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Actor languages such as Erlang and Elixir are widely used for implementing scalable and reliable distributed

applications, but the informally-specified nature of actor communication patterns leaves systems vulnerable

to costly errors such as communication mismatches and deadlocks. Multiparty session types (MPSTs) rule out

communication errors early in the development process, but until now, the nature of actor communication

has made it difficult for actor languages to benefit from session types.

This paper introducesMaty, the first actor language design supporting both static multiparty session typing

and the full power of actors taking part in multiple sessions. Our main insight is to enforce session typing

through a flow-sensitive type-and-effect system, combined with an event-driven programming style and

first-class message handlers. Using MPSTs allows us to guarantee communication safety: a process will never

send or receive an unexpected message, nor will it ever get stuck waiting for a message that will never arrive.

We extend Maty to support both Erlang-style cascading failure handling and the ability to proactively

switch between sessions. We implementMaty in Scala using an API generation approach, and evaluate our

implementation on a series of microbenchmarks, a factory scenario, and a chat server.

1 INTRODUCTION
The infrastructure underpinning our daily lives is powered by distributed software. Unfortunately,

writing distributed software is difficult: developers must reason about a host of issues such as

deadlocks, failures, and adherence to complex communication protocols. Actor languages such as

Erlang and Elixir, and frameworks such as Akka, are popular tools for writing scalable and resilient

distributed applications. Processes in actor languages communicate using message passing rather

than shared memory, and are inspired by the actor model of computation [2, 20]. Because actor

communication is asynchronous and every message is stored locally to the actor that will process

it, actor languages support idioms such as supervision hierarchies that allow a failed process to be

restarted if it crashes. Erlang in particular has been used to implement real-time systems such as

telephone switches [3] and powers the servers of WhatsApp, which has billions of users worldwide.

In spite of these advantages, the communication-centric nature of actor languages is not a silver

bullet: it is still possible—easy, even—to introduce subtle bugs that can lead to errors that are

difficult to detect, debug, and fix: for example, waiting for a message that will never arrive, sending

a message that cannot be handled, or sending an incorrect payload.

Multiparty session types (MPSTs) allow a developer to check, at compile time, that they have

correctly followed all communication protocols, in turn avoiding costly bugs manifesting themselves

late in the development process. However, MPSTs were originally designed for communication

channels, which poses challenges when applying them to actor languages. Existing approaches

either check session typing dynamically, catching errors only at run time, or sacrifice expressiveness

by emulating binary session types or limiting each actor to a single session. Furthermore, no existing

work on statically-typed actors has shown how session typing can be used alongside the let-it-crash
philosophy and supervision hierarchies that make actor languages so popular in practice.

This paper presentsMaty, the first actor-based programming language fully supporting statically-
checked multiparty session types and failure handling, allowing developers to benefit from both the
error prevention mechanism of session types and the scalability and fault tolerance of actor languages.

Authors’ addresses: Simon Fowler, University of Glasgow, United Kingdom; Raymond Hu, Queen Mary University of

London, UK, United Kingdom.
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Customer Shop PaymentProcessor

RequestItems()

Items(ItemSummary)

GetItemInfo(ItemID)

ItemInfo(ItemDetails)

Checkout(ItemIDs, PaymentDetails)

ProcessingPayment()

Buy(PaymentDetails, Cost)

OK

OK(DeliveryDate)

PaymentDeclined()

PaymentDeclined()

OutOfStock()

loop

alt

alt

alt

(a) Sequence diagram for Shop example

handle_cast({checkout , ItemIDs , PaymentDetails ,
ReplyTo}, Items) ->

AllItemsInStock = check_stock(ItemIDs , Items),
if

AllItemsInStock ->
ReplyTo ! processing_payment ,
case gen_server:call(payment_processor ,

{ buy , PaymentDetails ,
cost(ItemIDs , Items) }) of

ok ->
NewItems =

decrease_stock(ItemIDs , Items),
ReplyTo ! { ok , tomorrow },
{ noreply , NewItems };

payment_declined ->
ReplyTo ! payment_declined ,
{ noreply , Items }

end;
true ->

ReplyTo ! out_of_stock ,
{noreply , Items}

end;

(b) Handling the checkout message

Fig. 1. Protocol and implementation for Shop example

1.1 Motivating Example
Consider the following scenario, depicted in Figure 1a:

• A Shop can serve many Customers at once.
• The Customer begins by requesting a list of items from the Shop, which sends back a list of

pairs of an item’s identifier and name.

• The Customer can then repeatedly either request full details (including description and cost)

of an item, or proceed to checkout.

• To check out, the Customer sends their payment details and a list of item IDs to the Shop.
• If any items are out of stock, then the Shop notifies the customer who can then try again.

Otherwise, the Shop notifies the Customer that it is processing the payment, and forwards

the payment details and total cost to the Payment Processor.
• The Payment Processor responds to the Shop with whether the payment was successful.

• The Shop relays the result to the Customer, with a delivery date if the purchase was successful.

• Separately, Staff can also log in using a different system and adjust the stock.

Erlang applications often make use of the Erlang/OTP framework [8] which includes pre-defined

behaviours. In Erlang we would implement the Shop using the gen_server behaviour, which encapsu-

lates the common use case of a server that can react to asynchronous messages and synchronous

calls from multiple clients while maintaining some state.

As an example, the Shop handles the checkoutmessage via the handle_cast callback for asynchronous

messages (Figure 1b) by firstly checking if all items are in stock. If so, then it notifies the customer

with a processing_payment message and makes a call to the payment_processor. The payment processor

replies either with ok (indicating that the payment was successful), in which case the stock is

decreased; or payment_declined. In both cases the result is relayed to the customer.

Even though the scenario is quite small, there is a lot of room for error in the implementation: for

example, forgetting the ReplyTo ! out_of_stock line would result in the customer waiting indefinitely,

whereas a payload or arity mismatch on any of the messages would result in a runtime error.
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(Shop interacting with customer)

Customer → Shop : requestItems( ) .
Shop → Customer : items( [ (ItemID × ItemName) ] ) .
𝜇 loop.

Customer → Shop : {
getItemInfo(ItemID) .
Shop → Customer : itemInfo(Description) . loop,

checkout( ([ItemID] × PaymentDetails) ) .
Shop → Customer : {

paymentProcessing( ) .
Shop → PaymentProcessor :

buy(PaymentDetails × Price) .
PaymentProcessor → Shop : {
ok( ) .
Shop → Customer : ok(DeliveryDate) . loop,

paymentDeclined( ) .
Shop → Customer :

paymentDeclined( ) . loop
},

outOfStock( ) .
Shop → Customer : outOfStock( ) . loop

}
}

(Shop interacting with staff)

𝜇 loop.

Staff → Shop : {
addItem( (Name × Description × Price × Stock) ) . loop,
removeItem(ItemID) . loop

}

(a) Global types

(Shop interacting with customer)

ShopTy ≜
Customer& requestItems( ) .
Customer ⊕ items( [ (ItemID × ItemName) ] ) .
𝜇 loop.

Customer&{
getItemInfo(ItemID) .
Customer ⊕ itemInfo(Description) . loop

checkout( ( [ItemID] × PaymentDetails) ) .
Customer ⊕{
paymentProcessing( ) .
PaymentProcessor ⊕

buy( (PaymentDetails × Price) ) .
PaymentProcessor&{
ok( ) .Customer ⊕ ok(DeliveryDate) . loop
paymentDeclined( ) .
Customer ⊕ paymentDeclined( ) . loop

},
outOfStock( ) .
Customer ⊕ outOfStock( ) . loop

}
}

(Shop interacting with staff)

ShopTy2 ≜
𝜇 loop.

Staff&{
addItem( (Name × Description × Price × Stock) ) . loop,
removeItem(ItemID) . loop

}

(b) Local types

Fig. 2. Global and local types for shop scenario

1.2 Multiparty session types
Structured interactions, like those in our motivating example, can be captured by multiparty session
types (MPSTs) [21]. A global type is a sequence of interactions between participants. Figure 2a shows
the global types for our scenario: the first global type shows the interactions between the customer,

shop, and payment processor, whereas the second shows the (simpler) interactions between the

staff and the shop. For example, Shop → Customer : items( [(ItemID × ItemName)]) . 𝐺 denotes

the Shop role sending an items message to the Customer role before proceeding as 𝐺 . Interactions

may potentially have different branches (e.g., getItemInfo and checkout).

A global type can be projected to local types that describe the protocol from the perspective of

each participant. Figure 2b shows the corresponding local types for the Shop; selection (output)

actions are denoted with ⊕, whereas offering (receive) actions are denoted with &.

MPSTs are a convenient and successful approach that allow us to statically check conformance

to communication protocols. However, there are significant challenges to applying MPSTs to

actor-style programming: session types focus on communication channels, whereas actors use

many-sender single-receiver communication where an actor receives from an implicit mailbox

(see [15] for a detailed comparison). For example: we can type a channel endpoint with (binary)

session type !Int.?Int.End (send then receive an integer), but since we can only send to an actor

reference (resp. receive from a mailbox), it is non-obvious how to apply session types directly.

Multiparty session actors. Neykova and Yoshida [37] introduced a programming methodology

for actor programming with multiparty session types, which was later applied to Erlang [12].

The idea (Figure 3) is that each actor can be involved in multiple sessions, with incoming and

outgoing messages passing through FSM-based monitors. However, the dynamic approach detects
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violations late, and monitoring incurs performance overheads. Furthermore, these works have

not been formalised nor distilled into a language design, so there is no formal account of their

metatheoretical properties.

There are also significant gaps between existing work on languages with statically-checked

MPSTs and the actor paradigm: key to the session actor paradigm is the ability to take part inmultiple
sessions. However, most existing systems offer few guarantees when a process is involved with

more than one session: without sophisticated type systems [9] or more restrictive communication

topologies that enforce separation between sessions [26] we cannot rule out deadlocks.

User Logic Process

Monitor:

Session 1, Role  Buyer 

Monitor:

Session 2, Role  Warehouse 

User Logic Process Monitor Process

Message( Buyer , SID 1,  buy )

Message
( Buyer , SID 1,  buy )

.

.

.

Fig. 3. Multiparty session actors as introduced

by Neykova and Yoshida [37] (image from [12])

The majority of session-typed languages and

frameworks do not allow a process to listen for mes-

sages on multiple sessions, in spite of this being a

common pattern in concurrent programming. The

notable exceptions are systems that combine session

types with event-driven programming (e.g., [47, 49]),

but these require a full inversion of control, lead-

ing to code that can be difficult to follow. These

approaches are also formalised as process calculi,

leaving a significant gap between the formalism and

the concrete programming language design.

Key ideas. The main contribution of this work

is the first statically-typed language design, Maty, that fully supports actor programming with

multiparty session types (in contrast to more limited designs [16, 19] that only allow actors to

take part in a single session). Our key insight is to combine a flow-sensitive effect type system [31]

(similar to work on parameterised monads [4]) with event-driven programming and first-class
message handlers. Actors register to participate in a session through an access point [17]. After
session establishment, each actor can perform computations and send messages in direct style, and

suspend with a message handler when it is waiting for a message from another participant.

1.3 Maty by example
Maty is a functional programming language with support for lightweight processes that communi-

cate using session-typed message passing. In this section we will show how our Erlang shop actor

can be written in Maty; the other components can be written similarly.

The entry point of our program creates two access points [17]: one for customer sessions, and

one for staff sessions. An access point can be thought of as a “matchmaking service”: different

participants can register their intention to take part in a session, and the session is established once

all participants are available. We spawn customer and payment processor actors (details omitted),

and also a shop actor. Each access point is created by specifying the set of roles involved with the

session along with their local types; ShopTy is above but we omit the other local types.

main ≜
let custAP = newAP

Shop : ShopTy,
Customer : CustTy,
PaymentProcessor : PPTy

in
let staffAP = newAP

Shop : ShopTy2,
Staff : StaffTy

in
spawn shop(custAP, staffAP ) initialState;
spawn staff(staffAP ) ( ) ;
spawn customer(custAP ) ( )

registerForever(ap, role, callback) ≜
rec install (_) .

register ap role (install ( ) ) ;
callback ( )

shop(custAP, staffAP ) ≜
register custAP Shop

(registerForever(custAP, Shop, 𝜆_. suspend itemReqHandler) ( ) ) ;
register staffAP Shop

(registerForever(staffAP, Shop, 𝜆_. suspend staffReqHandler) ( ) )
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itemReqHandler ≜
handler Customer {

requestItems( ) ↦→
let items = get in
Customer ! itemSummary(summary(items) ) ;
suspend custReqHandler

}

custReqHandler ≜
handler Customer {

getItemInfo(itemID) ↦→
let items = get in
Customer ! itemInfo(lookupItem(itemID, items) ) ;
suspend custReqHandler

checkout( (itemIDs, details) ) ↦→
let items = get in
if inStock(itemIDs, items) then

Customer ! paymentProcessing( ) ;
let total = cost(itemIDs, items) in
set decreaseStock(itemIDs, items) ;
PaymentProcessor ! buy( (total, details) ) ;
suspend paymentResponseHandler(itemIDs)

else
Customer ! outOfStock( ) ;
suspend custReqHandler

}

paymentResponseHandler(itemIDs) ≜
handler PaymentProcessor {

ok( ) ↦→
Customer ! ok(deliveryDate(itemIDs) ) ;
suspend custReqHandler

paymentDeclined( ) ↦→
Customer ! paymentDeclined( ) ;
let items = get in
set increaseStock(itemIDs, items) ;
suspend custReqHandler

}

staffReqHandler ≜
handler Staff {

addItem( (name, description, price, stock) ) ↦→
let items = get in
set add(name, description, price, stock, items)
suspend stockHandler

removeItem(itemID) ↦→
let items = get in
set remove(itemID, items) ;
suspend stockHandler

}

Fig. 4. Implementation of Shop message handlers in Maty

The shop definition takes the two access points and then proceeds to register to take part both

in a session to interact with customers, and also to interact with staff. In general, by evaluating

register 𝑉 p 𝑀 an actor registers with access point 𝑉 to take part in the session as role p, storing

computation 𝑀 to be invoked when the session is established. The registerForever meta-level

definition ensures that the actor re-registers whenever a session is established, meaning that the

shop can accept an unlimited number of clients. After each session has been established, the session

type for the shop states that it needs to receive a message from a client, so the shop suspends with

message handlers itemReqHandler and staffReqHandler respectively. Suspending places the actor

in an idle state and installs the handler to be invoked when a message arrives.

Figure 4 shows the implementation of the shop’s message handlers. A message handler expecting

to receive from role p has the form handler p {ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 }𝑖∈𝐼 ; each ℓ𝑖 (𝑥𝑖 ) denotes a message tag ℓ𝑖
(for example buy or removeItem) and a variable 𝑥𝑖 to bind the message’s payload in the computation

𝑀𝑖 . For simplicity, we use meta-level recursion as a shorthand for a (mutually)-recursive definition;

we assume the usual encoding using anonymous recursive functions. The structure of the program

closely mirrors that of the corresponding gen_server code. The main differences are:

• Communication takes place using role names as opposed to process IDs. This avoids the

need to pass PIDs as part of messages.

• Unlike the gen_server code, where code for all messagesmust be specified in the handle_call
and handle_cast functions, our structured programming model means that each handler

only needs to consider messages that are relevant at that point of the session.

• The code makes use of an effectful treatment of state through the get and set constructs.
Importantly, each actor can be in multiple sessions at once, so can handle requests from many

clients, with all communication checked statically.
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1.4 Contributions
This paper introducesMaty: the first statically-typed actor language design with multiparty session

types where each actor can be involved in multiple sessions and can gracefully handle failure.

Concretely, we make three specific contributions:

(1) We introduce Maty, the first actor language design with full support for multiparty session

types (§2). We show that Maty enjoys a strong metatheory including type preservation,

progress, and global progress; in practice this means that Maty programs are free of com-

munication mismatches and deadlocks (§3).

(2) We describe three extensions to Maty: state; the ability to proactively switch to another

session; and support for process supervision and cascading failure as in Erlang (§4).

(3) We detail our implementation of Maty using an API generation approach in Scala (§5), and

demonstrate our implementation on a real-world case study from the factory domain as

well as a chat server application.

Section 6 discusses related work, and Section 7 concludes.Wewill submit our implementation
and examples as an artifact.

