] benchmark suite (lower) and larger case

studies (upper); Appendix B contains sequence diagrams for the larger examples. Notably, key design

features of Maty, e.g. support for handling multiple sessions per actor (mSA) and implementing

multiple protocols/roles within actors (mRA), are crucial to expressing many concurrency patterns.

For example, the Shop actor in both Shop examples plays the distinct Shop roles in the main Shop

protocol and Shop-Staff protocol simultaneously, and handles these sessions concurrently.
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Table 1. Selected case studies, examples from Savina, and key features of their Maty programs.

MPST(s) Maty actor programs

⊕/& 𝜇 C/P mSA mRA PP dSp dTo mAP dAP be self

Shop (Fig. 7) ✓ ✓ ✓ ✓ ✓ ✓
ShopRestock (§ 5.1) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Robot [13] ✓ ✓ ✓ ✓ (✓)
Chat [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ping-self [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ping [27] ✓ ✓
Fib [26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dining-self [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓
Dining [27] ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓
Sieve [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

⊕/& = Branch type(s) 𝜇 = Recursive type(s) C/P = Concurrent/Parallel types mSA = Multiple sessions/actor

mRA = Multiple roles/actor PP = Parameterised number of actors dSp = Dynamic actor spawning

dTo = Dynamic topology mAP = Multiple APs dAP = Dynamic AP creation be = become self = Self communication

The “-self” versions of Ping and Dining are versions faithful to the original Akka programs that

involve internal coordination using self ! msg operations, but our APIs can express equivalent

behaviour more simply without needing self-communication.

The (✓) distinguishes simpler forms of dynamic topologies (dTo) due to a parameterised number

of clients dynamically connecting to a central server, from richer structures such as the parent-

children tree topology dynamically created in Fib and the user-driven dynamic connections between

clients and chat rooms in Chat; note both the latter involve dynamic access point creation (dAP).

Robot coordination. We reimplemented a real-world factory use case fromActyx AG [1], originally

described by Fowler et al. [13]. In this scenario, multiple Robots access a Warehouse with a single

door, with only one Robot allowed in the warehouse at a time. Concretely, each Robot actor

establishes a separate session with the Door and Warehouse actors.Maty’s event-driven model

allows the Door and Warehouse to each be implemented as a single actor that can safely handle the

concurrent interleavings of events across any number (PP, dSP) of separate Robot sessions (mSA).

Below is the straightforward user code for a Door actor to repeatedly register for an unbounded

number of Robot sessions. The Door actor will safely handle all Robot sessions concurrently,

coordinated by its encapsulated state (e.g., isBusy). The generated ActorDoorAPI provides a register

method for the formal register operation, and d1Suspend is a user-defined handler that registers

once more after every session initiation (cf. the example registerForever function in Sec. 2).

1 class Door(pid: Pid, port: Int, apHost: Host, apPort: Int) extends ActorDoor(pid) {
2 private var isBusy = false // Shared state -- n.b. every actor is a single-threaded event loop
3 def spawn(): Unit = { super.spawn(this.port); regForInit(new DataD(...)) }
4 def regForInit(d: DataD) = register(this.port, apHost, apPort, d, d1Suspend)
5 def d1Suspend(d: DataD, s: D1Suspend): Done.type = { regForInit(new DataD(...)); s.suspend(d, d1) }
6 ... // def d1(d: DataD, s: D1): Done.type ... etc.

Chat server. This use case [12] involves an arbitrary number of Clients (PP) using a Registry

to create new chat Rooms, and to dynamically join and leave any existing Room. We model each

Client, the Registry and each Room as separate actors. Rooms are created by spawning new Room

actors (dSp) with fresh access points (dAP, mAP), and we allow any Client to establish sessions

with the Registry or any Room asynchronously (dTo). We decompose the Client-Registry and

the Client-Room interactions into separate protocols (C/P, mAP), noting thatMaty’s support for

event-driven processing of concurrent sessions again allows us to handle the decomposed sessions

with distinct roles naturally within a single Client/Room actor (mSA, mRA). We use become (be)

in the Room actor to broadcast chat messages to all Clients currently in that Room.
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7 RELATEDWORK
Several works have investigated event-driven session typing. Zhou et al. [49] introduce a multiparty

session type discipline that supports statically-checked refinement types, implemented in F★; to

avoid needing to reason about linearity, users implement callbacks for each send and receive action.

This approach is used by Miu et al. [33] for session-typed web applications, and by Thiemann [46]

in Agda [38]. In contrast, our approach only yields control to the event loop on actor receives, as in
idiomatic actor programming.

Hu et al. [23] and Kouzapas et al. [28] introduced a binary session calculus with primitives used

to implement an event loop; our work instead encodes an event loop directly in the semantics.

Viering et al. [47] use event-driven programming in a framework for fault-tolerant session-typed

distributed programming. Their model involves inversion of control on output as well as input
events; our global progress is also stronger as it ensures possible progress on every session in the
system. These works all concentrate on process calculi as opposed to programming language design.

Mostrous and Vasconcelos [34] were first to investigate session typing for actors, using Erlang’s

unique reference generation and selective receive to impose a channel-based communication model.

Their approach remains unimplemented and only supports binary session types. Francalanza

and Tabone [16] implement binary session typing in Elixir using pre- and post-conditions on

module-level functions, but their approach can only reason about interactions between pairs of
participants. Our approach is inspired by the model introduced by Neykova and Yoshida [37] (later

implemented in Erlang [12]), but our language design supports static checking and is formalised.

Neykova and Yoshida [36] show how causality information in global types enables protocol-guided
recovery, leading to speedups over naïve Erlang recovery strategies. Their implementation is again

dynamically-checked. Harvey et al. [20] introduce EnsembleS, which enforces session typing

using a flow-sensitive effect system, focusing on supporting safe adaptive systems. However, each

EnsembleS actor can only take part in a single session at a time.

Mailbox types [9, 13], inspired by earlier work on typestate [8, 40], capture the expected contents

of an actor mailbox as a commutative regular expression, and ensure that processes do not receive

unexpectedmessages. Mailbox and session types both aim to ensure safe communication but address

different problems: session types suit structured interactions among known participants, whereas

mailbox types are better when participants are unknown and message ordering is unimportant.

Mailbox types cannot yet handle failure.

Scalas et al. [45] introduce a behavioural typing discipline with dependent function types, al-

lowing functions to be checked against interaction patterns written in a type-level DSL, enabling

verification of properties such as liveness and termination. Their behavioural type discipline is

different to session typing (e.g., supporting parameterised server interactions but not branching

choice). Our session-based approach is designed for structured interactions among known partici-

pants, and it is unclear how their actor API would scale to processes handling multiple session-style

interactions.

8 CONCLUSION AND FUTUREWORK
Actor languages are powerful tools for writing reliable distributed applications. This paper intro-

duces Maty, an actor language that rules out communication mismatches and deadlocks using

multiparty session types. Key to our approach is a novel combination of a flow-sensitive effect

system and first-class message handlers. We have extendedMatywith the ability to switch between

sessions and recover from failures. In future it would be interesting to implement our approach in

a static typing tool for Elixir and to investigate path-dependent types in our implementation.
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Modified syntax
Session names s, t

Computations 𝑀,𝑁 ::= · · · | suspend
!
s 𝑉 | suspend

?
𝑉 | become s𝑉

Send-suspended sessions 𝐷 ::= (𝑠 [p],𝑉 )
Handler state 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉 | 𝜎, s ↦→ −→

𝐷

Switch request queue 𝜃 ::= 𝜖 | 𝜃 · (s,𝑉 )
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌,𝑉 , 𝜃 ⟩

Modified term typing rules Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Suspend?

Γ ⊢ 𝑉 : Handler(𝑆?,)
Γ | 𝐶 | 𝑆? ⊲ suspend

?
𝑉 :𝐴 ⊳ 𝑇

T-Suspend!

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit

Γ | 𝐶 | 𝑆 ! ⊲ suspend
!
s 𝑉 :𝐵 ⊳ 𝑇

T-Become

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ become s𝑉 :Unit ⊳ 𝑆

Modified configuration typing rules Γ; Δ ⊢ C Γ;Δ | 𝐶 ⊢ 𝜎 Γ ⊢ 𝜃

T-Actor

Γ;Δ1 | 𝑈 ⊢ T Γ;Δ2 | 𝑈 ⊢ 𝜎
Γ;Δ3 | 𝑈 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶 Γ ⊢ 𝜃
Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑈 , 𝜃 ⟩

TH-SendHandler

Γ;Δ | 𝐶 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit)𝑖

Γ;Δ, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖

TR-Empty

Γ ⊢ 𝜖

TR-Reqest

Γ ⊢ 𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝜃 · (s,𝑉 )

Modified reduction rules C −→ D

E-Suspend!-1 ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 , 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) ], 𝜌,𝑈 , 𝜃 ⟩ (s ∉ dom(𝜎 ) )

E-Suspend!-2 ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎 [s ↦→ −→

𝐷 ], 𝜌,𝑈 , 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉 ) ], 𝜌,𝑈 , 𝜃 ⟩

E-Become ⟨𝑎,M[become s𝑉 ], 𝜎, 𝜌,𝑈 , 𝜃 ⟩ 𝜏−−→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑈 , 𝜃 · (s,𝑉 ) ⟩
E-Activate ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · −→𝐷 ], 𝜌,𝑈 , (s,𝑊 ) · 𝜃 ⟩ 𝜏−−→ ⟨𝑎, (𝑉 𝑊 )𝑠 [p] , 𝜎 [s ↦→ −→

𝐷 ], 𝜌,𝑈 , 𝜃 ⟩

Fig. 16. Maty⇄: Modified syntax, typing, and reduction rules

A DETAILS OF STATE AND SWITCHING EXTENSIONS
A.1 Session switching
Our extension to allow session switching is shown in Figure 16. We introduce a set of distinguished

session identifiers s; each session identifier is associated with a local type and a payload in an

environment Σ, i.e., for each s we have Σ(s) = (𝑆 !, 𝐴) for some 𝑆 !, 𝐴. We then split the suspend
construct into two: suspend

?
𝑉 (which, as before, installs a message handler and suspends an actor)

and suspend
!
s 𝑉 , which suspends a session in a send state, installing a function taking a payload

of the given type. Finally we introduce a become s𝑉 construct that queues a request for the event

loop to invoke s next time the actor is available.