2 MATY: A CORE ACTOR LANGUAGEWITH MULTIPARTY SESSION TYPES
In this section we introduce Maty, giving its syntax, typing rules, and semantics.

2.1 Syntax and Typing Rules
Figure 5 shows the static semantics of Maty. We omit state (as in our Shop example) from our core

calculus as it is orthogonal, considering it as an extension. We let p, q range over roles, and 𝑥,𝑦, 𝑧, 𝑓

range over variables. We stratify the calculus into values 𝑉 ,𝑊 and computations𝑀, 𝑁 in the style

of fine-grain call-by-value [29], with different typing judgements for each. Unlike many session

type systems, we do not need linear types when typing values or computations as session typing is

enforced by effect typing; our approach is inspired by that of Harvey et al. [19].

Session types. Although global types are convenient for describing protocols, we instead fol-

low Scalas and Yoshida [44] and base our formalism around local types (projection of global types

onto roles is standard [21, 42]; the local types resulting from a projecting a global type satisfy

the properties that we will see in §3 [44]). Selection session types p ⊕{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 indicate that a
process can choose to send a message with label ℓ𝑗 and payload type 𝐴 𝑗 to role p, and continue as

session type 𝑆 𝑗 (assuming 𝑗 ∈ 𝐼 ). Branching session types p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 indicate that a process
must receive a message. We let 𝑆 ! range over selection (or output) session types, and let 𝑆? range

over branching (or input) session types. Session type 𝜇 𝑋 .𝑆 indicates a recursive session type that

binds variable 𝑋 in 𝑆 ; we take an equi-recursive view of session types and identify each recursive

session type with its unfolding. Finally, end denotes a session type that has finished.

Types. Base types 𝐶 are standard. Since our type system enforces session typing by pre- and

postconditions (c.f. parameterised monads [4]), a function type 𝐴
𝑆,𝑇−−→ 𝐵 states that the function

takes an argument of type 𝐴 where the current session type is 𝑆 , and produces a result of type 𝐵

with resulting session type 𝑇 . An access point has type AP((p𝑖 : 𝑆𝑖 )𝑖 ), mapping each role to a local

type. Finally, a message handler has type Handler(𝑆?) where 𝑆? is an input session type.

Values. The value typing judgement has the form Γ ⊢𝜑 𝑉 : 𝐴 (we will return to behavioural

properties 𝜑 in §3, and omit 𝜑 from the rules to avoid clutter). Typing rules for variables and

constants are standard (we assume constants include at least the unit value () of type 1), and
typing rules for anonymous functions and anonymous recursive functions are adapted to include
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Syntax of types and type environments

Output session types 𝑆 ! ::= p ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖
Input session types 𝑆? ::= p&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖
Session types 𝑆,𝑇 ::= 𝑆 ! | 𝑆? | 𝜇 𝑋 .𝑆

| 𝑋 | end

Types 𝐴, 𝐵 ::= 𝐶 | 𝐴
𝑆,𝑇−−→ 𝐵 | AP( (p𝑖 : 𝑆𝑖 )𝑖 )

| Handler(𝑆? )
Base types 𝐶 ::= 1 | Bool | Int | · · ·
Type envs. Γ ::= · | Γ, 𝑥 : 𝐴

Value typing Γ ⊢𝜑 𝑉 : 𝐴

TV-Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

TV-Const

𝑐 has base type𝐶

Γ ⊢ 𝑐 : 𝐶

TV-Lam

Γ, 𝑥 : 𝐴 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴
𝑆,𝑇−−→ 𝐵

TV-Rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴
𝑆,𝑇−−→ 𝐵 | 𝑆 ⊲ 𝑀 :𝐴

𝑆,𝑇−−→ 𝐵 ⊳ 𝑇

Γ ⊢ rec 𝑓 (𝑥 ) .𝑀 : 𝐴
𝑆,𝑇−−→ 𝐵

TV-Handler

(Γ, 𝑥 : 𝐴𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end)𝑖
Γ ⊢ handler p {ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 }𝑖 : Handler(p&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖 )

Computation typing Γ | 𝑆 ⊲𝜑 𝑀 :𝐴 ⊳ 𝑇

T-Let

Γ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ, 𝑥 : 𝐴 | 𝑆2 ⊲ 𝑁 :𝐵 ⊳ 𝑆3

Γ | 𝑆1 ⊲ let 𝑥 ⇐ 𝑀 in 𝑁 :𝐵 ⊳ 𝑆3

T-Return

Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 ⊲ return 𝑉 :𝐴 ⊳ 𝑆

T-App

Γ ⊢ 𝑉 : 𝐴
𝑆,𝑇−−→ 𝐵

Γ ⊢ 𝑊 : 𝐴

Γ | 𝑆 ⊲ 𝑉 𝑊 :𝐵 ⊳ 𝑇

T-Spawn

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ spawn 𝑀 : 1 ⊳ 𝑆

T-If

Γ ⊢ 𝑉 : Bool

Γ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2 Γ | 𝑆1 ⊲ 𝑁 :𝐴 ⊳ 𝑆2

Γ | 𝑆1 ⊲ if 𝑉 then𝑀 else 𝑁 :𝐴 ⊳ 𝑆2

T-Send

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : 𝐴𝑗

Γ | p ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 ⊲ p ! ℓ𝑗 (𝑉 ) : 1 ⊳ 𝑆 𝑗

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆? )
Γ | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑆 ′

T-NewAP

𝜑 is a safety property 𝜑 ( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 )
Γ | 𝑆 ⊲ newAP(p𝑖 :𝑇𝑖 )𝑖∈𝐼 :AP( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 ) ⊳ 𝑆

T-Register

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : AP( (p𝑖 : 𝑇𝑖 )𝑖∈𝐼 ) Γ | 𝑇𝑗 ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ register 𝑉 p𝑗 𝑀 : 1 ⊳ 𝑆

Fig. 5. Maty Static Semantics

session pre- and postconditions. A message handler handler p {ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 }𝑖 specifies an actor’s

behaviour when a message is received from role p; each clause states that when a message with label

ℓ𝑖 is received, the payload is bound to 𝑥𝑖 in𝑀𝑖 . Rule TV-Handler states that the handler is typable

with type Handler(p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖 ) if each continuation𝑀𝑖 is typable with session precondition 𝑆𝑖
where the environment is extended with 𝑥𝑖 of type 𝐴𝑖 , and all branches have the postcondition end.

Computations. The computation typing judgement has the form Γ | 𝑆 ⊲𝜑 𝑀 :𝐴 ⊳𝑇 , read as “under

type environment Γ, and session precondition 𝑆 , term𝑀 has type 𝐴 and postcondition𝑇 ”. Again, 𝜑

refers to a behavioural property and will be discussed in §3.

A let-binding let 𝑥 ⇐ 𝑀 in 𝑁 evaluates 𝑀 and binds its result to 𝑥 in 𝑁 , with the session

postcondition from typing𝑀 used as the precondition when typing 𝑁 (T-Let); note that this is the

only evaluation context in the system. The return 𝑉 expression is a trivial computation returning

value 𝑉 and has type 𝐴 if 𝑉 also has type 𝐴 (T-Return). A function application 𝑉 𝑊 is typable

by T-App provided that the precondition in the function type matches the current precondition,

and advances the postcondition to that of the function type. Rule T-If types a conditional if its

condition is of type Bool and both continuations have the same return type and postcondition.

The spawn 𝑀 term spawns a new actor that evaluates term𝑀 ; rule T-Spawn types spawn 𝑀

with the unit type if the spawned thread𝑀 must has return type 1 and pre- and postconditions end
(since the spawned computation is not yet in a session and so cannot communicate). Rule T-Send
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types a send computation p ! ℓ (𝑉 ) if ℓ is contained within the selection session precondition, and if

𝑉 has the corresponding type; the postcondition is the session continuation for the specified branch.

There is no receive construct, since receiving messages is handled by the event loop. Instead, when

an actor wishes to receive a message, it must suspend itself and install a message handler using

suspend 𝑉 . The T-Suspend rule states that suspend 𝑉 is typable if the handler is compatible with

the current session type precondition; since the computation does not return, it can be given an

arbitrary return type and postcondition.

Sessions are initiated using access points: we create an access point for a session with roles and

types (p𝑖 : 𝑆𝑖 )𝑖 using newAP(p𝑖 :𝑆𝑖 )𝑖 , which must annotated with the set of roles and local types

to be involved in the session (T-NewAP). The rule ensures that the session types satisfy a safety
property; we will describe this further in §3, but at a high level, if a set of session types is safe then

the types are guaranteed never to cause a runtime type error due to a communication mismatch.

An actor can register to take part in a session as role p on access point 𝑉 using register 𝑉 p 𝑀 ;

term𝑀 is a callback to be invoked once the session is established. Rule T-Register ensures that the

access point must contain a session type 𝑇 associated with role p, and since the initiation callback

will be evaluated when the session is established,𝑀 must be typable under session type 𝑇 . Since

neither newAP nor register perform any communication, the session types are unaltered.

2.2 Operational semantics
Figure 6 introduces runtime syntax, structural congruence, and configuration reduction rules.

Runtime syntax. To model the concurrent behaviour of Maty processes, we require additional

runtime syntax. Runtime names are identifiers for runtime entities: actor names 𝑎 identify actors;

session names 𝑠 identify established sessions; access points 𝑝 identify access points; and initialisation
tokens 𝜄 associate registration entries in an access point with registered initialisation continuations.

We model communication and concurrency through a language of configurations (reminiscent of

𝜋-calculus processes). A name restriction (𝜈𝛼)C binds runtime name 𝛼 in configuration C, and the

right-associative parallel composition C ∥ D denotes configurations C and D running in parallel.

An actor is represented as a 4-tuple ⟨𝑎,T , 𝜎, 𝜌⟩, where T is a thread that can either be idle; a
term𝑀 that is not involved in a session; or (𝑀)𝑠 [p] denoting that the actor is evaluating term𝑀

playing role p in session 𝑠 . We say that an actor is active if its thread is𝑀 or (𝑀)𝑠 [p] (for some 𝑠 , p,

and𝑀), and idle otherwise. A handler state 𝜎 maps endpoints to handlers, which are invoked when

an incoming message is received and the actor is idle. Finally 𝜌 is an initialisation state that maps

initialisation tokens to callbacks to be invoked whenever a session is established. Our reduction

rules make use of indexing notation as syntactic sugar for parallel composition: for example,

⟨𝑎𝑖 ,T𝑖 , 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛 is syntactic sugar for the configuration ⟨𝑎1,T1, 𝜎1, 𝜌1⟩ ∥ · · · ∥ ⟨𝑎𝑛,T𝑛, 𝜎𝑛, 𝜌𝑛⟩.
An access point 𝑝 (𝜒) has name 𝑝 and state 𝜒 , where the state maps roles to lists of initialisation

tokens for actors that have registered to take part in the session. Finally, each session 𝑠 is associated

with a queue 𝑠 ⊲ 𝛿 , where 𝛿 is a list of entries (p, q, ℓ (𝑉 )) denoting a message ℓ (𝑉 ) sent from p to q.

Structural congruence and term reduction. Structural congruence is the smallest congruence

relation defined by the axioms in Figure 6. As with the 𝜋-calculus, parallel composition is associative

and commutative, and we have the usual scope extrusion rule; we write fn(C) to refer to the set

of free names in a configuration C. We also include a structural congruence rule on queues that

allows us to reorder unrelated messages; notably this rule maintains message ordering between

pairs of participants. Consequently, the session-level queue representation is isomorphic to a set of

queues between each pair of roles. Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction (omitted).
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Runtime syntax

Actor names 𝑎,𝑏

Session names 𝑠

AP names 𝑝

Init. tokens 𝜄

Runtime names 𝛼 ::= 𝑎 | 𝑠 | 𝑝 | 𝜄

Values 𝑉 ::= · · · | 𝑝

Type env. Γ ::= · · ·
| Γ, 𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 )

Reduction labels 𝑙 ::= 𝑠 | 𝜏

Configurations C, D ::= (𝜈𝛼 ) C | C ∥ D
| ⟨𝑎, T, 𝜎, 𝜌 ⟩ | 𝑝 (𝜒 ) | 𝑠 ⊲ 𝛿

Message queues 𝛿 ::= 𝜖 | (p, q, ℓ (𝑉 ) ) · 𝛿
Stored handlers 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉

Initialisation states 𝜌 ::= 𝜖 | 𝜌, 𝜄 ↦→ 𝑀

Thread states T ::= idle | (𝑀 )𝑠 [p] | 𝑀

Access point states 𝜒 ::= (p𝑖 ↦→ 𝜄𝑖 )𝑖
Evaluation contexts E ::= [ ] | let 𝑥 ⇐ E in 𝑀

Thread contexts M ::= E | (E)𝑠 [p]
Top-level contexts Q ::= [ ] | ( [ ] )𝑠 [p]

Structural congruence (configurations) C ≡ D

C ∥ D ≡ D ∥ C C ∥ (D ∥ D′ ) ≡ (C ∥ D) ∥ D′ 𝛼 ∉ fn(C)
C ∥ (𝜈𝛼 )D ≡ (𝜈𝛼 ) (C ∥ D) (𝜈𝑠 ) (𝑠 ⊲ 𝜖 ) ∥ C ≡ C

p1 ≠ p2 ∨ q1 ≠ q2

𝑠 ⊲ 𝜎1 · (p1, q1, ℓ1 (𝑉1 ) ) · (p2, q2, ℓ2 (𝑉2 ) ) · 𝜎2 ≡ 𝑠 ⊲ 𝜎1 · (p2, q2, ℓ2 (𝑉2 ) ) · (p1, q1, ℓ1 (𝑉1 ) ) · 𝜎2

Configuration reduction C 𝑙−−→ D

E-Send

⟨𝑎, (E[q ! ℓ (𝑉 ) ] )𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 𝑠−−→
⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 ) )

E-React

(ℓ (𝑥 ) ↦→ 𝑀 ) ∈ −→
𝐻

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 } ], 𝜌 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 ) ) ·𝛿 𝑠−−→
⟨𝑎, (𝑀 {𝑉 /𝑥 })𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿

E-Suspend

⟨𝑎, (E[suspend 𝑉 ] )𝑠 [p] , 𝜎, 𝜌 ⟩ 𝜏−−→
⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌 ⟩

E-Spawn

⟨𝑎,M[spawn 𝑀 ], 𝜎, 𝜌 ⟩ 𝜏−−→
(𝜈𝑏 ) (⟨𝑎,M[return ( ) ], 𝜎, 𝜌 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖 ⟩)

E-Reset

⟨𝑎, Q[return ( ) ], 𝜎, 𝜌 ⟩ 𝜏−−→
⟨𝑎, idle, 𝜎, 𝜌 ⟩

E-NewAP

𝑝 fresh

⟨𝑎,M[newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 ], 𝜎, 𝜌 ⟩
𝜏−−→

(𝜈𝑝 ) (⟨𝑎,M[return 𝑝 ], 𝜎, 𝜌 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈𝐼 ) )

E-Register

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑀 ], 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ] ) 𝜏−−→
(𝜈𝜄 ) (⟨𝑎,M[return ( ) ], 𝜎, 𝜌 [𝜄 ↦→ 𝑀 ] ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄} ] ) )

E-Init

𝑠 fresh

(𝜈𝜄p𝑖 )𝑖∈1..𝑛 (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ] ⟩𝑖∈1..𝑛 )
𝜏−−→

(𝜈𝑠 ) (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ⟩𝑖∈1..𝑛 )

E-Lift

𝑀 −→M 𝑁

⟨𝑎,M[𝑀 ], 𝜎, 𝜌 ⟩ 𝜏−−→⟨𝑎,M[𝑁 ], 𝜎, 𝜌 ⟩

E-Nu

C 𝑙−−→ D

(𝜈𝛼 ) C 𝑙−𝛼−−→(𝜈𝛼 )D

E-Par

C 𝑙−−→ C′

C ∥ D 𝑙−−→ C′ ∥ D

E-Struct

C ≡ C′ C′ 𝑙−−→ D′ D′ ≡ D

C 𝑙−−→ D
where 𝑙 − 𝛼 = 𝜏 if 𝑙 = 𝛼, and 𝑙 otherwise

Fig. 6. Operational semantics

Communication and concurrency. It is convenient for our metatheory to annotate each communi-

cation reduction with the name of the session in which the communication occurs, although we

sometimes omit the label where it is not relevant. Rule E-Send describes a process playing role p in

session 𝑠 sending a message ℓ (𝑉 ) to role q: the message is appended to the session queue and the

operation reduces to return (). The E-React rule captures the event-driven nature of the system:

if an actor is idle, has a stored handler ℓ (𝑥) ↦→ 𝑀 for 𝑠 [p], and there exists a matching message in

the session queue, then the message is dequeued and the message handler is activated. If an actor
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Runtime types, environments, and labels
Polarised initialisation tokens 𝜄± ::= 𝜄+ | 𝜄−

Queue types 𝑄 ::= 𝜖 | (p, q, ℓ (𝐴) ) · 𝑄
Runtime type environments Δ ::= · | Δ, 𝑎 | Δ, 𝑝 | Δ, 𝜄± : 𝑆 | Δ, 𝑠 [p] : 𝑆 | Δ, 𝑠 : 𝑄

Labels 𝛾 ::= 𝑠 : p ↑ q::ℓ | 𝑠 : p ↓ q::ℓ | end(𝑠, p)

Structural congruence (queue types) 𝑄 ≡ 𝑄 ′

p1 ≠ p2 ∨ q1 ≠ q2

𝑄1 · (p1, q1, ℓ1 (𝐴1 ) ) · (p2, q2, ℓ2 (𝐴2 ) ) · 𝑄2 ≡ 𝑄1 · (p2, q2, ℓ2 (𝐴2 ) ) · (p1, q1, ℓ1 (𝐴1 ) ) · 𝑄2

Runtime type environment reduction Δ
𝛾
−→ Δ′

Lbl-Send Δ, 𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄
𝑠 :p↑q::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗 ) ) (if 𝑗 ∈ 𝐼 )

Lbl-Recv Δ, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : (q, p, ℓ𝑗 (𝐴𝑗 ) ) · 𝑄
𝑠 :q↓p::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 (if 𝑗 ∈ 𝐼 )

Lbl-End Δ, 𝑠 [p] : end
end(𝑠,p)
−−−−−−→ Δ

Lbl-Rec Δ, 𝑠 [p] : 𝜇 𝑋 .𝑆
𝛾
−→ Δ′ (if Δ, 𝑠 [p] : 𝑆 {𝜇 𝑋 .𝑆/𝑋 }

𝛾
−→ Δ′ )

Fig. 7. Labelled transition system on runtime type environments

is currently evaluating a computation in the context of a session 𝑠 [p], rule E-Suspend evaluates

suspend 𝑉 by installing handler 𝑉 for 𝑠 [p] and returning the actor to the idle state.

Rule E-Spawn spawns a fresh actor with empty handler and initialisation state, and E-Reset

returns an actor to the idle state once it has finished evaluating.

Session initialisation. Rule E-NewAp creates fresh access point name 𝑝 and an access point with

empty mappings for each role. Rule E-Register evaluates register 𝑝 p 𝑀 to register an actor to

play role p with access point 𝑝: the rule creates an initialisation token 𝜄, storing a mapping from

𝜄 to the callback𝑀 in the local initialisation environment, and appending 𝜄 to the participant set

for p in 𝑝 . Finally, E-Init establishes a session when idle participants are registered for all roles:

in this case, the initialisation tokens are discarded; a session name restriction and empty queue is

created; and each initialisation callback is invoked in the context of the newly-created session. The

remaining rules are administrative.

3 METATHEORY
Following Scalas and Yoshida [44] we begin by showing a type semantics for sets of local types.

Using this semantics we can define behavioural properties on types (such as safety, which ensures

that communicated messages are always compatible; and progress, which ensures communication

is deadlock-free). By making our runtime typing rules parametric in the particular behavioural

property used, we can customise the property to show that behavioural properties on types give

rise to corresponding guarantees about the behaviour of configurations.

Relations. We write R?
, R+

, and R∗
for the reflexive, transitive, and reflexive-transitive closures

of a relation R respectively. We write R1R2 for the composition of relations R1 and R2.

Runtime types and environments. Runtime environments are used to type configurations and to

define behavioural properties on sets of local types. Unlike type environments Γ, runtime type

environments Δ are linear to ensure safe use of session channel endpoints, and also to ensure that

there is precisely one instance of each actor and access point. Runtime type environments can

contain access point names 𝑝 ; polarised initialisation tokens 𝜄± : 𝑆 (since each initialisation token is

used twice: once in the access point and one inside an actor’s initialisation environment); session

channel endpoints 𝑠 [p] : 𝑆 ; and finally session queue types 𝑠 : 𝑄 . Queue types mirror the structure
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of queue entries and are a triple (p, q, ℓ (𝐴)). We include structural congruence on queue types to

match structural congruence on queues, and extend this to runtime environments.

Labelled transition system on environments. Figure 7 shows the LTS on runtime type environments.

The Lbl-Send reduction gives the behaviour of an output session type interacting with a queue:

supposing we send a message with some label ℓ𝑗 from p to q, we advance the session type for p to the

continuation 𝑆 𝑗 and add the message to the end of the queue. The Lbl-Recv rule handles receiving

and works similarly, instead consuming the message from the queue. Rule Lbl-End allows us to

discard a session endpoint from the environment if it does not support any further communication,

and Lbl-Rec allows reduction of recursive session types by considering their unrolling. We write

Δ =⇒ Δ′
if Δ ≡

𝛾
−→≡ Δ′

for some synchronisation label 𝛾 .

Safety property. Safety is the minimum property we require for type preservation: it ensures that

communication does not introduce type errors. Intuitively a safety property ensures that a message

received from a queue is of the expected type, thereby ruling out communication mismatches;

safety properties must also hold under unfoldings of recursive session types and safety must be

preserved by environment reduction.

Definition 3.1 (Safety property). 𝜑 is a safety property of runtime type environments Δ if:

(1) 𝜑 (Δ, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖 ).𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄) with 𝑄 ≡ (q, p, ℓ𝑗 (𝐵 𝑗 )) ·𝑄 ′
implies 𝑗 ∈ 𝐼 and 𝐵 𝑗 = 𝐴 𝑗 ;

(2) 𝜑 (Δ, 𝑠 [p] : 𝜇 𝑋 .𝑆) implies 𝜑 (Δ, 𝑠 [p] : 𝑆{𝜇 𝑋 .𝑆/𝑋 }); and
(3) 𝜑 (Δ) and Δ =⇒ Δ′

implies 𝜑 (Δ′).
A runtime environment is safe, written safe(Δ), if 𝜑 (Δ) for a safety property 𝜑 .

We henceforth assume that all other properties are safety properties.

3.1 Runtime typing
In order to reason about the metatheory we must firstly define an extrinsic [41] type system for

configurations; note that this is used only for reasoning and need not be implemented as part of a

typechecker. Figure 8 shows the runtime typing rules for the system.

Runtime typing rules. The runtime typing judgement Γ; Δ ⊢𝜑 C can be read, “under type envi-

ronment Γ and runtime type environment Δ, where the session types used in each session must

satisfy behavioural property 𝜑 , configuration C is well typed”. We omit 𝜑 from the rules to avoid

clutter, and write Γ; Δ ⊢ C when we wish to consider the largest safety property.

We have three rules for name restrictions: read bottom-up, T-APName adds 𝑝 to both the type

and runtime environments, and rule T-InitName adds tokens of both polarities to the runtime type

environment. Rule T-SessionName is key to the generalised multiparty session typing approach

introduced by Scalas and Yoshida [44]: the type environment Δ′
consists of a set of session channel

endpoints {𝑠 [p𝑖 ]}𝑖 with session types 𝑆p𝑖 , along with a session queue 𝑠 : 𝑄 . Environment Δ′
must

satisfy 𝜑 , where 𝜑 is at least a safety property.

Rule T-Par types the two parallel subconfigurations under disjoint runtime environments. Rule

T-AP types an access point: it requires that the access point reference is included in Γ and through

the auxiliary judgement {(p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒 ensures that each initialisation token in the access point

state has a compatible type. We also require that the collection of roles that make up the access

point satisfy a safety property in order to ensure that any established session is safe.

Rule T-Actor types an actor ⟨𝑎,T , 𝜎, 𝜌⟩ and makes use of three auxiliary judgements. The thread

state typing judgement Γ;Δ ⊢ T states that the idle state is always well typed (TT-Idle); a thread

(𝑀)𝑠 [p] is well typed if given a singleton runtime environment 𝑠 [p] : 𝑆 , term 𝑀 is typable with

session precondition 𝑆 , return type 1, and post condition end; and a non-session thread𝑀 is typable
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Runtime typing rules Γ; Δ ⊢𝜑 C

T-APName

Γ, 𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ; Δ, 𝑝 ⊢ C
Γ; Δ ⊢ (𝜈𝑝 ) C

T-InitName

Γ; Δ, 𝜄+ : 𝑆, 𝜄− : 𝑆 ⊢ C
Γ; Δ ⊢ (𝜈𝜄 ) C

T-SessionName

Δ′ = {𝑠 [p𝑖 ] : 𝑆p𝑖 }𝑖 , 𝑠 : 𝑄 𝜑 (Δ′ ) 𝑠 ∉ Δ
Γ; Δ,Δ′ ⊢ C 𝜑 is a safety property

Γ; Δ ⊢ (𝜈𝑠 ) C

T-ActorName

Γ; Δ, 𝑎 ⊢ C
Γ; Δ ⊢ (𝜈𝑎) C

T-Par

Γ; Δ1 ⊢ C Γ; Δ2 ⊢ D
Γ; Δ1,Δ2 ⊢ C ∥ D

T-AP

𝑝 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ∈ Γ { (p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒

𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖 ) 𝜑 is a safety property

Γ; Δ, 𝑝 ⊢ 𝑝 (𝜒 )

T-Actor

Γ;Δ1 ⊢ T Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌 ⟩

T-EmptyQueue

Γ; 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖

T-ConsQueue

Γ ⊢ 𝑉 : 𝐴 Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎

Γ; 𝑠 : ( (p, q, ℓ (𝐴) ) · 𝑄 ) ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 ) ) · 𝜎

Access point state typing { (p𝑖 : 𝑆𝑖 )𝑖 } Δ ⊢ 𝜒

TA-Empty

{ (p𝑖 : 𝑆𝑖 )𝑖 } · ⊢ 𝑆

TA-Entry

𝑗 ∈ 𝐼 { (p𝑖 : 𝑆𝑖 )𝑖∈𝐼 } Δ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈𝐼 } Δ, �𝜄− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ �̃� ]

Thread state typing Γ;Δ ⊢ T

TT-Idle

Γ; · ⊢ idle

TT-Sess

Γ | 𝑆 ⊲ 𝑀 : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (𝑀 )𝑠 [p]

TT-NoSess

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ; · ⊢ 𝑀

Handler state typing Γ;Δ ⊢ 𝜎

TH-Empty

Γ; · ⊢ 𝜖

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆? ) Γ;Δ ⊢ 𝜎
Γ;Δ, 𝑠 [p] : 𝑆? ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉 ]

Initialisation state typing Γ;Δ ⊢ 𝜌

TI-Empty

Γ; · ⊢ 𝜖

TI-Callback

Γ | 𝑆 ⊲ 𝑀 : 1 ⊳ end Γ;Δ ⊢ 𝜌

Γ;Δ, 𝜄+ : 𝑆 ⊢ 𝜌 [𝜄 ↦→ 𝑀 ]

Fig. 8. Runtime typing

if it has session pre- and postconditions end and return type 1. In turn this ensures that all session

actions are used, or the thread suspends. The handler typing judgement ensures that the stored

handlers match the types in the runtime environments, and the initialisation state typing judgement

ensures that all initialisation callbacks match the session type of the initialisation token.

Finally, T-EmptyQueue and T-ConsQueue ensure that queued messages match the queue type.

3.2 Properties
With runtime typing defined, we can begin to describe the properties enjoyed by Maty.

3.2.1 Preservation. Tying is preserved by reduction; consequently we know that communication

actions must match those specified by the session type. Full proofs can be found in Appendix C.

Theorem 3.2 (Preservation). Typability is preserved by structural congruence and reduction.

(≡) If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ; Δ′ ⊢ D.
(→) If Γ; Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

3.2.2 Progress. The nextmajor propertywe can show is progress, which states that if a configuration
is typable using a property that guarantees session type reduction, then the configuration can

either make progress, or is in a position where no actors are involved in a session and no further

sessions can be established. We start by classifying a canonical form for configurations.

Definition 3.3 (Canonical form). A configuration C is in canonical form if it can be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)
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Every well typed configuration can be written in canonical form; the result follows from the

structural congruence rules and Theorem 3.2.

Proposition 3.4. If Γ; Δ ⊢ C then there exists a D ≡ C where D is in canonical form.

Next, we define progress on runtime environments, which is a safety property on types that

ensures all sent messages are eventually received.

Definition 3.5 (Progress). A runtime environment Δ satisfies progress, written prog(Δ), if
Δ=⇒ ∗ Δ′ ̸=⇒ implies that Δ′ = 𝑠 : 𝜖 .

If we require the session types in every session to satisfy progress, the property transfers to con-
figurations: a non-reducing closed configuration cannot be blocked on any session communication

and so cannot contain any sessions.

Theorem 3.6 (Progress). If ·; · ⊢prog C, then either there exists some D such that C −→ D, or C
is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ⟩𝑗∈1..𝑛)
3.2.3 Global Progress. The progress theorem shows that session typing can rule out deadlocks. In

the absence of general recursion, the system in fact enjoys global progress: every session will be

able to reduce after a finite number of steps. The restriction on general recursion aligns with the

expectation thatmessage handlers should not run indefinitely and block the event loop. Nevertheless,

finite recursive behaviour can be achieved using for example structural recursion [32] or a natural

number recursor as in System T (c.f. [18]). Let Γ ⊢f 𝑉 : 𝐴, Γ | 𝑆 ⊲f 𝑀 :𝐴 ⊳ 𝑇 , and Γ; Δ ⊢f C be type

judgements for finite values, terms, and configurations respectively, where terms cannot contain

recursive functions. Given a configuration typing derivation it is sometimes useful to annotate

session name restrictions with their associated runtime environments, i.e., (𝜈𝑠 : Δ)C. The key
session progress theorem shows that for every session, any reduction in its associated session typing

environment can be (eventually) reflected by a session reduction in the configuration.

Definition 3.7 (Active environment / session). We say that a runtime type environment Δ is active,
written active(Δ), if it contains at least one entry of the form 𝑠 [p] : 𝑆 where 𝑆 ≠ end.

Theorem 3.8 (Session Progress). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C where active(Δ𝑠 ), then C 𝜏−−→
∗ 𝑠−−→.

The proof introduces a labelled transition system for computations reduction; standard techniques

such as ⊤⊤-lifting [30] show the existence of a finite reduction sequence to either a value or

suspend 𝑉 for some𝑉 . Global progress follows as a consequence of an operational correspondence

result between the LTS and configurations, along with similar reasoning to that of Theorem 3.6.

Let us write activeSessions(C) for the set of names of sessions typable under active environments.

Since (by Theorem 3.2) we can always use the structural congruence rules to hoist a session name

restriction to the topmost level, global progress follows as an immediate corollary of Theorem 3.8.

Corollary 3.9 (Global Progress). If ·; · ⊢fprog C, then for every 𝑠 ∈ activeSessions(C), C ≡
(𝜈𝑠)D for some D, and D 𝜏−−→

∗ 𝑠−−→.

4 EXTENSIONS
We can extend Maty with various extensions: actor-level state, the ability to switch between

sessions (allowing a message in one session to trigger communication in another), and the ability to

support cascading failures and Erlang supervision hierarchies; due to its importance for real actor

programming we concentrate on the latter. State is entirely standard so we omit it here, and we

give an informal description of session switching. Full details of both can be found in Appendix A.
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4.1 Switching Between Sessions
Until now we have considered scenarios where an actor is involved in independent sessions.
Suppose we want to change our shop example from Section 1 such that we maintain a long-

running session with a supplier and request delivery of an item as it runs out of stock. The key

difference to our original example is that the sessions are no longer independent: the order message

to the supplier (in the Restock session) is triggered only as a consequence of a buy message in

the session with a customer. Whereas before we only needed to suspend an actor in a receiving
state, this workflow requires us to also suspend an actor in a sending state, and switch into the

session at a later stage. We call this extension Maty⇄. Below, we can see the extension of the

shop example with the ability to switch into the restocking session; the new constructs are shaded.

ShopRestock ≜
𝜇 loop.