Metatheory. As would be expected,Maty⇄ satisfies preservation.

Theorem A.1 (Preservation). Preservation (as defined in Theorem 4.2) continues to hold inMaty⇄.
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However, since (by design) become operations are dynamic and not encoded in the protocol

(for example, we might wish to queue two invocations of a send-suspended session to be executed

in turn), there is no type-level mechanism of guaranteeing that a send-suspended session is ever

invoked. Although all threads can reduce as before, Maty⇄ satisfies a weaker version of progress

where non-reducing configurations can contain send-suspended sessions.

Theorem A.2 (Progress (Maty⇄)). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
where for each session 𝑠 𝑗 there exists some mapping 𝑠 𝑗 [p] ↦→ (s,𝑉 ) (for some role p, static session
name s, and callback 𝑉 ) contained in some 𝜎𝑘 where 𝜃𝑘 does not contain any requests for s.
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B DETAILS OF CASE STUDY PROTOCOLS
In this section we detail the protocols and sequence diagrams for the two case studies.

B.1 Robots
The robots protocol can be found below, both as a Scribble global type and a sequence diagram.

Role R stands for Robot, D stands for Door, and W stands for Warehouse.

global protocol Robot(role R, role D, role W) {
Want(PartNum) from R to D;
choice at D {

Busy() from D to R;
Cancel () from D to W;

} or {
GoIn() from D to R;
Prepare(PartNum) from D to W;
Inside () from R to D;
Prepared () from W to D;
Deliver () from D to W;
Delivered () from W to R;
PartTaken () from R to W;
WantLeave () from R to D;
GoOut () from D to R;
Outside () from R to D;
TableIdle () from W to D;

}
}

Robot Door Warehouse

Want(PartNum)

Busy()

Open door

GoIn()

Prepare(PartNum)

Drive in

Inside()

Close door

Prepared()

Deliver()

Lock table

Delivered()

Take part

PartTaken()

WantLeave()

Open door

GoOut()

Drive out

Outside()

Close door

TableIdle()

alt [Door is already in use]

[Door is not in use]
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B.2 Chat Server

global protocol ChatServer(role C, role S) {
choice at C {

LookupRoom(RoomName) from C to S;
choice at S {

RoomPort(RoomName , Port) from S to C;
} or {

RoomNotFound(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
CreateRoom(RoomName) from C to S;
choice at S {

CreateRoomSuccess(RoomName) from S to C;
} or {

RoomExists(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
ListRooms () from C to S;
RoomList(StringList) from S to C;
do ChatServer(C, S);

} or {
Bye(String) from C to S;

}
}

global protocol ChatSessionCtoR(role C, role R) {
choice at C {

OutgoingChatMessage(String) from C to R;
do ChatSessionCtoR(C, R);

} or {
LeaveRoom () from C to R;

}
}

global protocol ChatSessionRtoC(role R, role C){
choice at R {

IncomingChatMessage(String) from R to C;
do ChatSessionRtoC(R, C);

} or {
Bye() from R to C;

}
}

Client Server

LookupRoom(RoomName)

RoomPort(RoomName, Port)

RoomNotFound(RoomName)

CreateRoom(RoomName)

CreateRoomSuccess(RoomName)

RoomExists(RoomName)

ListRooms()

RoomList(StringList)

Bye()

loop [until after Bye message]

alt

alt

alt

Client Room

OutgoingChatMessage(String)

LeaveRoom()

loop [until LeaveRoom message]

alt

Client Room

IncomingChatMessage(String)

Bye()

loop [until Bye message]

alt
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C OMITTED DEFINITIONS AND PROOFS
C.1 Omitted Definitions
Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction:

Term reduction rules 𝑀 −→M 𝑁

let 𝑥 ⇐ return 𝑉 in 𝑀 −→M 𝑀{𝑉 /𝑥}
(𝜆𝑥 .𝑀) 𝑉 −→M 𝑀{𝑉 /𝑥}

(rec 𝑓 (𝑥).𝑀) 𝑉 −→M 𝑀{rec 𝑓 (𝑥).𝑀/𝑓 ,𝑉 /𝑥}

if true then𝑀 else 𝑁 −→M 𝑀

if false then𝑀 else 𝑁 −→M 𝑁

E[𝑀] −→M E[𝑁 ] (if𝑀 −→M 𝑁 )

C.2 Preservation
We begin with some unsurprising auxiliary lemmas.

Lemma C.1 (Substitution). If Γ, 𝑥 : 𝐵 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and Γ ⊢ 𝑉 : 𝐵, then Γ | 𝑆 |
𝐶 ⊲ 𝑀{𝑉 /𝑥} :𝐴 ⊳ 𝑇 .

Proof. By induction on the derivation of Γ1, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 . □

Lemma C.2 (Subterm typability). Suppose D is a derivation of Γ | 𝐶 | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇 . Then
there exists some subderivation D′ of D concluding Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑆 ′ for some type 𝐵 and session
type 𝑆 ′, where the position of D′ in D corresponds to that of the hole in 𝐸.

Proof. By induction on the structure of 𝐸. □

Lemma C.3 (Replacement). If:
(1) D is a derivation of Γ | 𝐶 | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇

(2) D′ is a subderivation of D concluding Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 ′ where the position of D′ in D
corresponds to that of the hole in 𝐸

(3) Γ | 𝐶 | 𝑆 ′ ⊲ 𝑁 :𝐵 ⊳ 𝑇 ′

then Γ | 𝐶 | 𝑆 ′ ⊲ E[𝑁 ] :𝐴 ⊳ 𝑇

Proof. By induction on the structure of 𝐸. □

Since type environments are unrestricted, we also obtain a weakening result.

Lemma C.4 (Weakening). (1) If Γ ⊢ 𝑉 : 𝐵 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 ⊢ 𝑉 : 𝐵.
(2) If Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 .
(3) If Γ;Δ | 𝐶 ⊢ 𝜎 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ | 𝐶 ⊢ 𝜎 .
(4) If Γ;Δ | 𝐶 ⊢ 𝜌 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ | 𝐶 ⊢ 𝜌 .
(5) If Γ; Δ ⊢ C and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 ⊢ 𝑉 : 𝐵.

Proof. By mutual induction on all premises. □

Lemma C.5 (Preservation (terms)). If Γ | 𝑆 | 𝐶 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and 𝑀 −→M 𝑁 , then Γ | 𝑆 |
𝐶 ⊲ 𝑁 :𝐴 ⊳ 𝑇 .

Proof. A standard induction on the derivation of𝑀 −→M 𝑁 , noting that functional reduction

does not modify the session type. □

Next, we introduce some MPST-related lemmas that are helpful for proving preservation of

configuration reduction. We often make use of these lemmas implicitly.

Lemma C.6. If safe(Δ,Δ′), then safe(Δ).
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Proof sketch. Splitting a context only removes potential reductions. Only by adding reductions

could we violate safety. □

Lemma C.7. If safe(Δ1,Δ2) and Δ1 =⇒ Δ′
1
, then safe(Δ′

1
,Δ2).

Proof sketch. By induction on the derivation of Δ1 ≡
𝜋
=⇒≡ Δ′

1
.

It suffices to consider the cases where reduction could potentially make the combined environ-

ments unsafe.

In the case of Lbl-Sync-Send, the resulting reduction adds a message (p, q, ℓ𝑖 (𝐴𝑖 )) to a queue 𝑄 .

The only way this could violate safety is if there were some entry 𝑠 [q] : p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 , and
𝑄 ≡ (p, q, ℓ𝑗 (𝐴 𝑗 )) ·𝑄 ′

where 𝑗 ∈ 𝐼 , but (𝑄 · (p, q, ℓ𝑘 (𝐴𝑘 )) ≡ (p, q, ℓ𝑘 (𝐴𝑘 )) ·𝑄 ′′
with 𝑘 ∉ 𝐼 . However,

this is impossible since it is not possible to permute this message ahead of the existing message

because of the side-conditions on queue equivalence.

A similar argument applies for Lbl-Sync-Recv. □

Lemma C.8. If Γ; Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲𝜎 and Γ ⊢ 𝑉 : 𝐴, then Γ; Δ, 𝑠 : (𝑄 · (p, q, ℓ (𝐴))) ⊢ 𝑠 ⊲𝜎 · (p, q, ℓ (𝑉 ))

Proof. A straightforward induction on the derivation of Γ; Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎 . □

Lemma C.9 (Preservation (Eqivalence)). If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ
such that Γ; Δ′ ⊢ D.