Supplier ⊕ order( ( [ItemID] × Quantity) ) .
Supplier& ordered(Quantity) . loop

custReqHandler ≜
handler Customer {
getItemInfo(itemID) ↦→ [ . . .]
checkout( (itemIDs, details) ) ↦→

let items = get in
if inStock(itemIDs, items) then

[ . . .]
else

Customer ! outOfStock( ) ;
become Restock itemIDs;
suspend

?
custReqHandler

}

shop(custAP, staffAP, restockAP ) ≜
register custAP Shop

(registerForever(custAP, Shop, 𝜆_. suspend
?
itemReqHandler) ( ) ) ;

register staffAP Shop

(registerForever(staffAP, Shop, 𝜆_. suspend
?
staffReqHandler) ( ) ) ;

register restockAP Shop (suspend
!
Restock restockHandler)

restockHandler ≜ 𝜆itemIDs .
Supplier ! order( (itemIDs, 10) ) ;
suspend

?
(

handler Supplier {
ordered(quantity) ↦→

increaseStock(itemIDs, quantity) ;
suspend

!
Restock restockHandler})

The program is implicitly parameterised by a mapping from static names like Restock to pairs

of session types and payload types (in our scenario, Restock maps to (ShopRestock, [ItemID]) to
show that an actor can suspend when its session type is ShopRestock, and must provide a list of

ItemIDs when switching back into the session). We split the suspend construct into suspend
?
𝑉

(to suspend awaiting an incoming message, as previously), and suspend
!
s 𝑉 (to suspend session

with name s given a function 𝑉 , until switched into), and introduce the become s𝑉 construct to

switch into a suspended session. We modify the shop definition to also register with the restockAP
access point, suspending the session (in a state that is ready to send) with the restockHandler. The

restockHandler takes an item ID, sends an order message to the supplier, and suspends again.

Metatheory. Maty⇄ satisfies preservation. Since (by design) become operations are dynamic

and not encoded in the protocol (for example, we might wish to queue two invocations of a send-

suspended session to be executed in turn), there is no type-level mechanism of guaranteeing that a

send-suspended session is invoked, soMaty⇄ instead enjoys a weaker version of progress where

non-reducing configurations can contain send-suspended sessions (see Appendix D).

4.2 Supervision & Cascading Failure
A large reason for the success of actor languages is their support for the let-it-crash philosophy:

if an actor encounters an error then it should crash and be restarted by a supervisor actor. Until
now we have not considered the possibility of failure. If an actor has crashed, then it cannot send

any further messages, so we need some mechanism to ensure sessions do not get ‘stuck’ due to a

failure. Our solution is based on the affine sessions approach [35], in particular its adaptation to

the multiparty setting [19, 28] and the asynchronous formulation introduced by Fowler et al. [14].
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Syntax

Types 𝐴, 𝐵 ::= · · · | Pid

Values 𝑉 ,𝑊 ::= · · · | 𝑎

Computations 𝑀,𝑁 ::= · · · | suspend 𝑉 𝑀

| monitor𝑉 𝑀 | raise

Monitored processes 𝜔 ::= �(𝑎,𝑀 )
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌,𝜔 ⟩

|  𝑎 |  𝑠 [p] |  𝜄

Modified typing rules for computations Γ | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Spawn

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ spawn 𝑀 :Pid ⊳ 𝑆

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆? )
Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆? ⊲ suspend 𝑉 𝑀 :𝐴 ⊳ 𝑇

T-Monitor

Γ ⊢ 𝑉 : Pid

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ monitor𝑉 𝑀 :1 ⊳ 𝑆

T-Raise

Γ | 𝑆 ⊲ raise:𝐴 ⊳ 𝑇

Modified configuration reduction rules C 𝑙−−→ D

E-React ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (handler q {−→𝐻 }, 𝑁 ) ], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 ) ) ·𝛿 𝑠−−→ ⟨𝑎, (𝑀 {𝑉 /𝑥 })𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿
if (ℓ (𝑉 ) ↦→ 𝑀 ) ∈ −→

𝐻

E-Spawn ⟨𝑎,M[spawn 𝑀 ], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ (𝜈𝑏 ) (⟨𝑎,M[return 𝑏 ], 𝜎, 𝜌,𝜔 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖, 𝜖 ⟩)
E-Suspend ⟨𝑎, (E[suspend 𝑉 𝑀 ] )𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ], 𝜌,𝜔 ⟩
E-Monitor ⟨𝑎,M[monitor 𝑏 𝑀 ], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑀 ) }⟩
E-InvokeM ⟨𝑎, idle, 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑀 ) }⟩ ∥  𝑏 𝜏−−→ ⟨𝑎,𝑀, 𝜎, 𝜌,𝜔 ⟩ ∥  𝑏
E-Raise ⟨𝑎, E[raise], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→  𝑎 ∥  𝜎 ∥  𝜌
E-RaiseS ⟨𝑎, (E[raise] )𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌
E-CancelMsg 𝑠 ⊲ (p, q, ℓ (𝑉 ) ) · 𝛿 ∥  𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
E-CancelAP (𝜈𝜄 ) (𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄 ) 𝜏−−→ 𝑝 (𝜒 [p ↦→ 𝜄′ ] )

E-CancelH ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (handler q {−→𝐻 }, 𝑀 ) ], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
𝜏−−→ ⟨𝑎,𝑀, 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] ∥  𝑠 [p] if messages(q, p, 𝛿 ) = ∅

where messages(p, q, 𝛿 ) = {ℓ (𝑉 ) | (r, s, ℓ (𝑉 ) ) ∈ 𝛿 ∧ p = r ∧ q = s}
Structural congruence C ≡ D
(𝜈𝑠 ) ( 𝑠 [p𝑖 ]𝑖∈1..𝑛 ∥ 𝑠 ⊲ 𝜖 ) ∥ C ≡ C

(𝜈𝑎) ( 𝑎) ∥ C ≡ C

Syntactic sugar
 𝜎 ≜  𝑠1 [p1 ] ∥ · · · ∥  𝑠𝑛 [p𝑛 ] (where dom(𝜎 ) = {𝑠𝑖 [p𝑖 ] }𝑖∈1..𝑛 )
 𝜌 ≜  𝜄1 ∥ · · · ∥  𝜄𝑛 (where dom(𝜌 ) = {𝜄𝑖 }𝑖∈1..𝑛 )

Fig. 9. Maty : Modified syntax and reduction rules

The key idea behind this approach is that a role can be marked as cancelled, meaning that it cannot

take part in any future sessions. Trying to receive from a cancelled participant, when there are no

remaining messages from that participant in the session queue, raises an exception; exceptions

then cause an actor to crash and propagate the failure.

Figure 9 shows the additional syntax, typing rules, and reduction rules needed for supervision and

cascading failure; we call this extensionMaty . Concretely we make actors addressable, meaning

that spawnwill return a process identifier (PID) of type Pid. We introduce two additional constructs:

monitor𝑉 𝑀 monitors the actor referred to by PID 𝑉 and installs a callback 𝑀 to be evaluated

should the actor crash; and raise, which when evaluated causes an actor to crash and cancels all

the sessions in which it is involved. We also modify the suspend construct to take an additional

computation 𝑀 to be run if the sender fails and the message is never sent; a sensible piece of

syntactic sugar would be suspend 𝑉 ≜ suspend 𝑉 raise to propagate the failure.

We can make our shop actor robust by using a shopSup actor that restarts it upon failure:

shopSup(custAP, staffAP ) ≜ monitor (spawn shop(custAP, staffAP ) ) (shopSup(custAP, staffAP ) )

The shopSup actor spawns a shop actor and monitors the resulting PID. Any failure of the shop

actor will be detected by the shopSupwhich will restart the actor and monitor it again. The restarted

shop actor will re-register with the access points and can then take part in subsequent sessions.
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Configurations. To capture the additional runtime behaviour we need to extend the language of

configurations. The actor configuration becomes ⟨𝑎,T , 𝜎, 𝜌, 𝜔⟩, where 𝜔 pairs monitored PIDs with

callbacks to be evaluated should the actor crash. We also introduce three kinds of “zapper thread”,

 𝑎,  𝑠 [p],  𝜄 to indicate the cancellation of an actor, role, or initialisation token respectively.

Reduction rules by example. Consider the supervised Shop example after the Customer has sent a

Checkout request and is waiting for a response, and where instead of suspending to handle the

Checkout message, the Shop has raised an exception. The configuration representing this scenario

could be written as follows, where shop, cust, and pp are actors playing the Shop, Customer, and

PaymentProcessor in session 𝑠 respectively, and where the sup actor has monitored the shop actor:

(𝜈sup) (𝜈shop) (𝜈cust ) (𝜈pp) (𝜈s)
©«

⟨shop, (raise)𝑠 [Shop] , 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨cust, idle, 𝑠 [Customer] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PaymentProcessor] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (Customer, Shop, checkout( ( [123], 510) ) )
∥ ⟨sup, idle, 𝜖, 𝜖, (shop, shopSup(cAP, sAP ) ) ⟩

ª®®®®¬
For brevity we shorten Shop, Customer, and PaymentProcessor to S, C, and PP respectively. We

also define configuration contexts G ::= [ ] | (𝜈𝛼)G | G ∥ C; and concretely let

G = (𝜈sup) (𝜈shop) (𝜈cust) (𝜈pp) (𝜈s) ( [ ] ∥ ⟨sup, idle, 𝜖, 𝜖, (shop, shopSup(cAP, sAP))⟩).
We can now step through the reduction sequence and see how failures propagate and are handled.

Since the shop actor is playing role 𝑠 [S] and raising an exception, by E-RaiseS the actor is replaced

with zapper threads  shop and  𝑠 [S].

G


⟨shop, (raise)𝑠 [S] , 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨cust, idle, 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout( ( [123], 510) ) )

 −→ G

 shop ∥  𝑠 [S]
∥ ⟨cust, idle, 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle, 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout( ( [123], 510) ) )


Next, since 𝑠 [S] has been cancelled, the checkout message can never be received and so is

removed from the queue (E-CancelMsg). Similarly since both C and PP are waiting for messages

from cancelled role S, they both evaluate their failure computations, raise (E-CancelH). In turn this
results in the cancellation of the cust and pp actors, and the 𝑠 [C] and 𝑠 [PP] endpoints (E-RaiseS).

−→+ G

 shop ∥  𝑠 [S]
∥ ⟨cust, idle, (raise)𝑠 [C] , 𝜖, 𝜖 ⟩
∥ ⟨pp, idle, (raise)𝑠 [PP] , 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ 𝜖

 −→+ G
[
 shop ∥  𝑠 [S] ∥  cust ∥  𝑠 [C] ∥  pp ∥  𝑠 [PP] ∥ 𝑠 ⊲ 𝜖

]
At this point the session has failed and can be garbage collected, leaving the supervisor actor

and the zapper thread for shop. Since the supervisor was monitoring shop, which has crashed, the

monitor callback is invoked (E-InvokeM) which finally re-spawns and monitors the Shop actor.

−→ (𝜈shop) (𝜈sup)
(
 shop
∥ ⟨sup, shopSup(cAP, sAP ), 𝜖, 𝜖, 𝜖 ⟩

)
−→+ (𝜈shop′ ) (𝜈sup)

(
⟨shop′, shop(cAP, sAP ), 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨sup, idle, 𝜖, 𝜖, (shop′, shopSup(cAP, sAP ) ) ⟩

)

Metatheory. All metatheoretical properties continue to hold in the presence of failure (see Ap-

pendix D). We need to introduce cancellation-aware runtime environments that record that an

endpoint has been cancelled, and extend the type LTS to take failure into account; we also need to

extend the configuration typing rules. A modified version of global progress holds: in every active

session, a finite number of reductions will either lead to a communication action or result in all

endpoints being cancelled and garbage collected.

5 IMPLEMENTATION AND EVALUATION
5.1 Implementation
Based on our formal design, we have implemented a toolchain for Maty-style event-driven actor

programming in Scala. It adopts the state machine based API generation approach of Scribble [23]:
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C?
RI

C!Is

C?
GI

C!
II

C?
CO

C!
OO

S

C!
PP

P!
Bu

y

P?OK

P?IF

C!
OK

C!
IF

State State types Methods (send, suspend) or Input cases (extends state type trait)
1 S1Suspend suspend[D](d: D, f: (D, S1) => Done.type): Done.type

S1 case class RequestItems(sid, pay, succ: S2) extends S1
2 S2 sendCustomerItems(pay: ItemList): S3Suspend
3 S3Suspend suspend[D](d: D, f: (D, S3) => Done.type): Done.type

S3 case class GetItemInfo(sid, pay, succ: S4) extends S3
case class Checkout(sid, pay, succ: S5) extends S3

4 S4 sendCustomerItemInfo(pay): S3Suspend
5 S5 sendCustomerProcessingPayment(): S6

sendCustomerOutOfStock(): S3Suspend
6 S6 sendPaymentProcessorBuy(pay): S7Suspend
7 S7Suspend suspend[D](d: D, f: (D, S7) => Done.type): Done.type

S7 case class OK(sid, pay, succ: S8) extends S7
case class InsufficientFunds(sid, pay, succ: S9) extends S7

8 S8 sendCustomerOK(pay): S3Suspend
9 S9 sendCustomerInsufficientFunds(pay): S3Suspend

Fig. 10. (left) CFSM for the Shop role in the Customer-Shop-PaymentProcessor protocol, and (right) summary

of state types and methods in the toolchain-generated Scala API for this role.

// d can be used for internal, _session-specific_ actor data
def custReqHandler[T: S1orS3](d: DataS, s: T): Done.type = {

s match {
case c: S1 => c match {

// pay is message payload; succ is successor state
case RequestItems(sid, pay, succ) =>

succ.sendCustomerItems(d.summary())
.suspend(d, custReqHandler[S3]) }

case c: S3 => c match {
case GetItemInfo(sid, pay, succ) =>

succ.sendCustomerItemInfo(d.lookupItem(pay))
.suspend(d, custReqHandler[S3])

case Checkout(sid, pay, succ) =>
if (d.inStock(pay)) {

succ.sendCustomerProcessingPayment()
.sendPaymentProcessorBuy(d.total(pay))
.suspend(d, paymentResponseHandler)

// ...continuing on from the left column
} else {

val sus = succ.sendCustomerOutOfStock()
// d.staff: LOption[R1] -- this is a..
// .."frozen" instance of state type R1
d.staff match {

// R1 is the Restock protocol state type
case x: LSome[R1] =>

ibecome(d, x, restockHndlr)
case _: LNone =>

// Error handling
throw new RuntimeException

}
sus.suspend(d, custReqHandler[S3])

}
}}}

Fig. 11. Example handler code from a Maty actor implemented in Scala using the toolchain-generated API

(1) The user specifies global types in the Scribble protocol description language [48].

(2) Our toolchain internally uses Scribble to validate global types according to the MPST-based

safety conditions, project them to local types for each role, and construct a representation of

each local type based on communicating finite state machines (CFSM) [6].

(3) From each CFSM, the toolchain generates a typed, protocol-and-role-specific API for the user to
implement that role as an event-driven Maty actor in native Scala.

Typed APIs forMaty actor programming. Consider the Shop role in our running example (Fig. 2b).

Fig. 10 shows the CFSM for Shop (with abbreviated message labels) and a summary of the main

generated types and operations (omitting the type annotations for the sid and pay parameters,

whichmatch those in Fig. 1a). The toolchain generates Scala types for each CFSM state: non-blocking

states (sends or suspends) are coloured blue, whereas blocking states (inputs) are red.

Non-blocking state types provide methods for outputs and suspend actions, with types specific

to each state. The return type corresponds to the successor state type, enabling chaining of session

actions: e.g., state type S2 has method sendCustomerItems for the transition C!Is. The successor

state type S3Suspend includes a suspend method to install a handler for the input event of state 3,

and to yield control back to the event loop. The Done.type type ensures that each handler must
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either complete the protocol or perform a suspend. Input state types are traits implemented by

case classes generated for each input message. The event loop calls the user-specified handler with

the corresponding case class upon each input event, with each case class carrying an instance of

the successor state type. For example, S3 (state 3) is implemented by case classes GetItemInfo and

Checkout for its input transitions, which respectively carry instances of successor states S4 and S5.

Fig. 11 demonstrates a user implementation of an event handler in a Shop actor, for the extended

Shop+Restock protocols, using the generated APIs. This code can be compared with Fig. 4 and §4.1.

The API guides the user through the protocol to construct aMaty actor with compliant handlers for

every possible input event. For example, Fig. 11 handles state S1 and could be safely supplied to the

suspend method of S1Suspend immediately following a new session initiation. It further handles S3
(so could also be supplied to S3Suspend), where the shop receives either GetItemInfo or Checkout.

For user convenience, our toolchain supports an inline version of become, as used in Fig. 11. It

allows the callback for a session switching behaviour to be performed inline with the currently

active handler. For this purpose, the API allows the user to “freeze” unused state type instances as

a type LOption[S] and resume them later by an inline ibecome. The trade-off is this entity must be

treated linearly, which our current framework checks dynamically (see below).

The runtime for our APIs executes sessions over TCP and uses the Java NIO library to run the

actor event loops. It supports fully distributed sessions between remoteMaty actors.

Discussion. Following our formal model, our generated APIs support a conventional style of

actor programming where non-blocking operations are programmed in direct-style, in contrast to

approaches that invert both input and output actions [46, 49] through the event loop.

Static Scala typing ensures that handlers safely handle all possible input events at every stage

(by exhaustive matching of case classes), and that state types offer only the permitted operations at

each state (by method typing). However, our API design requires linear usage of state type objects
(e.g., s and succ). Following other works [7, 23, 39, 43, 47], we check linearity in a hybrid fashion:

the Done return types in Fig. 10 statically require suspend to be invoked at least once, but our APIs

rule out multiple uses dynamically. We exploit our formal support for failure handling (Sec. 4.2) to

treat dynamic linearity errors as failures and retain safety and progress.

In summary, our toolchain enables Scala programming of Maty actors that support concurrent

handling of multiple heterogeneously-typed sessions, and ensures their safe execution. A statically

well-typed actor will never select an unavailable branch or send/receive an incompatible payload

type, and an actor system will never become stuck due to mismatching I/O actions. As in the theory,

the system will enjoy global progress provided every handler is terminating.

5.2 Evaluation
Table 1 summarises selected examples from the Savina [25] benchmark suite (lower) and larger case

studies (upper); Appendix B contains sequence diagrams for the larger examples. Notably, key design

features of Maty, e.g. support for handling multiple sessions per actor (mSA) and implementing

multiple protocols/roles within actors (mRA), are crucial to expressing many concurrency patterns.

For example, the Shop actor in both Shop examples plays the distinct Shop roles in the main Shop

protocol and Shop-Staff protocol simultaneously, and handles these sessions concurrently.

The “-self” versions of Ping and Dining are versions faithful to the original Akka programs that

involve internal coordination using self ! msg operations, i.e., self-communication. Protocols in

MPST andMaty, however, focus on externally-visible I/O behaviours, and our APIs can express the

formally equivalent behaviour more naturally (and simply) without needing self-communication.
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Table 1. Selected case studies, examples from Savina, and key features of their Maty programs.

MPST(s) Maty actor programs

⊕/& 𝜇 C/P mSA mRA PP dSp dTo mAP dAP be self

Shop (Fig. 4) ✓ ✓ ✓ ✓ ✓ ✓
ShopRestock (§ 4.1) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Robot [13] ✓ ✓ ✓ ✓ (✓)
Chat [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ping-self [25] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ping [25] ✓ ✓
Fib [24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dining-self [25] ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓
Dining [25] ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓
Sieve [25] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

⊕/& = Branch type(s) 𝜇 = Recursive type(s) C/P = Concurrent/Parallel types mSA = Multiple sessions/actor

mRA = Multiple roles/actor PP = Parameterised number of actors dSp = Dynamic actor spawning

dTo = Dynamic topology mAP = Multiple APs dAP = Dynamic AP creation be = become self = Self communication

The (✓) distinguishes simpler forms of dynamic topologies (dTo) due to a parameterised number

of clients dynamically connecting to a central server, from richer structures such as the parent-

children tree topology dynamically created in Fib and the user-driven dynamic connections between

clients and chat rooms in Chat; note both the latter involve dynamic access point creation (dAP).

Robot coordination. We reimplemented a real-world factory use case fromActyx AG [1], originally

described by Fowler et al. [13]. In this scenario, multiple Robots access a Warehouse with a single

door, with only one Robot allowed in the warehouse at a time. Concretely, each Robot actor

establishes a separate session with the Door and Warehouse actors.Maty’s event-driven model

allows the Door and Warehouse to each be implemented as a single actor that can safely handle the

concurrent interleavings of events across any number (PP, dSP) of separate Robot sessions (mSA).

In contrast, standard multiparty session calculi (e.g., [9, 21]) would require us to spawn separate

Door processes for each Robot client, necessitating complex state synchronisation.

Below is the straightforward user code for a Door actor to repeatedly register for an unbounded

number of Robot sessions. The Door actor will safely handle all Robot sessions concurrently,

coordinated by its encapsulated state (e.g., isBusy). The generated ActorDoorAPI provides a register

method for the formal register operation, and d1Suspend is a user-defined handler that registers

once more after every session initiation (cf. the example registerForever function in Sec. 1.3).

1 class Door(pid: Pid, port: Int, apHost: Host, apPort: Int) extends ActorDoor(pid) {
2 private var isBusy = false // Shared state -- n.b. every actor is a single-threaded event loop
3 def spawn(): Unit = { super.spawn(this.port); regForInit(new DataD(...)) }
4 def regForInit(d: DataD) = register(this.port, apHost, apPort, d, d1Suspend)
5 def d1Suspend(d: DataD, s: D1Suspend): Done.type = { regForInit(new DataD(...)); s.suspend(d, d1) }
6 ... // def d1(d: DataD, s: D1): Done.type ... etc.

Chat server. This use case [12] involves an arbitrary number of Clients (PP) using a Registry

to create new chat Rooms, and to dynamically join and leave any existing Room. We model each

Client, the Registry and each Room as separate actors. Rooms are created by spawning new Room

actors (dSp) with fresh access points (dAP, mAP), and we allow any Client to establish sessions

with the Registry or any Room asynchronously (dTo). We decompose the Client-Registry and

the Client-Room interactions into separate protocols (C/P, mAP), noting thatMaty’s support for

event-driven processing of concurrent sessions again allows us to handle the decomposed sessions

with distinct roles naturally within a single Client/Room actor (mSA, mRA). We use become (be)

in the Room actor to broadcast chat messages to all Clients currently in that Room.
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6 RELATEDWORK
Event-driven session types. Several works have investigated event-driven session typing. Zhou

et al. [49] introduce a multiparty session type discipline that supports statically-checked refinement

types, implemented in F★; to avoid needing to reason about linearity, users implement callbacks

for each send and receive action. This approach is used by Miu et al. [33] for session-typed web

applications, and by Thiemann [46] in Agda [38]. In contrast, our approach only yields control to

the event loop on actor receives, as in idiomatic actor programming.

Hu et al. [22] and Kouzapas et al. [27] introduced a binary session calculus with primitives used

to implement an event loop; our work instead encodes an event loop directly in the semantics.

Viering et al. [47] use event-driven programming in a framework for fault-tolerant session-typed

distributed programming. Their model involves inversion of control on output as well as input
events; our global progress is also stronger as it ensures possible progress on every session in the
system. These works all concentrate on process calculi as opposed to programming language design.

Behavioural types for actor languages. Mostrous and Vasconcelos [34] were first to investigate

session typing for actors, using Erlang’s unique reference generation and selective receive to

impose a channel-based communication model. Their approach remains unimplemented and only

supports binary session types. Francalanza and Tabone [16] implement binary session typing in

Elixir using pre- and post-conditions on module-level functions, but their approach can only reason

about interactions between pairs of participants. Our approach is inspired by the model introduced

by Neykova and Yoshida [37] (later implemented in Erlang [12]), but our language design supports

static checking and is formalised. Neykova and Yoshida [36] show how causality information in

global types enables protocol-guided recovery, leading to speedups over naïve Erlang recovery strate-
gies. Their implementation is again dynamically-checked. Harvey et al. [19] introduce EnsembleS,

which enforces session typing using a flow-sensitive effect system, focusing on supporting safe

adaptive systems. However, each EnsembleS actor can only take part in a single session at a time.

Mailbox types [11], inspired by earlier work on typestate [10, 40], capture the expected contents

of an actor mailbox as a commutative regular expression, and ensure that processes do not receive

unexpected messages. Fowler et al. [13] introduce a functional language with mailbox types and

show that the type discipline scales to idiomatic actor programming. Mailbox and session types

both aim to ensure safe communication but address different problems: session types suit structured
interactions among known participants, whereas mailbox types are better when participants are

unknown and message ordering is unimportant. Mailbox types cannot yet handle failure.

Scalas et al. [45] introduce a behavioral typing discipline with dependent function types, allowing

functions to be checked against interaction patternswritten in a type-level DSL, enabling verification

of properties such as liveness and termination. Their behavioural type discipline is different to

session typing (e.g., supporting parameterised server interactions but not branching choice). Our

session-based approach is designed for structured interactions among known participants, and it is

unclear how their actor API would scale to processes handling multiple session-style interactions.

7 CONCLUSION AND FUTUREWORK
Actor languages are powerful tools for writing reliable distributed applications. This paper intro-

duces Maty, an actor language that rules out communication mismatches and deadlocks using

multiparty session types. Key to our approach is a novel combination of a flow-sensitive effect system

and first-class message handlers; notably, Maty is statically typed, and actors can take part in

multiple sessions. We have extendedMaty with state and session switching, but most notably failure
handling, allowing Maty to support Erlang-style supervision hierarchies. Finally, we have shown



Speak Now 21

an implementation in Scala using an API generation approach, and evaluated our implementation

on two larger case studies and a selection of examples from the Savina benchmarks.

In future it would be interesting to: implement our approach in a static typing tool for Erlang; to

investigate path-dependent types in our implementation; and investigate how the approach could

be integrated with more sophisticated failure handling mechanisms (e.g., [36]).
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A DETAILS OF STATE AND SWITCHING EXTENSIONS
A.1 State
Figure 12 shows the full extension of Maty with state. The typing rules for functions and function

applications are modified in order to record the type of the state on which the actor operates. We

also modify the configuration typing rules to account for the stored state, and ensure that the

currently-executing thread operates on a compatible state type.

Extended syntax

Types 𝐴, 𝐵 ::= · · · | 𝐴1

𝑆,𝑇−−→
𝐵

𝐴2

Computations 𝑀,𝑁 ::= · · · | get | set 𝑉 | spawn 𝑀 𝑉

Configurations C, D ::= ⟨𝑎, T, 𝜎, 𝜌,𝑉 ⟩

Modified value and computation typing rules Γ ⊢ 𝑉 : 𝐴 Γ | 𝐴 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Abs

Γ, 𝑥 : 𝐴1 | 𝐵 | 𝑆 ⊲ 𝑀 :𝐴2 ⊳ 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴1

𝑆,𝑇−−→
𝐵

𝐴2

T-App

Γ ⊢ 𝑉 : 𝐴1

𝑆,𝑇−−→
𝐵

𝐴2 Γ ⊢ 𝑊 : 𝐴1

Γ | 𝐵 | 𝑆 ⊲ 𝑉 𝑊 :𝐴2 ⊳ 𝑇

T-Get

Γ | 𝐴 | 𝑆 ⊲ get :𝐴 ⊳ 𝑇

T-Set

Γ ⊢ 𝑉 : 𝐴

Γ | 𝐴 | 𝑆 ⊲ set 𝑉 : 1 ⊳ 𝑆

T-Spawn

Γ | 𝐵 | 𝑇 ⊲ 𝑀 : 1 ⊳ end Γ ⊢ 𝑉 : 𝐵

Γ | 𝐴 | 𝑆 ⊲ spawn 𝑀 𝑉 : 1 ⊳ 𝑆

Modified configuration typing rules {𝐴} Γ;Δ ⊢ T Γ; Δ ⊢ C

TT-Idle

{𝐴} Γ; · ⊢ idle

TT-NoSess

Γ | 𝐴 | 𝑆 ⊲ 𝑀 : 1 ⊳ end

{𝐴} Γ; 𝑠 [p] : 𝑆 ⊢ (𝑀 )𝑠 [p]

TT-NoSess

Γ | 𝐴 | end ⊲ 𝑀 : 1 ⊳ end

{𝐴} Γ; · ⊢ 𝑀

T-Actor

{𝐴} Γ;Δ1 ⊢ T Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌 Γ ⊢ 𝑉 : 𝐴

Γ; Δ1,Δ2,Δ3 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝑉 ⟩
Modified reduction rules

E-Spawn ⟨𝑎,M[spawn 𝑀 𝑊 ], 𝜎, 𝜌,𝑉 ⟩ −→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑉 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖,𝑊 ⟩
E-Get ⟨𝑎,M[get], 𝜎, 𝜌,𝑉 ⟩ −→ ⟨𝑎,M[return 𝑉 ], 𝜎, 𝜌,𝑉 ⟩
E-Set ⟨𝑎,M[set𝑊 ], 𝜎, 𝜌,𝑉 ⟩ −→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌,𝑊 ⟩

Fig. 12. Extension of Maty with state

A.2 Session switching
Our extension to allow session switching is shown in Figure 13. We introduce a set of distinguished

session identifiers s; each session identifier is associated with a local type and a payload in an

environment Σ, i.e., for each s we have Σ(s) = (𝑆 !, 𝐴) for some 𝑆 !, 𝐴. We then split the suspend
construct into two: suspend

?
𝑉 (which, as before, installs a message handler and suspends an actor)

and suspend
!
s 𝑉 , which suspends a session in a send state, installing a function taking a payload

of the given type. Finally we introduce a become s𝑉 construct that queues a request for the event

loop to invoke s next time the actor is available.

Metatheory. As would be expected,Maty⇄ satisfies preservation.

Theorem A.1 (Preservation). Preservation (as defined in Theorem 3.2) continues to hold inMaty⇄.

However, since (by design) become operations are dynamic and not encoded in the protocol

(for example, we might wish to queue two invocations of a send-suspended session to be executed
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Modified syntax
Session names s, t

Computations 𝑀,𝑁 ::= · · · | suspend
!
s 𝑉 | suspend

?
𝑉 | become s𝑉

Send-suspended sessions 𝐷 ::= (𝑠 [p],𝑉 )
Handler state 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉 | 𝜎, s ↦→ −→

𝐷

Switch request queue 𝜃 ::= 𝜖 | 𝜃 · (s,𝑉 )
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌, 𝜃 ⟩

Modified term typing rules Γ | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Suspend?

Γ ⊢ 𝑉 : Handler(𝑆? )
Γ | 𝑆? ⊲ suspend

?
𝑉 :𝐴 ⊳ 𝑇

T-Suspend!

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→ 1

Γ | 𝑆 ! ⊲ suspend
!
s 𝑉 :𝐵 ⊳ 𝑇

T-Become

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 ⊲ become s𝑉 : 1 ⊳ 𝑆

Modified configuration typing rules Γ; Δ ⊢ C Γ;Δ ⊢ 𝜎 Γ ⊢ 𝜃

T-Actor

Γ;Δ1 ⊢ T Γ;Δ2 ⊢ 𝜎
Γ;Δ3 ⊢ 𝜌 Γ ⊢ 𝜃

Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌, 𝜃 ⟩

TH-SendHandler

Γ;Δ ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : 𝐴
𝑆 !,end−−−−→ 1)𝑖

Γ;Δ, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖

TR-Empty

Γ ⊢ 𝜖

TR-Reqest

Γ ⊢ 𝜃
Σ(s) = (𝑆 !, 𝐴)

Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝜃 · (s,𝑉 )

Modified reduction rules C −→ D

E-Suspend!-1 ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎, 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) ], 𝜌, 𝜃 ⟩ (s ∉ dom(𝜎 ) )

E-Suspend!-2 ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎 [s ↦→ −→

𝐷 ], 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉 ) ], 𝜌, 𝜃 ⟩

E-Become ⟨𝑎,M[become s𝑉 ], 𝜎, 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎,M[return ( ) ], 𝜎, 𝜌, 𝜃 · (s,𝑉 ) ⟩
E-Activate ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · −→𝐷 ], 𝜌, (s,𝑊 ) · 𝜃 ⟩ 𝜏−−→ ⟨𝑎, (𝑉 𝑊 )𝑠 [p] , 𝜎 [s ↦→ −→

𝐷 ], 𝜌, 𝜃 ⟩

Fig. 13. Maty⇄: Modified syntax, typing, and reduction rules

in turn), there is no type-level mechanism of guaranteeing that a send-suspended session is ever

invoked. Although all threads can reduce as before, Maty⇄ satisfies a weaker version of progress

where non-reducing configurations can contain send-suspended sessions.