Proof. By induction on the derivation of C ≡ D. The only case that causes the type environment

to change is queue message reordering, which can be made typable by mirroring the change in the

queue type. □

Lemma C.10 (Preservation (Configuration reduction)). If Γ; Δ ⊢ C with safe(Δ) and C −→
D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

Proof. By induction on the derivation of C −→ D.

Case E-Get.

⟨𝑎,M[get], 𝜎, 𝜌,𝑉 ⟩ 𝜏−−→ ⟨𝑎,M[return 𝑉 ], 𝜎, 𝜌,𝑉 ⟩
There are two subcases based on whetherM = (E[−])𝑠 [p] orM = (E[−]). We prove the former;

the latter is similar.

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[get] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[get])𝑠 [p] Γ;Δ1 | 𝐶 ⊢ 𝜎 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑉 : 𝐶

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[get])𝑠 [p], 𝜎, 𝜌,𝑉 ⟩
By Lemma C.2, Γ | 𝐶 | 𝑆 ⊲ get :𝐶 ⊳ 𝑆 , and so by T-Return and Lemma C.3, Γ | 𝐶 | 𝑆 ⊲

E[return 𝑉 ] :Unit ⊳ end.

Recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return 𝑉 ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[return 𝑉 ])𝑠 [p] Γ;Δ1 | 𝐶 ⊢ 𝜎 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑉 : 𝐶

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[return 𝑉 ])𝑠 [p], 𝜎, 𝜌,𝑉 ⟩
as required.
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Case E-Set.

⟨𝑎,M[set𝑊 ], 𝜎, 𝜌,𝑉 ⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌,𝑊 ⟩
Again, we prove the case where M = (E[−])𝑠 [p] .
Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[set𝑊 ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[set𝑊 ])𝑠 [p] Γ;Δ1 | 𝐶 ⊢ 𝜎 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑉 : 𝐶

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[set𝑊 ])𝑠 [p], 𝜎, 𝜌,𝑉 ⟩
By Lemma C.2:

Γ ⊢𝑊 : 𝐶

Γ | 𝐶 | 𝑆 ⊲ set𝑊 :Unit ⊳ 𝑆

By Lemma C.3 we have Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end and so recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (return ()])𝑠 [p] Γ;Δ1 | 𝐶 ⊢ 𝜎 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢𝑊 : 𝐶

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[return ()])𝑠 [p], 𝜎, 𝜌,𝑊 ⟩
Case E-Send.

⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿 −→ ⟨𝑎, (E[return ()])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 ))
Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[q ! ℓ (𝑉 )] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[q ! ℓ (𝑉 )])𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; 𝑠 [p],Δ2,Δ3 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] : 𝑆,Δ2,Δ3, 𝑠 : 𝑄 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿

By Lemma C.2 we have that Γ | 𝐶 | q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 ⊲ q ! ℓ𝑗 (𝑉 ) :Unit ⊳ 𝑇𝑗 and therefore that

𝑆 = q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 .
Since Γ | 𝐶 | 𝑇𝑗 ⊲ return () :Unit ⊳ 𝑇𝑗 , we can show by Lemma C.3 we have that Γ | 𝐶 |

𝑇𝑗 ⊲ E[return ()] :Unit ⊳ end.

By Lemma C.8, Γ; 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴 𝑗 )) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 )).
Therefore, recomposing:

Γ | 𝐶 | 𝑇𝑗 ⊲ E[return ( ) ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑇𝑗 | 𝐶 ⊢ (E[return ( ) ] )𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ Γ; 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗 ) ) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 ) )
Γ; 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗 ) ) ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 ) )

Finally,

𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 ,Δ2,Δ3, 𝑠 : 𝑄 =⇒ 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗 )) by Lbl-Send as

required.
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Case E-React.

ℓ (𝑥) ↦→ 𝑀 ∈ −→
𝐻

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 )) · 𝛿 −→ ⟨𝑎, (𝑀{𝑉 /𝑥})𝑠 [p], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿
For simplicity (and equivalently) let us refer to ℓ as ℓ𝑗 .

Let D be the following derivation:

(Γ, 𝑥𝑖 : 𝐵𝑖 | 𝐶 | 𝑆𝑖 ⊲ 𝑀𝑖 :Unit ⊳ end)𝑖∈𝐼
Γ ⊢ handler q {(ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 )𝑖∈𝐼 } : Handler(𝑆?,𝐶) Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ;Δ2, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }]
Γ;𝐶 | · ⊢ idle
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆? ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌,𝑈 ⟩

Assumption:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) ⊢ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉 )) · 𝛿

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉 )) · 𝛿

where 𝑆? = p&{ℓ𝑖 (𝐵𝑖 ).𝑆𝑖 }𝑖∈𝐼 .
Since safe(Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄)) we have that 𝑗 ∈ 𝐼 and 𝐴 = 𝐵 𝑗 .

Similarly since ℓ𝑗 (𝑥 𝑗 ) ↦→ 𝑀 ∈ −→
𝐻 we have that Γ, 𝑥 : 𝐵 𝑗 | 𝐶 | 𝑆 𝑗 ⊲ 𝑀 :Unit ⊳ end.

By Lemma C.1, Γ | 𝐶 | 𝑆 𝑗 ⊲ 𝑀{𝑉 /𝑥 𝑗 } :Unit ⊳ end.

Let D′
be the following derivation:

Γ | 𝑆 𝑗 | 𝐶 ⊲ 𝑀{𝑉 /𝑥 𝑗 } :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 𝑗 | 𝐶 ⊢ (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p], 𝜎, 𝜌,𝑈 ⟩
Recomposing:

D′ Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑠 ⊲ 𝛿

Finally, we note that Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) =⇒ Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 by Lbl-Recv

as required.

Case E-Suspend.

⟨𝑎, (E[suspend 𝑉 ])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩ −→ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌,𝑈 ⟩
Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[suspend 𝑉 ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[suspend 𝑉 ])𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; 𝑠 [p] : 𝑆,Δ2,Δ3 ⊢ ⟨𝑎, (E[suspend 𝑉 ])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩
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By Lemma C.2 we have that:

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶)
Γ | 𝐶 | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑇

for any arbitrary 𝐴,𝑇 , and showing that 𝑆 = 𝑆?.

Recomposing:

Γ; · | 𝐶 ⊢ idle
Γ ⊢ 𝑉 : Handler(𝑆?,𝐶) Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ;Δ2, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉 ] Γ;Δ3 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; 𝑠 [p] : 𝑆?,Δ2,Δ3 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌,𝑈 ⟩
as required.

Case E-Spawn.

⟨𝑎,M[spawn 𝑀 𝑉 ], 𝜎, 𝜌,𝑈 ⟩ −→ ⟨𝑎,M[return ()], 𝜎, 𝜌,𝑈 ⟩ ∥ ⟨𝑎,𝑀, 𝜖, 𝜖,𝑉 ⟩

There are two subcases based on whether theM = E[−] orM = (E[−])𝑠 [p] . Both are similar

so we will prove the latter case.

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[spawn 𝑀 𝑉 ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[spawn 𝑀])𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[spawn 𝑀])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩
By Lemma C.2:

Γ | 𝐴 | end ⊲ 𝑀 :Unit ⊳ end Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 𝑉 :Unit ⊳ 𝑆

By Lemma C.3, Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end.

Thus, recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ( ) ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[return ( ) ] )𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩

Γ | 𝐴 | end ⊲ 𝑀 :Unit ⊳ end

Γ; · | 𝐴 ⊢ 𝑀
Γ; · | 𝐴 ⊢ 𝜖
Γ; · | 𝐴 ⊢ 𝜖
Γ ⊢ 𝑉 : 𝐴

Γ; · ⊢ ⟨𝑎,𝑀, 𝜖, 𝜖,𝑉 ⟩
Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ ⟨𝑎,𝑀, 𝜖, 𝜖,𝑉 ⟩

as required.

Case E-Reset.

⟨𝑎,Q[return ()], 𝜎, 𝜌,𝑈 ⟩ −→ ⟨𝑎, idle, 𝜎, 𝜌,𝑈 ⟩
There are two subcases based on whether Q = [−] or Q = ( [−])𝑠 [p] . We prove the latter case;

the former is similar but does not require a context reduction.

Assumption:
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Γ | 𝐶 | end ⊲ return () :Unit ⊳ end

Γ; 𝑠 [p] : end | 𝐶 ⊢ (return ())𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [p] : end ⊢ ⟨𝑎, (return ())𝑠 [p], 𝜎, 𝜌,𝑈 ⟩

We can show that Δ2,Δ3, 𝑠 [p] : end
end(𝑠,p)
=======⇒ Δ2,Δ3, so we can reconstruct:

Γ; · | 𝐶 ⊢ idle Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3 ⊢ ⟨𝑎, idle, 𝜎, 𝜌,𝑈 ⟩
as required.

Case E-NewAP.

𝑐 fresh

⟨𝑎,M[newAP[(p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ]], 𝜎, 𝜌,𝑈 ⟩ −→ (𝜈𝑝) (⟨𝑎,M[return 𝑝], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈1..𝑛))
As usual we prove the case where M = (E[−])𝑠 [p] ; the case where M = (E[−]) is similar.