Theorem A.2 (Progress (Maty⇄)). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
where for each session 𝑠 𝑗 there exists some mapping 𝑠 𝑗 [p] ↦→ (s,𝑉 ) (for some role p, static session
name s, and callback 𝑉 ) contained in some 𝜎𝑘 where 𝜃𝑘 does not contain any requests for s.
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B DETAILS OF CASE STUDY PROTOCOLS
In this section we detail the protocols and sequence diagrams for the two case studies.

B.1 Robots
The robots protocol can be found below, both as a Scribble global type and a sequence diagram.

Role R stands for Robot, D stands for Door, and W stands for Warehouse.

global protocol Robot(role R, role D, role W) {
Want(PartNum) from R to D;
choice at D {

Busy() from D to R;
Cancel () from D to W;

} or {
GoIn() from D to R;
Prepare(PartNum) from D to W;
Inside () from R to D;
Prepared () from W to D;
Deliver () from D to W;
Delivered () from W to R;
PartTaken () from R to W;
WantLeave () from R to D;
GoOut () from D to R;
Outside () from R to D;
TableIdle () from W to D;

}
}

Robot Door Warehouse

Want(PartNum)

Busy()

Open door

GoIn()

Prepare(PartNum)

Drive in

Inside()

Close door

Prepared()

Deliver()

Lock table

Delivered()

Take part

PartTaken()

WantLeave()

Open door

GoOut()

Drive out

Outside()

Close door

TableIdle()

alt [Door is already in use]

[Door is not in use]
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B.2 Chat Server

global protocol ChatServer(role C, role S) {
choice at C {

LookupRoom(RoomName) from C to S;
choice at S {

RoomPort(RoomName , Port) from S to C;
} or {

RoomNotFound(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
CreateRoom(RoomName) from C to S;
choice at S {

CreateRoomSuccess(RoomName) from S to C;
} or {

RoomExists(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
ListRooms () from C to S;
RoomList(StringList) from S to C;
do ChatServer(C, S);

} or {
Bye(String) from C to S;

}
}

global protocol ChatSessionCtoR(role C, role R) {
choice at C {

OutgoingChatMessage(String) from C to R;
do ChatSessionCtoR(C, R);

} or {
LeaveRoom () from C to R;

}
}

global protocol ChatSessionRtoC(role R, role C){
choice at R {

IncomingChatMessage(String) from R to C;
do ChatSessionRtoC(R, C);

} or {
Bye() from R to C;

}
}

Client Server

LookupRoom(RoomName)

RoomPort(RoomName, Port)

RoomNotFound(RoomName)

CreateRoom(RoomName)

CreateRoomSuccess(RoomName)

RoomExists(RoomName)

ListRooms()

RoomList(StringList)

Bye()

loop [until after Bye message]

alt

alt

alt

Client Room

OutgoingChatMessage(String)

LeaveRoom()

loop [until LeaveRoom message]

alt

Client Room

IncomingChatMessage(String)

Bye()

loop [until Bye message]

alt



28 Simon Fowler and Raymond Hu

C OMITTED DEFINITIONS AND PROOFS
C.1 Omitted Definitions
Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction:

Term reduction rules 𝑀 −→M 𝑁

let 𝑥 ⇐ return 𝑉 in 𝑀 −→M 𝑀{𝑉 /𝑥}
(𝜆𝑥 .𝑀) 𝑉 −→M 𝑀{𝑉 /𝑥}

(rec 𝑓 (𝑥).𝑀) 𝑉 −→M 𝑀{rec 𝑓 (𝑥).𝑀/𝑓 ,𝑉 /𝑥}

if true then𝑀 else 𝑁 −→M 𝑀

if false then𝑀 else 𝑁 −→M 𝑁

E[𝑀] −→M E[𝑁 ] (if𝑀 −→M 𝑁 )

C.2 Preservation
We begin with some unsurprising auxiliary lemmas.

Lemma C.1 (Substitution). If Γ, 𝑥 : 𝐵 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and Γ ⊢ 𝑉 : 𝐵, then Γ | 𝑆 ⊲ 𝑀{𝑉 /𝑥} :𝐴 ⊳ 𝑇 .

Proof. By induction on the derivation of Γ1, 𝑥 : 𝐴 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 . □

Lemma C.2 (Subterm typability). Suppose D is a derivation of Γ | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇 . Then there
exists some subderivation D′ of D concluding Γ | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑆 ′ for some type 𝐵 and session type 𝑆 ′,
where the position of D′ in D corresponds to that of the hole in 𝐸.

Proof. By induction on the structure of 𝐸. □

Lemma C.3 (Replacement). If:
(1) D is a derivation of Γ | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇

(2) D′ is a subderivation ofD concluding Γ | 𝑆 ⊲𝑀 :𝐵 ⊳𝑇 ′ where the position ofD′ inD corresponds
to that of the hole in 𝐸

(3) Γ | 𝑆 ′ ⊲ 𝑁 :𝐵 ⊳ 𝑇 ′

then Γ | 𝑆 ′ ⊲ E[𝑁 ] :𝐴 ⊳ 𝑇

Proof. By induction on the structure of 𝐸. □

Since type environments are unrestricted, we also obtain a weakening result.

Lemma C.4 (Weakening). (1) If Γ ⊢ 𝑉 : 𝐵 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 ⊢ 𝑉 : 𝐵.
(2) If Γ | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 .
(3) If Γ;Δ ⊢ 𝜎 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ ⊢ 𝜎 .
(4) If Γ;Δ ⊢ 𝜌 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ ⊢ 𝜌 .
(5) If Γ; Δ ⊢ C and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 ⊢ 𝑉 : 𝐵.

Proof. By mutual induction on all premises. □

Lemma C.5 (Preservation (terms)). If Γ | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and𝑀 −→M 𝑁 , then Γ | 𝑆 ⊲ 𝑁 :𝐴 ⊳ 𝑇 .

Proof. A standard induction on the derivation of𝑀 −→M 𝑁 , noting that functional reduction

does not modify the session type. □

Next, we introduce some MPST-related lemmas that are helpful for proving preservation of

configuration reduction. We often make use of these lemmas implicitly.

Lemma C.6. If safe(Δ,Δ′), then safe(Δ).

Proof sketch. Splitting a context only removes potential reductions. Only by adding reductions

could we violate safety. □
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Lemma C.7. If safe(Δ1,Δ2) and Δ1 =⇒ Δ′
1
, then safe(Δ′

1
,Δ2).

Proof sketch. By induction on the derivation of Δ1 ≡
𝜋
=⇒≡ Δ′

1
.

It suffices to consider the cases where reduction could potentially make the combined environ-

ments unsafe.

In the case of Lbl-Sync-Send, the resulting reduction adds a message (p, q, ℓ𝑖 (𝐴𝑖 )) to a queue 𝑄 .

The only way this could violate safety is if there were some entry 𝑠 [q] : p&{ℓ𝑖 (𝐴𝑖 ) . 𝑆𝑖 }𝑖∈𝐼 , and
𝑄 ≡ (p, q, ℓ𝑗 (𝐴 𝑗 )) ·𝑄 ′

where 𝑗 ∈ 𝐼 , but (𝑄 · (p, q, ℓ𝑘 (𝐴𝑘 )) ≡ (p, q, ℓ𝑘 (𝐴𝑘 )) ·𝑄 ′′
with 𝑘 ∉ 𝐼 . However,

this is impossible since it is not possible to permute this message ahead of the existing message

because of the side-conditions on queue equivalence.

A similar argument applies for Lbl-Sync-Recv. □

Lemma C.8. If Γ; Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲𝜎 and Γ ⊢ 𝑉 : 𝐴, then Γ; Δ, 𝑠 : (𝑄 · (p, q, ℓ (𝐴))) ⊢ 𝑠 ⊲𝜎 · (p, q, ℓ (𝑉 ))
Proof. A straightforward induction on the derivation of Γ; Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎 . □

Lemma C.9 (Preservation (Eqivalence)). If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ
such that Γ; Δ′ ⊢ D.

Proof. By induction on the derivation of C ≡ D. The only case that causes the type environment

to change is queue message reordering, which can be made typable by mirroring the change in the

queue type. □

Lemma C.10 (Preservation (Configuration reduction)). If Γ; Δ ⊢ C with safe(Δ) and C −→
D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

Proof. By induction on the derivation of C −→ D.

Case E-Send.

⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿 −→ ⟨𝑎, (E[return ()])𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 ))
Assumption:

Γ | 𝑆 ⊲ E[q ! ℓ (𝑉 )] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[q ! ℓ (𝑉 )])𝑠 [p] Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; 𝑠 [p],Δ2,Δ3 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p], 𝜎, 𝜌⟩ Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] : 𝑆,Δ2,Δ3, 𝑠 : 𝑄 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉 )])𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿
By Lemma C.2 we have that Γ | q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 ⊲ q ! ℓ𝑗 (𝑉 ) : 1 ⊳ 𝑇𝑗 and therefore that 𝑆 =

q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 .
Since Γ | 𝑇𝑗 ⊲ return () : 1 ⊳𝑇𝑗 , we can show by Lemma C.3 we have that Γ | 𝑇𝑗 ⊲ E[return ()] : 1 ⊳

end.

By Lemma C.8, Γ; 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴 𝑗 )) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 )).
Therefore, recomposing:

Γ | 𝑇𝑗 ⊲ E[return ( ) ] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑇𝑗 ⊢ (E[return ( ) ] )𝑠 [p] Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌 ⟩ Γ; 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗 ) ) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 ) )
Γ; 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗 ) ) ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉 ) )

Finally,
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𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖 ) : 𝑇𝑖 }𝑖∈𝐼 ,Δ2,Δ3, 𝑠 : 𝑄 =⇒ 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗 )) by Lbl-Send as

required.

Case E-React.

ℓ (𝑥) ↦→ 𝑀 ∈ −→
𝐻

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉 )) · 𝛿 −→ ⟨𝑎, (𝑀{𝑉 /𝑥})𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿
For simplicity (and equivalently) let us refer to ℓ as ℓ𝑗 .

Let D be the following derivation:

Γ; · ⊢ idle

(Γ, 𝑥𝑖 : 𝐵𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end)𝑖∈𝐼
Γ ⊢ handler q {(ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑀𝑖 )𝑖∈𝐼 } : Handler(𝑆?) Γ;Δ2 ⊢ 𝜎

Γ;Δ2, 𝑠 [p] : 𝑆? ⊢ 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }] Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆? ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌⟩

Assumption:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) ⊢ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉 )) · 𝛿

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ handler q {−→𝐻 }], 𝜌⟩ ∥ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉 )) · 𝛿

where 𝑆? = p&{ℓ𝑖 (𝐵𝑖 ).𝑆𝑖 }𝑖∈𝐼 .
Since safe(Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄)) we have that 𝑗 ∈ 𝐼 and 𝐴 = 𝐵 𝑗 .

Similarly since ℓ𝑗 (𝑥 𝑗 ) ↦→ 𝑀 ∈ −→
𝐻 we have that Γ, 𝑥 : 𝐵 𝑗 | 𝑆 𝑗 ⊲ 𝑀 : 1 ⊳ end.

By Lemma C.1, Γ | 𝑆 𝑗 ⊲ 𝑀{𝑉 /𝑥 𝑗 } : 1 ⊳ end.

Let D′
be the following derivation:

Γ | 𝑆 𝑗 ⊲ 𝑀{𝑉 /𝑥 𝑗 } : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 𝑗 ⊢ (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p] Γ;Δ2 ⊢ 𝜎Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p], 𝜎, 𝜌⟩

Recomposing:

D′ Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 })𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿

Finally, we note that Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) =⇒ Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 by Lbl-Recv

as required.

Case E-Suspend.

⟨𝑎, (E[suspend 𝑉 ])𝑠 [p], 𝜎, 𝜌⟩ −→ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌⟩

Assumption:
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Γ | 𝑆 ⊲ E[suspend 𝑉 ] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[suspend 𝑉 ])𝑠 [p]
Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; 𝑠 [p] : 𝑆,Δ2,Δ3 ⊢ ⟨𝑎, (E[suspend 𝑉 ])𝑠 [p], 𝜎, 𝜌⟩

By Lemma C.2 we have that:

Γ ⊢ 𝑉 : Handler(𝑆?)
Γ | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑇

for any arbitrary 𝐴,𝑇 , and showing that 𝑆 = 𝑆?.

Recomposing:

Γ; · ⊢ idle
Γ ⊢ 𝑉 : Handler(𝑆?) Γ;Δ2 ⊢ 𝜎
Γ;Δ2, 𝑠 [p] : 𝑆? ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉 ] Γ;Δ3 ⊢ 𝜌

Γ; 𝑠 [p] : 𝑆?,Δ2,Δ3 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ 𝑉 ], 𝜌⟩

as required.

Case E-Spawn.

⟨𝑎,M[spawn 𝑀], 𝜎, 𝜌⟩ −→ ⟨𝑎,M[return ()], 𝜎, 𝜌⟩ ∥ ⟨𝑎,𝑀, 𝜖, 𝜖⟩

There are two subcases based on whether theM = E[−] orM = (E[−])𝑠 [p] . Both are similar

so we will prove the latter case.

Assumption:

Γ | 𝑆 ⊲ E[spawn 𝑀] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[spawn 𝑀])𝑠 [p] Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[spawn 𝑀])𝑠 [p], 𝜎, 𝜌⟩

By Lemma C.2:

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ spawn 𝑀 : 1 ⊳ 𝑆

By Lemma C.3, Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end.

Thus, recomposing:

Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[return ()])𝑠 [p] Γ;Δ2 ⊢ 𝜎
Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌⟩

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ; · ⊢ 𝑀 Γ; · ⊢ 𝜖 Γ; · ⊢ 𝜖
Γ; · ⊢ ⟨𝑎,𝑀, 𝜖, 𝜖⟩

Γ; Δ2,Δ3, 𝑠 [p] : 𝑆 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌⟩ ∥ ⟨𝑎,𝑀, 𝜖, 𝜖⟩
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Case E-Reset.

⟨𝑎,Q[return ()], 𝜎, 𝜌⟩ −→ ⟨𝑎, idle, 𝜎, 𝜌⟩
There are two subcases based on whether Q = [−] or Q = ( [−])𝑠 [p] . We prove the latter case;

the former is similar but does not require a context reduction.

Assumption:

Γ | end ⊲ return () : 1 ⊳ end

Γ; 𝑠 [p] : end ⊢ (return ())𝑠 [p] Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [p] : end ⊢ ⟨𝑎, (return ())𝑠 [p], 𝜎, 𝜌⟩

We can show that Δ2,Δ3, 𝑠 [p] : end
end(𝑠,p)
=======⇒ Δ2,Δ3, so we can reconstruct:

Γ; · ⊢ idle Γ;Δ2 ⊢ 𝜎 Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3 ⊢ ⟨𝑎, idle, 𝜎, 𝜌⟩
as required.

Case E-NewAP.

𝑐 fresh

⟨𝑎,M[newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 ], 𝜎, 𝜌⟩ −→ (𝜈𝑝) (⟨𝑎,M[return 𝑝], 𝜎, 𝜌⟩ ∥ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈1..𝑛))
As usual we prove the case where M = (E[−])𝑠 [p] ; the case where M = (E[−]) is similar.

Assumption:

Γ | 𝑇 ⊲ E[newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 ] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑇 ⊢ (E[newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 ])𝑠 [p]
Γ;Δ2 ⊢ 𝜎
Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3 ⊢ ⟨𝑎, (E[newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 ])𝑠 [p], 𝜎, 𝜌⟩

By Lemma C.2:

𝜑 is a safety property 𝜑 ((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 )
Γ | 𝑇 ⊲ newAP(p𝑖 :𝑆𝑖 )𝑖∈𝐼 :AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ) ⊳ 𝑇

By Lemma C.3, Γ, 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ) | 𝑇 ⊲ E[return 𝑐] : 1 ⊳ end.

Let Γ′ = Γ, 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖∈𝐼 ).
By Lemma C.4, since 𝑐 is fresh we have that Γ′;Δ2 ⊢ 𝜎 and Γ′;Δ3 ⊢ 𝜌 .