Assumption:

Γ | 𝐶 | 𝑇 ⊲ E[newAP[(p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ]] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑇 | 𝐶 ⊢ (E[newAP[(p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ]])𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3 ⊢ ⟨𝑎, (E[newAP[(p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ]])𝑠 [p], 𝜎, 𝜌,𝑈 ⟩
By Lemma C.2:

𝜑 is a safety property 𝜑 ((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 )
Γ | 𝐶 | 𝑇 ⊲ newAP[(p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ] :AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ) ⊳ 𝑇

By Lemma C.3, Γ, 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ) | 𝐶 | 𝑇 ⊲ E[return 𝑐] :Unit ⊳ end.

Let Γ′ = Γ, 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ).
By Lemma C.4, since 𝑐 is fresh we have that Γ′;Δ2 | 𝐶 ⊢ 𝜎 and Γ′;Δ3 | 𝐶 ⊢ 𝜌 .

Recomposing:

Γ′ | 𝐶 | 𝑇 ⊲ E[return 𝑐 ] :Unit ⊳ end

Γ′; 𝑠 [p] : 𝑇 | 𝐶 ⊢ (E[return 𝑐 ] )𝑠 [p]
Γ′;Δ2 | 𝐶 ⊢ 𝜎
Γ′;Δ3 | 𝐶 ⊢ 𝜌

Γ′ ⊢ 𝑈 : 𝐶

Γ′; Δ2,Δ3, 𝑠 [p] : 𝑇 ⊢ ⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ ( · ⊢ 𝜖 : 𝑆𝑖 )𝑖∈1..𝑛
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) 𝜑 is a safety property

Γ′; 𝑐 : AP ⊢ 𝑐 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 )
Γ′; Δ2,Δ3, 𝑠 [p] : 𝑇, 𝑐 : AP ⊢ ⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 )
Γ; Δ2,Δ3, 𝑠 [p] : 𝑇 ⊢ (𝜈𝑐 ) (⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 ) )

as required.

Case E-Register.

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑀], 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′]) −→ (𝜈𝜄) (⟨𝑎,M[return ()], 𝜎, 𝜌 [𝜄 ↦→ 𝑀],𝑈 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄}]))
Again, we prove the case where M = (E[−])𝑠 [q] and let p = p𝑗 for some 𝑗 .

Let Δ = Δ2,Δ3,Δ4,�𝜄−𝑗 : 𝑆 𝑗 , 𝑠 [p] : 𝑇 .
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Let D be the following derivation:

Γ | 𝐶 | 𝑇 ⊲ E[register 𝑝 p𝑗 𝑀] :Unit ⊳ end

Γ; 𝑠 [q] : 𝑇 | 𝐶 ⊢ (E[register 𝑝 p𝑗 𝑀])𝑠 [q]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [q] : 𝑇 ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑀])𝑠 [q], 𝜎, 𝜌,𝑈 ⟩

Assumption:

D

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ]

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 )
𝜑 is a safety property

Γ; Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝑝 : AP ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ] )

Γ; Δ ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑀 ] )𝑠 [q] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ] )

By Lemma C.2:

Γ ⊢ 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖 ) Γ | 𝐶 | 𝑆 𝑗 ⊲ 𝑀 :Unit ⊳ end

Γ | 𝐶 | 𝑇 ⊲ register 𝑐 p𝑗 𝑀 :Unit ⊳ 𝑇

By Lemma C.3, Γ | 𝐶 | 𝑇 ⊲ E[return ()] :Unit ⊳ end.

Now, let D′
be the following derivation:

Γ | 𝐶 | 𝑇 ⊲ E[return ( ) ] :Unit ⊳ end

Γ; 𝑠 [q] : 𝑇 | 𝐶 ⊢ (E[return ( ) ] )𝑠 [q]
Γ | 𝐶 | 𝑆 𝑗 ⊲ 𝑀 :Unit ⊳ end Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ3, 𝜄
+
: 𝑆 𝑗 | 𝐶 ⊢ 𝜌 [𝜄+ ↦→ 𝑀 ] Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ ⊢ 𝑈 : 𝐶

Γ; Δ2,Δ3, 𝑠 [q] : 𝑆, 𝜄+ : 𝑆 𝑗 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [q] , 𝜎, 𝜌,𝑈 ⟩

Finally, we can recompose:

D

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ]

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 )
𝜑 is a safety property

Γ; Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 : AP ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] )

Γ; Δ, 𝜄+ : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [q] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] )

Γ; Δ ⊢ (𝜈𝜄 ) (⟨𝑎, (E[return ( ) ] )𝑠 [q] , 𝜎, 𝜌,𝑈 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) )

as required.

Case E-Init.

𝑠 fresh

(𝜈𝜄p𝑖 )𝑖∈1..𝑛 (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ],𝑈𝑖⟩𝑖∈1..𝑛)

𝜏−−→
(𝜈𝑠) (𝑝 ((p𝑖 ↦→ 𝜄′

p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩𝑖∈1..𝑛)

For each actor composed in parallel we have:
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Γ | 𝐶𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 :Unit ⊳ end Γ;Δ𝑖3 | 𝜌 ⊢
Γ;Δ𝑖3 , 𝜄

+
𝑖 : 𝑆𝑖 | 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ] ⊢

Γ; · | 𝐶𝑖 ⊢ idle
Γ;Δ𝑖2 | 𝐶𝑖 ⊢ 𝜎𝑖
Γ ⊢ 𝑈𝑖 : 𝐶𝑖

Γ; Δ𝑖2 ,Δ𝑖3 , 𝜄
+
𝑖 : 𝑆𝑖 , 𝑎𝑖 ⊢ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 ,𝐶𝑖⟩

Let:

• Δtok+ = 𝜄+
1
: 𝑆1, . . . , 𝜄

+
𝑛 : 𝑆𝑛

• Δtok− = 𝜄−
1
: 𝑆1, . . . , 𝜄

−
𝑛 : 𝑆𝑛

• Δa = Δ12
,Δ13

, . . . ,Δ𝑛2
,Δ𝑛3

, 𝑎1, . . . , 𝑎𝑛
• Δb = Δa,Δtok+

Then by repeated use of TC-Par we have that Γ; Δa,Δtok+ ⊢ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ],𝑈𝑖⟩)𝑖∈1..𝑛
Assumption (given some Δ):

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ∈ Γ

{p𝑖 : 𝑆𝑖 } Δ,Δtok− ⊢ (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) 𝜑 is a safety property

Γ; Δ,Δtok− ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) Γ; Δa,Δtok+ ⊢ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ],𝑈𝑖 ⟩)𝑖∈1..𝑛
Γ; Δ,Δa,Δtok+,Δtok− ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′

p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ],𝑈𝑖 ⟩)𝑖∈1..𝑛

Γ; Δ,Δa ⊢ (𝜈𝜄1 ) · · · (𝜈𝜄𝑛 ) (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ],𝑈𝑖 ⟩)𝑖∈1..𝑛 )

Through the access point typing rules we can show that we can remove each 𝜄p𝑖 from the access

point: Γ; Δ ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛).

Similarly, for each actor composed in parallel we can construct:

Γ | 𝐶𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 :Unit ⊳ end

Γ; 𝑠 [p𝑖 ] : 𝑆𝑖 | 𝐶𝑖 ⊢ (𝑀𝑖 )𝑠 [p𝑖 ] Γ;Δ𝑖2 | 𝐶𝑖 ⊢ 𝜎𝑖 Γ;Δ𝑖3 | 𝐶𝑖 ⊢ 𝜌𝑖 Γ ⊢ 𝑈𝑖 : 𝐶𝑖

Γ; Δ𝑖2 ,Δ𝑖3 , 𝑠 [p𝑖 ] : 𝑆𝑖 ⊢ ⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩
Let Δ𝑠 = 𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛
Then by repeated use of TC-Par we have that Γ; Δ𝑎,Δs ⊢ ⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩𝑖∈1..𝑛 .
Recomposing:

𝜑 (Δs )
𝜑 is a safety property

Γ; Δ ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 )

Γ; 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 Γ; Δa,Δs ⊢ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖 ⟩)𝑖∈1..𝑛
Γ; Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖 ⟩)𝑖∈1..𝑛

Γ; Δ,Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖 ⟩)𝑖∈1..𝑛

Γ; Δ,Δa ⊢ (𝜈𝑠 ) (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖 ⟩)𝑖∈1..𝑛 )

as required.

Case E-Lift.
Immediate by Lemma C.5.

Case E-Nu.
Immediate by the IH, noting that by the definition of safety, reduction of a safe context results in

another safe context.

Case E-Par.
Immediate by the IH and Lemma C.7.
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Case E-Struct.
Immediate by the IH and Lemma C.9.

□

Theorem 4.2 (Preservation). Typability is preserved by structural congruence and reduction.
(≡) If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ; Δ′ ⊢ D.
(→) If Γ; Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

Proof. Immediate from Lemmas C.9 and C.10. □
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C.3 Progress
Let Ψ be a type environment containing only references to access points:

Ψ ::= · | Ψ, 𝑝 : AP((p𝑖 : 𝑆𝑖 )𝑖 )

Functional reduction satisfies progress.

Lemma C.11 (Term Progress). If Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2 then either:
• 𝑀 = return 𝑉 for some value 𝑉 ; or
• there exists some 𝑁 such that𝑀 −→M 𝑁 ; or
• 𝑀 can be written E[𝑀 ′] where𝑀 ′ is a communication or concurrency construct, i.e.

– 𝑀 = spawn 𝑁 for some 𝑁 ; or
– 𝑀 = p !𝑚(𝑉 ) for some role p and message𝑚(𝑉 ); or
– 𝑀 = suspend 𝑉 or some 𝑉 ; or
– 𝑀 = newAP[(p𝑖 : 𝑇𝑖 )] for some collection of participants (p𝑖 : 𝑇𝑖 )
– 𝑀 = register 𝑉 p for some value 𝑉 and role p

Proof. A standard induction on the derivation of Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2; there are 𝛽-reduction rules

for all STLC terms, leaving only values and communication / concurrency terms. □

The key thread progress lemma shows that each actor is either idle, or can reduce; the proof is

by inspection of T , noting there are reduction rules for each construct; the runtime typing rules

ensure the presence of any necessary queues or access points.

Lemma C.12 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌,𝑉 ⟩]. If ·; · ⊢ C then either T = idle, or
there exist G′,T ′, 𝜎 ′, 𝜌 ′,𝑉 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′,𝑉 ′⟩].

Proof. If T = idle then the theorem is satisfied, so consider the cases where T = 𝑀 or

T = (𝑀)𝑠 [p] . By Lemma C.11, either𝑀 can reduce (and the configuration can reduce via E-Lift),

𝑀 is a value (and the thread can reduce by E-Reset), or𝑀 is a state, communication or concurrency

construct. Of these:

• get and set can reduce by E-Get and E-Set respectively

• spawn 𝑁 can reduce by E-Spawn

• suspend 𝑉 can reduce by E-Suspend

• newAP[(p𝑖 : 𝑆𝑖 )𝑖 ] can reduce by E-NewAP

Next, consider register 𝑝 p 𝑀 . Since we begin with a closed environment, it must be the case that

𝑝 is 𝜈-bound so by T-APName and T-AP there must exist some subconfiguration 𝑝 (𝜒) of G; the
configuration can therefore reduce by E-Register.

Finally, consider𝑀 = q ! ℓ (𝑉 ). It cannot be the case that T = q ! ℓ (𝑉 ) since by T-Send the term

must have an output session type as a precondition, whereas TT-NoSess assigns a precondition

of end. Therefore, it must be the case that T = (q ! ℓ (𝑉 ))𝑠 [p] for some 𝑠, p. Again since the initial

runtime typing environment is empty, it must be the case that 𝑠 is 𝜈-bound and so by T-SessionName

and T-EmptyQueue/T-ConsQueue theremust be some session queue 𝑠⊲𝛿 . The threadmust therefore

be able to reduce by E-Send. □

Proposition C.13. If Γ; Δ ⊢ C then there exists a D ≡ C where D is in canonical form.

Theorem 4.5 (Progress). If ·; · ⊢prog C, then either there exists some D such that C −→ D, or C
is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ,𝑈 𝑗 ⟩𝑗∈1..𝑛)
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Proof. By Proposition C.13 C can be written in canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘⟩𝑘∈1..𝑛)
By repeated applications of Lemma C.12, either the configuration can reduce or all threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘⟩𝑘∈1..𝑛)
By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must be contained in

precisely one actor. There are two ways an endpoint can be used: either by TT-Sess in order to run

a term in the context of a session, or by TH-Handler to record a receive session type as a handler.

Since all threads are idle, it must be the case the only applicable rule is TH-Handler and therefore

each role must have an associated stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

Since all session endpoints must have a receive session type, the only type reductions possible are

through Lbl-Sync-Recv. Since all threads are idle we can pick the top message from any session

queue and reduce the actor with the associated stored handler by E-React.

The only way we could not do such a reduction is if there were to be no sessions, leaving us with

a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜎 𝑗 , 𝜌 𝑗 ,𝑈 𝑗 ⟩𝑗∈1..𝑛)
□

C.4 Global Progress
The overview of the global progress proof is as follows:

• We design a labelled transition system semantics for term reduction (Figure 17).

• We argue that our LTS is strongly-normalising up to suspend (Proposition C.14).

• We prove an operational correspondence between the LTS reduction and configuration re-

duction, specifically that reductions in the LTS semantics can drive configuration reduction,

and that every configuration reduction affecting an actor term can be reflected by the LTS.

• Finally we can use this result to show that any session can eventually reduce.

C.4.1 LTS Semantics.

Figure 17 shows the labelled transition semantics for our language of computations. Standard

𝛽-reductions are reflected as 𝜏-transitions, and communication and concurrency actions reduce in

a single step and are accounted for using labelled reductions.

Proposition C.14 (Strong Normalisation (LTS)). If Ψ | 𝐶 | 𝑆 ⊲f 𝑀 :𝐴 ⊳ end then there exists
some finite reduction sequence such that either:

• 𝑀
ℒ1

↩→ · · ·
ℒ𝑛

↩→ 𝑉 for some 𝑉 ; or

• 𝑀
ℒ1

↩→ · · ·
ℒ𝑛

↩→ E[suspend 𝑉 ] for some E and 𝑉

Proof sketch. Fine-grain call-by-value is strongly normalising; this can be shown using tech-

niques such as ⊤⊤-lifting [31], which also extends to exceptions. These results extend to our LTS

as all additional constructs reduce immediately. □

Lemma C.15 (Reduction under contexts). If Γ; Δ ⊢ G[C] and C −→ D then there exists some
G′ such that G[C] −→ G′ [D].
Proof. By induction on the structure of G. □

We also have a special case for straightforward 𝛽-reduction:
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Additional Syntax
Labels ℒ ::= 𝜏 | get(𝑉 ) | set(𝑉 ) | spawn(𝑀)

| send(p, ℓ,𝑉 ) | newAP(𝑎) | register(𝑝, p, 𝑀)

Labelled Transition Semantics for Computations 𝑀
ℒ

↩→ 𝑁

LTS-Get

get
get(𝑉 )
↩→ return 𝑉

LTS-Set

set 𝑉
set(𝑉 )
↩→ return ()

LTS-Spawn

spawn 𝑀
spawn(𝑀 )

↩→ return ()

LTS-Send

p ! ℓ (𝑉 )
send(p,ℓ,𝑉 )

↩→ return ()

LTS-NewAP

newAP[(p𝑖 : 𝑆𝑖 )𝑖 ]
newAP(𝑎)
↩→ return 𝑎

LTS-Register

register 𝑝 p 𝑀
register(𝑝,p,𝑀 )

↩→ return ()

LTS-Beta

𝑀 −→M 𝑁

𝑀
𝜏
↩→ 𝑁

LTS-Lift

𝑀
ℒ

↩→ 𝑁

E[𝑀] ℒ

↩→ E[𝑁 ]

Fig. 17. LTS Semantics for Computations

Lemma C.16 (Term reduction under contexts). Let C = G[⟨𝑎,Q[E[𝑀]], 𝜎, 𝜌,𝑈 ⟩]. If Γ; Δ ⊢ C
and𝑀

𝜏
↩→ 𝑁 , then C −→ G[⟨𝑎,Q[E[𝑁 ]], 𝜎, 𝜌,𝑈 ⟩].

Proof. By induction on the structure of G. □

Lemma C.17 (Simulation). Suppose Ψ; · ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌,𝑈 ⟩]. If𝑀 ℒ

↩→ 𝑁 , then
there exist some G′, 𝜎 ′, 𝜌 ′, and𝑈 ′ such that C −→ G′ [⟨𝑎,Q[𝑀 ′], 𝜎 ′, 𝜌 ′,𝑈 ′⟩].

Proof. By induction on the derivation of𝑀
ℒ

↩→ 𝑁 .

Case LTS-Spawn.
Assumption:

spawn 𝑀
spawn(𝑀 )

↩→ return ()
By Lemma C.15, E-Spawn, and E-Lift,

G[⟨𝑎,Q[spawn 𝑀], 𝜎, 𝜌,𝑈 ⟩] −→ G′ [⟨𝑎,Q[return ()], 𝜎, 𝜌,𝑈 ⟩ ∥ ⟨𝑏,𝑀, 𝜎, 𝜌⟩]
which we can write as G′′ [⟨𝑎,Q[return ()], 𝜎, 𝜌,𝑈 ⟩] as required.

Case LTS-Send.
Assumption:

p ! ℓ (𝑉 )
send(p,ℓ,𝑉 )

↩→ return ()
Since Ψ; · ⊢f C where C = G[⟨𝑎,Q[p ! ℓ (𝑉 )], 𝜎, 𝜌,𝑈 ⟩], by T-Session and the linearity of runtime

environments, there must exist some G′
such that C ≡ G′ [⟨𝑎,Q[p ! ℓ (𝑉 )], 𝜎, 𝜌,𝑈 ⟩] ∥ 𝑠 ⊲ 𝛿 which

can reduce by E-Send to G′ [⟨𝑎,Q[return ()], 𝜎, 𝜌,𝑈 ⟩] ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 )) as required.
Case LTS-NewAP.
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Assumption:

newAP[(p𝑖 : 𝑆𝑖 )𝑖 ]
newAP(𝑎)
↩→ return 𝑎

We have that Ψ; · ⊢f C where C = G[⟨𝑎,Q[newAP[(p𝑖 : 𝑆𝑖 )𝑖 ]], 𝜎, 𝜌,𝑈 ⟩]; the result follows from
reduction by E-NewAP.