Recomposing:

Γ′ | 𝑇 ⊲ E[return 𝑐 ] : 1 ⊳ end

Γ′; 𝑠 [p] : 𝑇 ⊢ (E[return 𝑐 ] )𝑠 [p] Γ′;Δ2 ⊢ 𝜎
Γ′;Δ3 ⊢ 𝜌

Γ′; Δ2,Δ3, 𝑠 [p] : 𝑇 ⊢ ⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌 ⟩

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ ( · ⊢ 𝜖 : 𝑆𝑖 )𝑖∈1..𝑛
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) 𝜑 is a safety property

Γ′; 𝑐 : AP ⊢ 𝑐 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 )
Γ′; Δ2,Δ3, 𝑠 [p] : 𝑇, 𝑐 : AP ⊢ ⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 )
Γ; Δ2,Δ3, 𝑠 [p] : 𝑇 ⊢ (𝜈𝑐 ) (⟨𝑎, (E[return 𝑐 ] )𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑝 ( (p𝑖 ↦→ 𝜖 )𝑖∈1..𝑛 ) )

as required.
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Case E-Register.

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑀], 𝜎, 𝜌⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′]) −→ (𝜈𝜄) (⟨𝑎,M[return ()], 𝜎, 𝜌 [𝜄 ↦→ 𝑀]⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄}]))

Again, we prove the case where M = (E[−])𝑠 [q] and let p = p𝑗 for some 𝑗 .

Let Δ = Δ2,Δ3,Δ4,�𝜄−𝑗 : 𝑆 𝑗 , 𝑠 [p] : 𝑇 .
Let D be the following derivation:

Γ | 𝑇 ⊲ E[register 𝑝 p𝑗 𝑀] : 1 ⊳ end

Γ; 𝑠 [q] : 𝑇 ⊢ (E[register 𝑝 p𝑗 𝑀])𝑠 [q] Γ;Δ2 ⊢ 𝜎
Γ;Δ3 ⊢ 𝜌

Γ; Δ2,Δ3, 𝑠 [q] : 𝑇 ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑀])𝑠 [q], 𝜎, 𝜌⟩

Assumption:

D

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ]

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 )
𝜑 is a safety property

Γ; Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝑝 : AP ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ] )

Γ; Δ ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑀 ] )𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ] )

By Lemma C.2:

Γ ⊢ 𝑐 : AP((p𝑖 : 𝑆𝑖 )𝑖 ) Γ | 𝑆 𝑗 ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑇 ⊲ register 𝑐 p𝑗 𝑀 : 1 ⊳ 𝑇

By Lemma C.3, Γ | 𝑇 ⊲ E[return ()] : 1 ⊳ end.

Now, let D′
be the following derivation:

Γ | 𝑇 ⊲ E[return ()] : 1 ⊳ end

Γ; 𝑠 [q] : 𝑇 ⊢ (E[return ()])𝑠 [q] Γ;Δ2 ⊢ 𝜎
Γ | 𝑆 𝑗 ⊲ 𝑀 : 1 ⊳ end Γ;Δ3 ⊢ 𝜌

Γ;Δ3, 𝜄
+
: 𝑆 𝑗 ⊢ 𝜌 [𝜄+ ↦→ 𝑀]

Γ; Δ2,Δ3, 𝑠 [q] : 𝑆, 𝜄+ : 𝑆 𝑗 ⊢ ⟨𝑎, (E[return ()])𝑠 [q], 𝜎, 𝜌⟩

Finally, we can recompose:

D

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ]

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) ∈ Γ
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 )
𝜑 is a safety property

Γ; Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 : AP ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] )

Γ; Δ, 𝜄+ : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ ⟨𝑎, (E[return ( ) ] )𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] )

Γ; Δ ⊢ (𝜈𝜄 ) (⟨𝑎, (E[return ( ) ] )𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) )

as required.

Case E-Init.
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𝑠 fresh

(𝜈𝜄p𝑖 )𝑖∈1..𝑛 (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ]⟩𝑖∈1..𝑛)

𝜏−−→
(𝜈𝑠) (𝑝 ((p𝑖 ↦→ 𝜄′

p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛)

For each actor composed in parallel we have:

Γ; · ⊢ idle Γ;Δ𝑖2 ⊢ 𝜎𝑖
Γ | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end Γ;Δ𝑖3 ⊢ 𝜌

Γ;Δ𝑖3 , 𝜄
+
𝑖 : 𝑆𝑖 ⊢ 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ]

Γ; Δ𝑖2 ,Δ𝑖3 , 𝜄
+
𝑖 : 𝑆𝑖 , 𝑎𝑖 ⊢ ⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖⟩

Let:

• Δtok+ = 𝜄+
1
: 𝑆1, . . . , 𝜄

+
𝑛 : 𝑆𝑛

• Δtok− = 𝜄−
1
: 𝑆1, . . . , 𝜄

−
𝑛 : 𝑆𝑛

• Δa = Δ12
,Δ13

, . . . ,Δ𝑛2
,Δ𝑛3

, 𝑎1, . . . , 𝑎𝑛
• Δb = Δa,Δtok+

Then by repeated use of TC-Par we have that Γ; Δa,Δtok+ ⊢ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ]⟩)𝑖∈1..𝑛
Assumption (given some Δ):

𝑐 : AP( (p𝑖 : 𝑆𝑖 )𝑖 ) ∈ Γ

{p𝑖 : 𝑆𝑖 } Δ,Δtok− ⊢ (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛
𝜑 ( (p𝑖 : 𝑆𝑖 )𝑖∈1..𝑛 ) 𝜑 is a safety property

Γ; Δ,Δtok− ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) Γ; Δa,Δtok+ ⊢ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ] ⟩)𝑖∈1..𝑛
Γ; Δ,Δa,Δtok+,Δtok− ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′

p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ] ⟩)𝑖∈1..𝑛

Γ; Δ,Δa ⊢ (𝜈𝜄1 ) · · · (𝜈𝜄𝑛 ) (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛 ) ∥ (⟨𝑎, idle, 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑀𝑖 ] ⟩)𝑖∈1..𝑛 )

Through the access point typing rules we can show that we can remove each 𝜄p𝑖 from the access

point: Γ; Δ ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛).

Similarly, for each actor composed in parallel we can construct:

Γ | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end

Γ; 𝑠 [p𝑖 ] : 𝑆𝑖 ⊢ (𝑀𝑖 )𝑠 [p𝑖 ] Γ;Δ𝑖2 ⊢ 𝜎𝑖 Γ;Δ𝑖3 ⊢ 𝜌𝑖

Γ; Δ𝑖2 ,Δ𝑖3 , 𝑠 [p𝑖 ] : 𝑆𝑖 ⊢ ⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖⟩
Let Δ𝑠 = 𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛
Then by repeated use of TC-Par we have that Γ; Δ𝑎,Δs ⊢ ⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ], 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛 .
Recomposing:

𝜑 (Δs )
𝜑 is a safety property

Γ; Δ ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 )

Γ; 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 Γ; Δa,Δs ⊢ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛
Γ; Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛

Γ; Δ,Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛

Γ; Δ,Δa ⊢ (𝜈𝑠 ) (𝑝 ( (p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛 ) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 )𝑠 [p𝑖 ] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛 )

as required.

Case E-Lift.
Immediate by Lemma C.5.
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Case E-Nu.
Immediate by the IH, noting that by the definition of safety, reduction of a safe context results in

another safe context.

Case E-Par.
Immediate by the IH and Lemma C.7.

Case E-Struct.
Immediate by the IH and Lemma C.9.

□

Theorem 3.2 (Preservation). Typability is preserved by structural congruence and reduction.
(≡) If Γ; Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ; Δ′ ⊢ D.
(→) If Γ; Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ and Γ; Δ′ ⊢ D.

Proof. Immediate from Lemmas C.9 and C.10. □
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C.3 Progress
Let Ψ be a type environment containing only references to access points:

Ψ ::= · | Ψ, 𝑝 : AP((p𝑖 : 𝑆𝑖 )𝑖 )
Functional reduction satisfies progress.

Lemma C.11 (Term Progress). If Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2 then either:
• 𝑀 = return 𝑉 for some value 𝑉 ; or
• there exists some 𝑁 such that𝑀 −→M 𝑁 ; or
• 𝑀 can be written E[𝑀 ′] where𝑀 ′ is a communication or concurrency construct, i.e.

– 𝑀 = spawn 𝑁 for some 𝑁 ; or
– 𝑀 = p !𝑚(𝑉 ) for some role p and message𝑚(𝑉 ); or
– 𝑀 = suspend 𝑉 or some 𝑉 ; or
– 𝑀 = newAP(p𝑖 :𝑇𝑖 ) for some collection of participants (p𝑖 : 𝑇𝑖 )
– 𝑀 = register 𝑉 p for some value 𝑉 and role p

Proof. A standard induction on the derivation of Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2; there are 𝛽-reduction rules

for all STLC terms, leaving only values and communication / concurrency terms. □

The key thread progress lemma shows that each actor is either idle, or can reduce; the proof is

by inspection of T , noting there are reduction rules for each construct; the runtime typing rules

ensure the presence of any necessary queues or access points.

Lemma C.12 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌⟩]. If ·; · ⊢ C then either T = idle, or
there exist G′,T ′, 𝜎 ′, 𝜌 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′⟩].

Proof. If T = idle then the theorem is satisfied, so consider the cases where T = 𝑀 or

T = (𝑀)𝑠 [p] . By Lemma C.11, either𝑀 can reduce (and the configuration can reduce via E-Lift),

𝑀 is a value (and the thread can reduce by E-Reset), or 𝑀 is a communication or concurrency

construct. Of these:

• spawn 𝑁 can reduce by E-Spawn

• suspend 𝑉 can reduce by E-Suspend

• newAP(p𝑖 :𝑆𝑖 )𝑖 can reduce by E-NewAP

Next, consider register 𝑝 p 𝑀 . Since we begin with a closed environment, it must be the case that

𝑝 is 𝜈-bound so by T-APName and T-AP there must exist some subconfiguration 𝑝 (𝜒) of G; the
configuration can therefore reduce by E-Register.

Finally, consider𝑀 = q ! ℓ (𝑉 ). It cannot be the case that T = q ! ℓ (𝑉 ) since by T-Send the term

must have an output session type as a precondition, whereas TT-NoSess assigns a precondition

of end. Therefore, it must be the case that T = (q ! ℓ (𝑉 ))𝑠 [p] for some 𝑠, p. Again since the initial

runtime typing environment is empty, it must be the case that 𝑠 is 𝜈-bound and so by T-SessionName

andT-EmptyQueue/T-ConsQueue theremust be some session queue 𝑠⊲𝛿 . The threadmust therefore

be able to reduce by E-Send. □

Theorem 3.6 (Progress). If ·; · ⊢prog C, then either there exists some D such that C −→ D, or C
is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 ⟩𝑗∈1..𝑛)

Proof. By Proposition 3.4 C can be written in canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)
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Additional Syntax
Labels ℒ ::= 𝜏 | spawn(𝑀) | send(p, ℓ,𝑉 ) | newAP(𝑎) | register(𝑝, p, 𝑀)

Labelled Transition Semantics for Computations 𝑀
ℒ

↩→ 𝑁

LTS-Spawn

spawn 𝑀
spawn(𝑀 )

↩→ return ()

LTS-Send

p ! ℓ (𝑉 )
send(p,ℓ,𝑉 )

↩→ return ()

LTS-NewAP

newAP(p𝑖 :𝑆𝑖 )𝑖
newAP(𝑎)
↩→ return 𝑎

LTS-Register

register 𝑝 p 𝑀
register(𝑝,p,𝑀 )

↩→ return ()

LTS-Beta

𝑀 −→M 𝑁

𝑀
𝜏
↩→ 𝑁

LTS-Lift

𝑀
ℒ

↩→ 𝑁

E[𝑀] ℒ

↩→ E[𝑁 ]

Fig. 14. LTS Semantics for Computations

By repeated applications of Lemma C.12, either the configuration can reduce or all threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)

By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must be contained in

precisely one actor. There are two ways an endpoint can be used: either by TT-Sess in order to run

a term in the context of a session, or by TH-Handler to record a receive session type as a handler.

Since all threads are idle, it must be the case the only applicable rule is TH-Handler and therefore

each role must have an associated stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

Since all session endpoints must have a receive session type, the only type reductions possible are

through Lbl-Sync-Recv. Since all threads are idle we can pick the top message from any session

queue and reduce the actor with the associated stored handler by E-React.

The only way we could not do such a reduction is if there were to be no sessions, leaving us with

a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜎 𝑗 , 𝜌 𝑗 ⟩𝑗∈1..𝑛)

□

C.4 Global Progress
The overview of the global progress proof is as follows:

• We design a labelled transition system semantics for term reduction (Figure 14).

• We argue that our LTS is strongly-normalising up to suspend (Proposition C.13).

• We prove an operational correspondence between the LTS reduction and configuration re-

duction, specifically that reductions in the LTS semantics can drive configuration reduction,

and that every configuration reduction affecting an actor term can be reflected by the LTS.

• Finally we can use this result to show that any session can eventually reduce.

C.4.1 LTS Semantics.
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Figure 14 shows the labelled transition semantics for our language of computations. Standard

𝛽-reductions are reflected as 𝜏-transitions, and communication and concurrency actions reduce in

a single step and are accounted for using labelled reductions.

Proposition C.13 (Strong Normalisation (LTS)). If Ψ | 𝑆 ⊲f 𝑀 :𝐴 ⊳ end then there exists some
finite reduction sequence such that either:

• 𝑀
ℒ1

↩→ · · ·
ℒ𝑛

↩→ 𝑉 for some 𝑉 ; or

• 𝑀
ℒ1

↩→ · · ·
ℒ𝑛

↩→ E[suspend 𝑉 ] for some E and 𝑉

Proof sketch. Fine-grain call-by-value is strongly normalising; this can be shown using tech-

niques such as ⊤⊤-lifting [30], which also extends to exceptions. These results extend to our LTS

as all additional constructs reduce immediately. □

Lemma C.14 (Reduction under contexts). If Γ; Δ ⊢ G[C] and C −→ D then there exists some
G′ such that G[C] −→ G′ [D].

Proof. By induction on the structure of G. □

We also have a special case for straightforward 𝛽-reduction:

Lemma C.15 (Term reduction under contexts). Let C = G[⟨𝑎,Q[E[𝑀]], 𝜎, 𝜌⟩]. If Γ; Δ ⊢ C
and𝑀

𝜏
↩→ 𝑁 , then C −→ G[⟨𝑎,Q[E[𝑁 ]], 𝜎, 𝜌⟩].

Proof. By induction on the structure of G. □

Lemma C.16 (Simulation). Suppose Ψ; · ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌⟩]. If 𝑀 ℒ

↩→ 𝑁 , then
there exist some G′, 𝜎 ′, and 𝜌 ′ such that C −→ G′ [⟨𝑎,Q[𝑀 ′], 𝜎 ′, 𝜌 ′⟩].

Proof. By induction on the derivation of𝑀
ℒ

↩→ 𝑁 .

Case LTS-Spawn.
Assumption:

spawn 𝑀
spawn(𝑀 )

↩→ return ()
By Lemma C.14, E-Spawn, and E-Lift,

G[⟨𝑎,Q[spawn 𝑀], 𝜎, 𝜌⟩] −→ G′ [⟨𝑎,Q[return ()], 𝜎, 𝜌⟩ ∥ ⟨𝑏,𝑀, 𝜎, 𝜌⟩]
which we can write as G′′ [⟨𝑎,Q[return ()], 𝜎, 𝜌⟩] as required.

Case LTS-Send.
Assumption:

p ! ℓ (𝑉 )
send(p,ℓ,𝑉 )

↩→ return ()

Since Ψ; · ⊢f C where C = G[⟨𝑎,Q[p ! ℓ (𝑉 )], 𝜎, 𝜌⟩], by T-Session and the linearity of runtime

environments, there must exist some G′
such that C ≡ G′ [⟨𝑎,Q[p ! ℓ (𝑉 )], 𝜎, 𝜌⟩] ∥ 𝑠 ⊲ 𝛿 which can

reduce by E-Send to G′ [⟨𝑎,Q[return ()], 𝜎, 𝜌⟩] ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉 )) as required.
Case LTS-NewAP.
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Assumption:

newAP(p𝑖 :𝑆𝑖 )𝑖
newAP(𝑎)
↩→ return 𝑎

We have that Ψ; · ⊢f C where C = G[⟨𝑎,Q[newAP(p𝑖 :𝑆𝑖 )𝑖 ], 𝜎, 𝜌⟩]; the result follows from

reduction by E-NewAP.