Case LTS-Register.
Assumption:

register 𝑝 p 𝑀
register(𝑝,p,𝑀 )

↩→ return ()

Since Ψ; · ⊢f C where C = G[⟨𝑎,Q[register 𝑝 p 𝑀], 𝜎, 𝜌,𝑈 ⟩], by T-Session and the linearity of

runtime environments, theremust exist someG′
such thatC ≡ G′ [⟨𝑎,Q[register 𝑝 p 𝑀], 𝜎, 𝜌,𝑈 ⟩] ∥

𝑝 (𝜒 [p ↦→ 𝜄̃]) which can reduce by E-Register to (𝜈𝜄′) (G′ [⟨𝑎, return (), 𝜎, 𝜌 [𝜄′ ↦→ 𝑀],𝑈 ⟩] ∥
𝑝 (𝜒 [p ↦→ 𝜄̃ ∪ {𝜄′}])) as required.

Case LTS-Beta.
Immediate by Lemma C.16.

Case LTS-Lift.
Immediate by the IH and E-LiftM. □

LemmaC.18 (Determinism (TermReduction)). SupposeΨ; Δ ⊢f C whereC = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌⟩].
If:

• C −→ G1 [⟨𝑎,Q[𝑁1], 𝜎1, 𝜌1,𝑈1⟩], where𝑀 ≠ 𝑁1

• C −→ G2 [⟨𝑎,Q[𝑁2], 𝜎2, 𝜌2,𝑈1⟩], where𝑀 ≠ 𝑁2

then up to the identities of fresh variables, G1 = G2, and 𝑁1 = 𝑁2, and 𝜎1 = 𝜎2, and 𝜌1 = 𝜌2, and
𝑈1 = 𝑈2.

Proof. Since𝑀 ≠ 𝑁1 and𝑀 ≠ 𝑁2 the overall reduction must be driven by the reduction from𝑀

into 𝑁1 or 𝑁2 respectively. The result then follows by inspection on the reduction rules, noting that

𝛽-reduction is deterministic, as are the relevant rules E-Get, E-Set, E-Send, E-Spawn, E-NewAP,

and E-Register. □

Lemma C.19 (Reflection). Suppose Ψ; Δ ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌,𝑈 ⟩].
If C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′,𝑈 ⟩] for some G′, 𝑁 , 𝜎 ′ and 𝜌 ′ where𝑀 ≠ 𝑁 , then there exists some

ℒ such that𝑀
ℒ

↩→ 𝑁 .

Proof. Since𝑀 ≠ 𝑁 , by Lemma C.18, the reduction from C must be unique, and will be the one

specified by Lemma C.17. □

Proposition C.20 (Operational Correspondence).

Suppose Ψ; Δ ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌,𝑈 ⟩].

• If𝑀
ℒ

↩→ 𝑁 , then there exist some G′, 𝜎 ′, 𝜌 ′, and𝑈 ′ such that C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′,𝑈 ′⟩].
• If C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′,𝑈 ′⟩] for some G′, 𝑁 , 𝜎 ′ and 𝜌 ′ where𝑀 ≠ 𝑁 , then there exists

some ℒ such that𝑀
ℒ

↩→ 𝑁 .

Proof. Follows as a consequence of Lemmas C.17 and C.19. □

Lemma C.21. If ·; · ⊢ (𝜈𝑠 : Δ)C and C 𝜏−−→ D, then ·; · ⊢ (𝜈𝑠 : Δ)D.
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Proof. A straightforward corollary of Theorem 4.2. □

Theorem 4.7 (Session Progress). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C where active(Δ𝑠 ), then C 𝜏−−→
∗ 𝑠−−→.

Proof. By T-SessionName we have that ·; 𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛 ⊢f C and thus by the

linearity of Δ𝑠 alongside rule T-Actor we have some set of actors:

{⟨𝑎𝑖 ,T𝑖 , 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩}𝑖∈1..𝑚
such that for each role p𝑗 for 𝑗 ∈ 1..𝑛, either:

• there exists some T𝑘 such that T𝑘 = (𝑀)𝑠 [p𝑗 ] for some𝑀

• 𝑠 [p𝑗 ] ∈ dom(𝜎𝑘 ) for some 𝑘 ∈ 1..𝑚

Consider the subset of actors where T𝑖 ≠ idle, i.e., T𝑖 = 𝑁𝑖 or T𝑖 = (𝑁𝑖 )𝑠
′ [p𝑗 ]

for some 𝑁𝑖 . In this

case, for each actor, by Proposition C.14 we have that𝑁𝑖

ℒ1

↩→ · · ·
ℒ𝑛

↩→ 𝑁 ′
𝑖 where either𝑁

′
𝑖 = return (),

or 𝑁 ′
𝑖 = 𝐸 [suspend 𝑉 ] for some value 𝑉 . By Proposition C.20, we can simulate each reduction

sequence as a configuration reduction (and moreover, by the reflection direction, each term can only
follow this reduction sequence). At this point we can revert each actor to idle by either E-Suspend

or E-Reset.

If any labelled reduction, simulated as a configuration reduction, is labelled with session 𝑠 then

we can conclude. Otherwise we have that C 𝜏−−→
∗
D where again by typing we have some subset

of actors such that:

{⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 ,𝑈𝑖⟩}𝑖∈1..𝑚′

By Lemma C.21 we have that ·; · ⊢f
prog

(𝜈𝑠 : Δ𝑠 )D and thus it remains the case that Δ =⇒. Thus

by similar reasoning to Theorem 4.5 it must be the case that some actor 𝑎 𝑗 (where 𝑗 ∈ 1..𝑚′
) can

reduce by E-React as required. □
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D PROOFS FOR SECTION 5
This appendix details the proofs of the metatheoretical properties enjoyed byMaty⇄ andMaty ;

we omit the proofs for Maty with state, which is entirely standard.

D.1 Maty⇄
D.1.1 Preservation.

Theorem A.1 (Preservation). Preservation (as defined in Theorem 4.2) continues to hold inMaty⇄.

Proof. Preservation of typing under structural congruence follows straightforwardly.

For preservation of typing under reduction, we proceed by induction on the derivation of

C −→ D.

Case E-Suspend!-1.
Similar to E-Suspend!-2.

Case E-Suspend!-2.

⟨𝑎, (E[suspend
!
s 𝑉 ])𝑠 [p], 𝜎 [s ↦→ −→

𝐷 ], 𝜌,𝑈 , 𝜃⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉 )], 𝜌,𝑈 , 𝜃⟩

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[suspend
!
s 𝑉 ] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[suspend
!
s 𝑉 ] )𝑠 [p]

Γ;Δ1 | 𝐶 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑊𝑖 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit)𝑖

Γ;Δ1, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 | 𝐶 ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 ]

Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ Δ3𝐶𝜃

Γ ⊢ 𝑈 : 𝐶

Γ; Δ1,Δ2,Δ3, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 ], 𝜌,𝑈 , 𝜃 ⟩

Consider the subderivation Γ | 𝑆 ⊲ E[suspend
!
s 𝑉 ] :Unit ⊳ end. By Lemma C.2 there exists a

subderivation:

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴
𝑆 !,𝐶−−−→
end

Unit

Γ | 𝑆 ! ⊲ suspend
!
s 𝑉 :Unit ⊳ end

Therefore we have that 𝑆 = 𝑆 !.

Recomposing:

Γ; · | idle ⊢

Γ;Δ1 | 𝐶 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴)

(Γ ⊢ 𝑊𝑖 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit)𝑖 Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit

Γ;Δ1, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑠 [p] : 𝑆 ! | 𝐶 ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 · (𝑠 [p],𝑉 ) ]

Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃
Γ ⊢ 𝑈 : 𝐶

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 · (𝑠 [p],𝑉 ) ], 𝜌,𝑈 , 𝜃 ⟩

as required.

Case E-Become.

⟨𝑎,M[become s𝑉 ], 𝜎, 𝜌,𝑈 , 𝜃⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌,𝑈 , 𝜃 · (s,𝑉 )⟩
Assumption (considering the case thatM = E[−] for some E; the case in the context of a session

is identical):
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Γ | 𝑆 | 𝐶 ⊲ E[become s𝑉 ] :Unit ⊳ end

Γ; · | 𝐶 ⊢ E[become s𝑉 ]
Γ;Δ1 | 𝐶 ⊢ 𝜎
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃
Γ; Δ1,Δ2, 𝑎 ⊢ ⟨𝑎,T , 𝜎, 𝜌,𝑈 , 𝜃⟩

By Lemma C.2 we have:

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 | 𝐶 ⊲ become s𝑉 :Unit ⊳ 𝑆

By Lemma C.3 we can show that Γ | 𝑆 | 𝐶 ⊲ E[return ()] :Unit ⊳ end.

Recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ( ) ] :Unit ⊳ end

Γ; · | 𝐶 ⊢ E[return ( ) ]
Γ;Δ1 | 𝐶 ⊢ 𝜎
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶

Γ ⊢ 𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝜃 · (s,𝑉 )

Γ; Δ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[return ( ) ], 𝜎, 𝜌,𝑈 , 𝜃 · (s,𝑉 ) ⟩

as required.

Case E-Activate.

⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · −→𝐷 ], 𝜌,𝑈 , (s,𝑊 ) · 𝜃⟩ 𝜏−−→ ⟨𝑎, (𝑉 𝑊 )𝑠 [p], 𝜎 [s ↦→ −→
𝐷 ], 𝜌,𝑈 , 𝜃⟩

Let D be the subderivation:

Γ;Δ1 | 𝐶 ⊢ 𝜎
Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

𝑆 !,end−−−−→
𝐶

Unit (Γ ⊢ 𝑉𝑖 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit)𝑖

Γ;Δ1, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 !)𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠 [p],𝑉 ) · (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖

Assumption:

Γ; · | 𝐶 ⊢ idle D Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ ⊢ 𝜃
Σ(s) = (𝑆 !, 𝐴)
Γ ⊢ 𝑊 : 𝐴

Γ ⊢ (s,𝑊 ) · 𝜃
Γ; Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 ], 𝜌,𝑈 , (s,𝑊 ) · 𝜃 ⟩

Recomposing:

Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→
𝐶

Unit Γ ⊢ 𝑊 : 𝐴

Γ | 𝐶 | 𝑆 ! ⊲ 𝑉 𝑊 :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 ! | 𝐶 ⊢ (𝑉 𝑊 )𝑠 [p]

Γ;Δ1 | 𝐶 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : 𝐴
𝑆 !,end−−−−→

)
Unit𝑖

Γ;Δ1, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝜃
Γ; Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, (𝑉 𝑊 )𝑠 [p] , 𝜎 [s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 ], 𝜌,𝑈 , 𝜃 ⟩

as required. □
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Runtime syntax
Cancellation-aware runtime envs. Φ ::= · | Φ, 𝑝 | Φ, 𝜄± : 𝑆 | Φ, 𝑠 [p] : 𝑆 | Φ, 𝑠 [p] :  | Φ, 𝑠 : 𝑄

Labels 𝛾 ::= · · · |  𝑠 [p] | 𝑠 : p q::ℓ | 𝑠 : p q

Modified typing rules for configurations Γ; Φ ⊢ C Γ;Φ | 𝜎 ⊢

T-ActorName

Γ, 𝑎 : Pid; Φ, 𝑎 ⊢ C
Γ; Φ ⊢ (𝜈𝑎) C

T-ZapActor

Γ; 𝑎 ⊢  𝑎

T-ZapRole

Γ; 𝑠 [p] :  ⊢  𝑠 [p]

T-ZapTok

Γ; 𝜄+ : 𝑆 ⊢  𝜄

T-Actor

Γ;Φ1 | 𝐶 ⊢ T Γ;Φ2 | 𝐶 ⊢ 𝜎 Γ;Φ3 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝑈 : 𝐶 ∀(𝑏,𝑀 ) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 :Unit ⊳ end

Γ; Φ1,Φ2,Φ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑈 ,𝜔 ⟩

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶 )
Γ | 𝐶 | end ⊲ 𝑀 :Unit ⊳ end Γ;Φ | 𝐶 ⊢ 𝜎

Γ;Φ, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ]

Additional LTS rules Φ
𝛾
−→ Φ′ Φ ∼∼∼▷

s[p]

Φ

Lbl-ZapMsg Φ, 𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝐴) ) · 𝑄
𝑠 :p q::ℓ
−−−−−→ Φ, 𝑠 [q] :  , 𝑠 : 𝑄

Lbl-ZapRecv Φ, 𝑠 [p]:q&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 [q]: , 𝑠 :𝑄
𝑠 :p q
−−−−→ Φ, 𝑠 [p]: , 𝑠 [q]: , 𝑠 :𝑄 (if messages(q, p,𝑄 ) = ∅)

Lbl-Zap Φ, 𝑠 [p] : 𝑆 ∼∼∼▷
s[p]

Φ, 𝑠 [p] :  

Fig. 18. Maty : Modified configuration typing rules and type LTS

D.1.2 Progress.

Theorem A.2 (Progress (Maty⇄)). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
where for each session 𝑠 𝑗 there exists some mapping 𝑠 𝑗 [p] ↦→ (s,𝑉 ) (for some role p, static session
name s, and callback 𝑉 ) contained in some 𝜎𝑘 where 𝜃𝑘 does not contain any requests for s.

Proof. The proof follows that of Theorem 4.5. Thread progress (Lemma C.12) holds as before,

since we can always evaluate become by E-Become, and we can always evaluate suspend
!
by

E-Suspend-!1 or E-Suspend-!2.

Following the same reasoning as Theorem 4.5 we can write C in canonical form, where all

threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 ,𝑉𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
However, there are now three places each role endpoint 𝑠 [p] can be used: either by TT-Sess to

run a term in the context of a session or by TH-Handler to record a receive-suspended session

type as before, but now also by TH-SendHandler to record a send-suspended session type. As

before, the former is impossible as all threads are idle, so now we must consider the cases for

TH-Handler.

Following the same reasoning as Theorem 4.5, we can reduce any handlers that have waiting

messages. Thus we are finally left with the scenario where the session type LTS can reduce, but

not the configuration: this can only happen when the sending reduction is send-suspended, as

required. □

D.2 Maty 
Figure 18 shows the necessary modifications to the configuration typing rules and type LTS. We

extend runtime type environments to cancellation-aware environments Φ that include an additional
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entry of the form 𝑠 [p] :  , denoting that endpoint 𝑠 [p] has been cancelled. We also need to extend

the type LTS to account for failure propagation; we take a similar approach to Barwell et al. [4]. Rule

Lbl-Zap accounts for the possibility that in any given reduction step, a role may be cancelled (for

example, as a result of E-RaiseS), but it is a separate relation since it is unnecessary for determining

behavioural properties of types.

All metatheoretical results continue to hold.

D.2.1 Preservation. First, it is useful to show that safety is preserved even if several roles are

cancelled; we use this lemma implicitly throughout the preservation proof.

Let us write roles(Δ) = {p | 𝑠 [p] : 𝑆 ∈ Φ} to retrieve the roles from an environments.

Let us also define the operation zap(Φ, p̃) that cancels any role in the given set, i.e., zap(𝑠 [p1] :
𝑆1, 𝑠 [p2] : 𝑆2, 𝑎, {p1}) = 𝑠 [p1] :  , 𝑠 [p2] : 𝑆2, 𝑎.

Lemma D.1. If safe(Φ) then safe(zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role does not affect safety; the only way to violate safety is by adding further

unsafe communication reductions. □

We need a slightly modified preservation theorem in order to account for cancelled roles;

specifically we write⇛ for the relation =⇒?∼∼∼▷∗. The safety property is unchanged for cancellation-
aware environments.

Theorem D.2 (Preservation (−→,Maty )). If Γ; Φ ⊢ C with safe(Φ) and C −→ D, then there
exists some Φ′ such that Φ ⇛ Φ′ and Γ; Φ′ ⊢ D.

Proof. Preservation of typability by structural congruence is straightforward, so we concentrate

on preservation of typability by reduction. We proceed by induction on the derivation of C −→ D,

concentrating on the new rules rather than the adapted rules (which are straightforward changes

to the existing proof).

Case E-Monitor.

⟨𝑎,M[monitor 𝑏 𝑀], 𝜎, 𝜌,𝑈 , 𝜔⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌,𝑈 ,𝜔 ∪ {(𝑏,𝑀)}⟩
We consider the case whereM = E[−] for some E; the case in the context of a session is similar.

Assumption:

Γ | 𝑆 ⊲ E[monitor 𝑏 𝑀] :Unit ⊳ end
Γ; · | E [monitor 𝑏 𝑀] ⊢

Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[monitor 𝑏 𝑀], 𝜎, 𝜌,𝑈 ,𝜔⟩
where ∀(𝑏, 𝑁 ) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | 𝐶 | end ⊲ 𝑁 :Unit ⊳ end.

By Lemma C.2, we know:

Γ ⊢ 𝑏 : Pid Γ | 𝐶 | end ⊲ 𝑀 :Unit ⊳ end

Γ | 𝐶 | 𝑆 ⊲ monitor 𝑏 𝑀 :Unit ⊳ 𝑆

By Lemma C.3 we know Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end.

Recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end

Γ; · | 𝐶 ⊢ E[return ()]
Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[return ()], 𝜎, 𝜌,𝑈 ,𝜔 ∪ (𝑏, 𝑁 )⟩
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noting that 𝜔 ∪ (𝑏, 𝑁 ) is safe since Γ ⊢ 𝑏 : Pid and Γ | 𝑆 ⊲ E[return ()] :Unit ⊳ end, as required.
Case E-InvokeM.

⟨𝑎, idle, 𝜎, 𝜌,𝑈 , 𝜔 ∪ {(𝑏,𝑀)}⟩ ∥  𝑏 𝜏−−→ ⟨𝑎,𝑀, 𝜎,𝑈 , 𝜌, 𝜔⟩ ∥  𝑏
Assumption:

Γ; · | 𝐶 ⊢ idle Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑈 ,𝜔 ∪ { (𝑏,𝑀 ) }⟩ Γ; 𝑏 ⊢  𝑏
Γ; Φ1,Φ2, 𝑎,𝑏 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑈 ,𝜔 ∪ { (𝑏,𝑀 ) }⟩ ∥  𝑏

where ∀(𝑎′, 𝑀) ∈ 𝜔 ∪ {(𝑏, 𝑁 )}. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 :Unit ⊳ end.

Recomposing:

Γ | end ⊲ 𝑀 :Unit ⊳ end

Γ; · | 𝐶 ⊢ 𝑀 Γ;Φ1 | 𝑈 ⊢ 𝜎 Γ;Φ2 | 𝑈 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 , 𝜔⟩ Γ; 𝑏 ⊢  𝑏
Γ; Φ1,Φ2, 𝑎, 𝑏 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 , 𝜔⟩ ∥  𝑏

as required.

Case E-Raise.
Similar to E-RaiseS.

Case E-RaiseS.

⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌,𝑈 ,𝜔⟩ 𝜏−−→  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌

Γ | 𝐶 | 𝑆 ⊲ E[raise] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[raise])𝑠 [p] Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌,𝑈 ,𝜔⟩

where ∀(𝑏,𝑀) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 :Unit ⊳ end.

Let us write  Φ = {𝑠 [p] :  | 𝑠 [p] : 𝑆 ∈ Φ}. It follows that for a given environment, Φ ∼∼∼▷∗  Φ.
The result follows by noting that due to TH-Handler and TI-Callback we have that fn(Φ1) =

fn(𝜎) and fn(Φ2) = fn(𝜌). Thus:
• Γ;  Φ1 ⊢  𝜎 ,
• Γ;  Φ2 ⊢  𝜌 ,
• Γ;  Φ1, Φ2, 𝑠 [p] :  , 𝑎 ⊢  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌

with the environment reduction:

Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ∼∼∼▷+  Φ1, Φ2, 𝑠 [p] :  , 𝑎

as required.

Case E-CancelMsg.

𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 ∥  𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
Assumption:
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Γ ⊢ 𝑉 : 𝐴 Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 : (p, q, ℓ (𝐴)) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝑉 )) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 ∥  𝑠 [q]

Recomposing, we have:

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [q] :  , 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]

with

𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝑉 )) ·𝑄
𝑠 :p q::ℓ
−−−−−−→ 𝑠 [q] :  , 𝑠 : 𝑄

as required.

Case E-CancelAP.

(𝜈𝜄) (𝑝 (𝜒 [p ↦→ 𝜄̃′ ∪ {𝜄}]) ∥  𝜄) 𝜏−−→ 𝑝 (𝜒 [p ↦→ 𝜄̃′])
Assumption:

𝑝 : AP(p𝑖 : 𝑆𝑖 )𝑖

{ (p𝑖 : 𝑆𝑖 )𝑖 } Φ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖 } Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ]

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) Γ; 𝜄+ : 𝑆 𝑗 ⊢  𝜄

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
+
: 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝑝 ⊢ (𝜈𝜄 ) (𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄 )

Recomposing:

𝑝 : AP(p𝑖 : 𝑆𝑖 )𝑖

{(p𝑖 : 𝑆𝑖 )𝑖 } Φ ⊢ 𝜒

{(p𝑖 : 𝑆𝑖 )𝑖 } Φ, �𝜄 ′− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄̃′]

Γ; Φ, �𝜄 ′− : 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄̃′])
as required.

Case E-CancelH.

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀), 𝜌,𝑈 , 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] 𝜏−−→
⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 , 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] ∥  𝑠 [p] if messages(q, p, 𝛿) = ∅

Let D be the following derivation:

Γ; · | 𝐶 ⊢ idle
𝑇 = q&{ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑆𝑖 }𝑖 Γ ⊢ 𝑉 : Handler(𝑇,)
Γ | 𝐶 | end ⊲ 𝑀 :Unit ⊳ end Γ;Φ1 | 𝐶 ⊢ 𝜎

Γ;Φ1, 𝑠 [p] : 𝑇 | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀)] Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀)], 𝜌,𝑈 , 𝜔⟩
Assumption:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ; 𝑠 [p] :  ⊢  𝑠 [p]
Γ; 𝑠 : 𝑄, 𝑠 [p] :  ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [p]

Γ; Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] :  , 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ], 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [p]
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We can recompose as follows. Let D′
be the following derivation:

Γ | end ⊲ 𝑀 :Unit ⊳ end

Γ; · | 𝐶 ⊢ 𝑀 Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 , 𝜔⟩
Then we can construct the remaining derivation:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] :  ⊢  𝑠 [p] Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [p] :  , 𝑠 [q] :  ⊢  𝑠 [p] ∥  𝑠 [q]

Γ; 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [p] ∥  𝑠 [q]
Γ; Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  , 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌,𝑈 ,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [p] ∥  𝑠 [q]

Finally, we need to show environment reduction:

Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] :  , 𝑎
𝑠 :p q
−−−−→ Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  , 𝑎

as required. □

D.2.2 Progress. Maty enjoys a similar progress property since E-CancelMsg discards messages

that cannot be received, and E-CancelMsg invokes the failure continuation whenever a message

will never be sent due to a failure; monitoring is orthogonal. The one change is that zapper threads

for actors may remain if the actor name is free in an existing monitoring or initialisation callback.

We require a slightly-adjusted progress property on environments to account for session failure.

Definition D.3 (Progress (Cancellation-aware environments)). A runtime environment Φ satisfies
progress, written prog (Φ), if Φ=⇒ ∗ Φ′ ̸=⇒ implies that either Φ′ = 𝑠 : 𝜖 or Φ′ = (𝑠 [p𝑖 ] :  )𝑖 , 𝑠 : 𝜖 .

We first need to define a canonical form that takes zapper threads into account.

Definition D.4 (Canonical form (Maty )). A Maty configuration C is in canonical form if it can

be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

with ( 𝑎𝑘 )𝑘∈𝑛′ ..𝑛 contained in  ̃𝛼 .

As before, all well-typed configurations can be written in canonical form; as usual the proof

relies on the fact that structural congruence is type-preserving.

Lemma D.5. If Γ; Φ ⊢ C then there exists a D ≡ C where D is in canonical form.

It is also useful to see that the progress property on environments is preserved even if some

roles become cancelled.

Lemma D.6. If prog (Φ) then prog (zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role may prevent Lbl-Recv from firing, but in this case would enable either a

Lbl-ZapRecv and Lbl-ZapMsg reduction. □

Thread progress needs to change to take into account the possibility of an exception due to

E-Raise or E-RaiseExn:

Lemma D.7 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌⟩]. If ·; · ⊢ C then either:
• T = idle, or
• there exist G′,T ′, 𝜎 ′, 𝜌 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′⟩], or
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• C −→ G′ [ 𝑎 ∥  𝜎 ∥  𝜌] if T = E[raise], or
• C −→ G′ [ 𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌] if T = (E[raise])𝑠 [p] .

Proof. As with Lemma C.12 but taking into account that:

• monitor 𝑏 𝑀 can always reduce by E-Monitor;

• raise can always reduce by either E-Raise or E-RaiseS.

□

Theorem D.8 (Progress (Maty )). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ,𝑈 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ ( 𝑎 𝑗 ) 𝑗∈𝑛′ ..𝑛)

Proof. The reasoning is similar to that of Theorem 4.5. By Lemma D.5, C can be written in

canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 ,𝑈 𝑗 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

with ( 𝑎𝑘 )𝑘∈𝑛′ ..𝑛 contained in  ̃𝛼 .
By repeated applications of Lemma D.7, either the configuration can reduce or all threads are

idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 ,𝑈𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must either be contained

in an actor, or exist as a zapper thread  𝑠 [p] ∈  ̃𝛼 . Let us first consider the case that the endpoint
is contained in an actor; we know by previous reasoning that each role must have an associated

stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

There are two potential reductions: either Lbl-Sync-Recv in the case that the queue has a message,

or Lbl-ZapRecv if the sender is cancelled and the queue does not have a message. In the case

of Lbl-Sync-Recv, since all actors are idle we can reduce using E-React as usual. In the case of

Lbl-ZapRecv typing dictates that we have a zapper thread for the sender and so can reduce by

E-CancelH.

It now suffices to reason about the case where all endpoints are zapper threads (and thus by

linearity, where all handler environments are empty). In this case we can repeatedly reduce with

E-CancelMsg until all queues are cleared, at which point we have a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝜖) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜖, 𝜌𝑘 ,𝑈𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

We must now account for the remaining zapper threads. If there exists a zapper thread  𝑎 where

𝑎 is contained within some monitoring environment 𝜔 then we can reduce with E-InvokeM. If 𝑎

does not occur free in any initialisation callback or monitoring callback then we can eliminate it

using the garbage collection congruence (𝜈𝑎) ( 𝑎) ∥ C ≡ C.
Next, we eliminate all zapper threads for initialisation tokens using E-CancelAP.

Finally, we can eliminate all failed sessions (𝜈𝑠) ( 𝑠 [p1] ∥ · · · ∥  𝑠 [p𝑛] ∥ 𝑠 ⊲ 𝜖), and we are left

with a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ,𝑈 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ ( 𝑎 𝑗 ) 𝑗∈𝑛′ ..𝑛)
as required. □
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D.2.3 Global Progress.

Lemma D.9 (Session Progress (Maty )). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C, then there exists some D1 such

that C 𝜏−−→
∗
D1 and either D1

𝑠−−→, or (𝜈𝑠)D1 ≡ D2 for some D2 where 𝑠 ∉ activeSessions(D2).

Proof. The proof is as with Theorem 4.7, except we must account for failed sessions arising as

a consequence of reduction. □

A modified version of global progress holds: for every active session, in a finite number of

reductions, either the session can make a communication action, or all endpoints become cancelled

and can be garbage collected.

Theorem D.10 (Global Progress (Maty )). If ·; · ⊢fprog C, then for every 𝑠 ∈ activeSessions(C),

then there exist D and D1 such that C ≡ (𝜈𝑠)D where D 𝜏−−→
∗
D1 and either D1

𝑠−−→, or D1 ≡ D2

for some D2 where 𝑠 ∉ activeSessions(D2).

Proof. Arises as a corollary of Lemma D.9. □
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