Case LTS-Register.
Assumption:

register 𝑝 p 𝑀
register(𝑝,p,𝑀 )

↩→ return ()

Since Ψ; · ⊢f C where C = G[⟨𝑎,Q[register 𝑝 p 𝑀], 𝜎, 𝜌⟩], by T-Session and the linearity of

runtime environments, there must exist some G′
such that C ≡ G′ [⟨𝑎,Q[register 𝑝 p 𝑀], 𝜎, 𝜌⟩] ∥

𝑝 (𝜒 [p ↦→ �̃�]) which can reduce by E-Register to (𝜈𝜄′) (G′ [⟨𝑎, return (), 𝜎, 𝜌 [𝜄′ ↦→ 𝑀]⟩] ∥
𝑝 (𝜒 [p ↦→ �̃� ∪ {𝜄′}])) as required.

Case LTS-Beta.
Immediate by Lemma C.15.

Case LTS-Lift.
Immediate by the IH and E-LiftM. □

LemmaC.17 (Determinism (TermReduction)). SupposeΨ; Δ ⊢f C whereC = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌⟩].
If:

• C −→ G1 [⟨𝑎,Q[𝑁1], 𝜎1, 𝜌1⟩], where𝑀 ≠ 𝑁1

• C −→ G2 [⟨𝑎,Q[𝑁2], 𝜎2, 𝜌2⟩], where𝑀 ≠ 𝑁2

then up to the identities of fresh variables, G1 = G2, and 𝑁1 = 𝑁2, and 𝜎1 = 𝜎2, and 𝜌1 = 𝜌2.

Proof. Since 𝑀 ≠ 𝑁1 and 𝑀 ≠ 𝑁2 the overall reduction must be driven by the reduction

from𝑀 into 𝑁1 or 𝑁2 respectively. The result then follows by inspection on the reduction rules,

noting that 𝛽-reduction is deterministic, as are the relevant rules E-Send, E-Spawn, E-NewAP, and

E-Register. □

Lemma C.18 (Reflection). Suppose Ψ; Δ ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌⟩].
If C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′⟩] for some G′, 𝑁 , 𝜎 ′ and 𝜌 ′ where𝑀 ≠ 𝑁 , then there exists some ℒ

such that𝑀
ℒ

↩→ 𝑁 .

Proof. Since𝑀 ≠ 𝑁 , by Lemma C.17, the reduction from C must be unique, and will be the one

specified by Lemma C.16. □

Proposition C.19 (Operational Correspondence).

Suppose Ψ; Δ ⊢f C where C = G[⟨𝑎,Q[𝑀], 𝜎, 𝜌⟩].

• If𝑀
ℒ

↩→ 𝑁 , then there exist some G′, 𝜎 ′, and 𝜌 ′ such that C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′⟩].
• If C −→ G′ [⟨𝑎,Q[𝑁 ], 𝜎 ′, 𝜌 ′⟩] for some G′, 𝑁 , 𝜎 ′ and 𝜌 ′ where𝑀 ≠ 𝑁 , then there exists some

ℒ such that𝑀
ℒ

↩→ 𝑁 .

Proof. Follows as a consequence of Lemmas C.16 and C.18. □

Lemma C.20. If ·; · ⊢ (𝜈𝑠 : Δ)C and C 𝜏−−→ D, then ·; · ⊢ (𝜈𝑠 : Δ)D.

Proof. A straightforward corollary of Theorem 3.2. □
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Theorem 3.8 (Session Progress). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C where active(Δ𝑠 ), then C 𝜏−−→
∗ 𝑠−−→.

Proof. By T-SessionName we have that ·; 𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛 ⊢f C and thus by the

linearity of Δ𝑠 alongside rule T-Actor we have some set of actors:

{⟨𝑎𝑖 ,T𝑖 , 𝜎𝑖 , 𝜌𝑖⟩}𝑖∈1..𝑚
such that for each role p𝑗 for 𝑗 ∈ 1..𝑛, either:

• there exists some T𝑘 such that T𝑘 = (𝑀)𝑠 [p𝑗 ] for some𝑀

• 𝑠 [p𝑗 ] ∈ dom(𝜎𝑘 ) for some 𝑘 ∈ 1..𝑚

Consider the subset of actors where T𝑖 ≠ idle, i.e., T𝑖 = 𝑁𝑖 or T𝑖 = (𝑁𝑖 )𝑠
′ [p𝑗 ]

for some 𝑁𝑖 . In this

case, for each actor, by Proposition C.13 we have that𝑁𝑖

ℒ1

↩→ · · ·
ℒ𝑛

↩→ 𝑁 ′
𝑖 where either𝑁

′
𝑖 = return (),

or 𝑁 ′
𝑖 = 𝐸 [suspend 𝑉 ] for some value 𝑉 . By Proposition C.19, we can simulate each reduction

sequence as a configuration reduction (and moreover, by the reflection direction, each term can only
follow this reduction sequence). At this point we can revert each actor to idle by either E-Suspend

or E-Reset.

If any labelled reduction, simulated as a configuration reduction, is labelled with session 𝑠 then

we can conclude. Otherwise we have that C 𝜏−−→
∗
D where again by typing we have some subset

of actors such that:

{⟨𝑎𝑖 , idle, 𝜎𝑖 , 𝜌𝑖⟩}𝑖∈1..𝑚′

By Lemma C.20 we have that ·; · ⊢f
prog

(𝜈𝑠 : Δ𝑠 )D and thus it remains the case that Δ =⇒. Thus

by similar reasoning to Theorem 3.6 it must be the case that some actor 𝑎 𝑗 (where 𝑗 ∈ 1..𝑚′
) can

reduce by E-React as required. □
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D PROOFS FOR SECTION 4
This appendix details the proofs of the metatheoretical properties enjoyed byMaty⇄ andMaty ;

we omit the proofs for Maty with state, which is entirely standard.

D.1 Maty⇄
D.1.1 Preservation.

Theorem A.1 (Preservation). Preservation (as defined in Theorem 3.2) continues to hold inMaty⇄.

Proof. Preservation of typing under structural congruence follows straightforwardly.

For preservation of typing under reduction, we proceed by induction on the derivation of

C −→ D.

Case E-Suspend!-1.
Similar to E-Suspend!-2.

Case E-Suspend!-2.

⟨𝑎, (E[suspend
!
s 𝑉 ])𝑠 [p], 𝜎 [s ↦→ −→

𝐷 ], 𝜌, 𝜃⟩ 𝜏−−→ ⟨𝑎, idle, 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉 )], 𝜌, 𝜃⟩

Assumption:

Γ | 𝑆 ⊲ E[suspend
!
s 𝑉 ] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[suspend
!
s 𝑉 ] )𝑠 [p]

Γ;Δ1 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑊𝑖 : 𝐴
𝑆 !,end−−−−→ 1)𝑖

Γ;Δ1, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 ]
Γ;Δ2 ⊢ 𝜌

Γ ⊢ Δ3𝜃

Γ; Δ1,Δ2,Δ3, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 ], 𝜌, 𝜃 ⟩

Consider the subderivation Γ | 𝑆 ⊲ E[suspend
!
s 𝑉 ] : 1 ⊳ end. By Lemma C.2 there exists a

subderivation:

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→ 1

Γ | 𝑆 ! ⊲ suspend
!
s 𝑉 : 1 ⊳ end

Therefore we have that 𝑆 = 𝑆 !.

Recomposing:

Γ; · ⊢ idle
Γ;Δ1 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑊𝑖 : 𝐴

𝑆 !,end−−−−→ 1)𝑖 Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→ 1

Γ;Δ1, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑠 [p] : 𝑆 ! ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 · (𝑠 [p],𝑉 ) ]
Γ;Δ2 ⊢ 𝜌

Γ ⊢ Δ3𝜃

Γ; Δ1,Δ2,Δ3, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖 ] : 𝑆 ! )𝑖 , 𝑎 ⊢ ⟨𝑎, (E[suspend
!
s 𝑉 ] )𝑠 [p] , 𝜎 [s ↦→ (𝑠𝑖 [q𝑖 ],𝑊𝑖 )𝑖 · (𝑠 [p],𝑉 ) ], 𝜌, 𝜃 ⟩

as required.

Case E-Become.

⟨𝑎,M[become s𝑉 ], 𝜎, 𝜌, 𝜃⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌, 𝜃 · (s,𝑉 )⟩
Assumption (considering the case thatM = E[−] for some E; the case in the context of a session

is identical:

Γ | 𝑆 ⊲ E[become s𝑉 ] : 1 ⊳ end

Γ; · ⊢ E[become s𝑉 ] Γ;Δ1 ⊢ 𝜎 Γ;Δ2 ⊢ 𝜌 Γ ⊢ Δ3𝜃

Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎,T , 𝜎, 𝜌, 𝜃⟩
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By Lemma C.2 we have:

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 ⊲ become s𝑉 : 1 ⊳ 𝑆

By Lemma C.3 we can show that Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end.

Recomposing:

Γ | 𝑆 ⊲ E[return ( ) ] : 1 ⊳ end

Γ; · ⊢ E[return ( ) ] Γ;Δ1 ⊢ 𝜎 Γ;Δ2 ⊢ 𝜌

Γ ⊢ Δ𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

Γ ⊢ Δ3𝜃 · (s,𝑉 )
Γ; Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, E[return ( ) ], 𝜎, 𝜌, 𝜃 · (s,𝑉 ) ⟩

as required.

Case E-Activate.

⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · −→𝐷 ], 𝜌, (s,𝑊 ) · 𝜃⟩ 𝜏−−→ ⟨𝑎, (𝑉 𝑊 )𝑠 [p], 𝜎 [s ↦→ −→
𝐷 ], 𝜌, 𝜃⟩

Assumption:

Γ; · ⊢ idle

Γ;Δ1 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→ 1 (Γ ⊢ 𝑉𝑖 : 𝐴

𝑆 !,end−−−−→ 1)𝑖
Γ;Δ1, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 ⊢ 𝜎, s ↦→ (𝑠 [p],𝑉 ) · (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 Γ;Δ2 ⊢ 𝜌

Γ ⊢ Δ3𝜃

Σ(s) = (𝑆 !, 𝐴)
Γ ⊢ 𝑊 : 𝐴

Γ ⊢ Δ3 (s,𝑊 ) · 𝜃
Γ; Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 ,Δ3, 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [s ↦→ (𝑠 [p],𝑉 ) · (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 ], 𝜌, (s,𝑊 ) · 𝜃 ⟩

Recomposing:

Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−→ 1 Γ ⊢ 𝑊 : 𝐴

Γ | 𝑆 ! ⊲ 𝑉 𝑊 : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ! ⊢ (𝑉 𝑊 )𝑠 [p]

Γ;Δ1 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : 𝐴
𝑆 !,end−−−−→ 1)𝑖

Γ;Δ1, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 Γ;Δ2 ⊢ 𝜌 Γ ⊢ Δ3𝜃

Γ; Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖 ] : 𝑆 ! )𝑖 ,Δ3, 𝑎 ⊢ ⟨𝑎, (𝑉 𝑊 )𝑠 [p] , 𝜎 [s ↦→ (𝑠𝑖 [p𝑖 ],𝑉𝑖 )𝑖 ], 𝜌, 𝜃 ⟩

as required. □

D.1.2 Progress.

Theorem A.2 (Progress (Maty⇄)). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
where for each session 𝑠 𝑗 there exists some mapping 𝑠 𝑗 [p] ↦→ (s,𝑉 ) (for some role p, static session
name s, and callback 𝑉 ) contained in some 𝜎𝑘 where 𝜃𝑘 does not contain any requests for s.

Proof. The proof follows that of Theorem 3.6. Thread progress (Lemma C.12) holds as before,

since we can always evaluate become by E-Become, and we can always evaluate suspend
!
by

E-Suspend-!1 or E-Suspend-!2.

Following the same reasoning as Theorem 3.6 we can write C in canonical form, where all

threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)
However, there are now three places each role endpoint 𝑠 [p] can be used: either by TT-Sess to

run a term in the context of a session or by TH-Handler to record a receive-suspended session
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Runtime syntax
Cancellation-aware runtime envs. Φ ::= · | Φ, 𝑝 | Φ, 𝜄± : 𝑆 | Φ, 𝑠 [p] : 𝑆 | Φ, 𝑠 [p] :  | Φ, 𝑠 : 𝑄

Labels 𝛾 ::= · · · |  𝑠 [p] | 𝑠 : p q::ℓ | 𝑠 : p q

Modified typing rules for configurations Γ; Φ ⊢ C Γ;Φ ⊢ 𝜎

T-ActorName

Γ, 𝑎 : Pid; Φ, 𝑎 ⊢ C
Γ; Φ ⊢ (𝜈𝑎) C

T-ZapActor

Γ; 𝑎 ⊢  𝑎

T-ZapRole

Γ; 𝑠 [p] :  ⊢  𝑠 [p]

T-ZapTok

Γ; 𝜄+ : 𝑆 ⊢  𝜄

T-Actor

Γ;Φ1 ⊢ T Γ;Φ2 ⊢ 𝜎 Γ;Φ3 ⊢ 𝜌

∀(𝑏,𝑀 ) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ; Φ1,Φ2,Φ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝜔 ⟩

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆? ) Γ | end ⊲ 𝑀 : 1 ⊳ end Γ;Φ ⊢ 𝜎
Γ;Φ, 𝑠 [p] : 𝑆? ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ]

Additional LTS rules Φ
𝛾
−→ Φ′ Φ ∼∼∼▷

s[p]

Φ

Lbl-ZapMsg Φ, 𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝐴) ) · 𝑄
𝑠 :p q::ℓ
−−−−−→ Φ, 𝑠 [q] :  , 𝑠 : 𝑄

Lbl-ZapRecv Φ, 𝑠 [p]:q&{ℓ𝑖 (𝐴𝑖 ) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 [q]: , 𝑠 :𝑄
𝑠 :p q
−−−−→ Φ, 𝑠 [p]: , 𝑠 [q]: , 𝑠 :𝑄 (if messages(q, p,𝑄 ) = ∅)

Lbl-Zap Φ, 𝑠 [p] : 𝑆 ∼∼∼▷
s[p]

Φ, 𝑠 [p] :  

Fig. 15. Maty : Modified configuration typing rules and type LTS

type as before, but now also by TH-SendHandler to record a send-suspended session type. As

before, the former is impossible as all threads are idle, so now we must consider the cases for

TH-Handler.

Following the same reasoning as Theorem 3.6, we can reduce any handlers that have waiting

messages. Thus we are finally left with the scenario where the session type LTS can reduce, but

not the configuration: this can only happen when the sending reduction is send-suspended, as

required. □

D.2 Maty 
Figure 15 shows the necessary modifications to the configuration typing rules and type LTS. We

extend runtime type environments to cancellation-aware environments Φ that include an additional

entry of the form 𝑠 [p] :  , denoting that endpoint 𝑠 [p] has been cancelled. We also need to extend

the type LTS to account for failure propagation; we take a similar approach to Barwell et al. [5]. Rule

Lbl-Zap accounts for the possibility that in any given reduction step, a role may be cancelled (for

example, as a result of E-RaiseS), but it is a separate relation since it is unnecessary for determining

behavioural properties of types.

All metatheoretical results continue to hold.

D.2.1 Preservation. First, it is useful to show that safety is preserved even if several roles are

cancelled; we use this lemma implicitly throughout the preservation proof.

Let us write roles(Δ) = {p | 𝑠 [p] : 𝑆 ∈ Φ} to retrieve the roles from an environments.

Let us also define the operation zap(Φ, p̃) that cancels any role in the given set, i.e., zap(𝑠 [p1] :
𝑆1, 𝑠 [p2] : 𝑆2, 𝑎, {p1}) = 𝑠 [p1] :  , 𝑠 [p2] : 𝑆2, 𝑎.

Lemma D.1. If safe(Φ) then safe(zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role does not affect safety; the only way to violate safety is by adding further

unsafe communication reductions. □
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We need a slightly modified preservation theorem in order to account for cancelled roles;

specifically we write⇛ for the relation =⇒?∼∼∼▷∗. The safety property is unchanged for cancellation-
aware environments.

Theorem D.2 (Preservation (−→,Maty )). If Γ; Φ ⊢ C with safe(Φ) and C −→ D, then there
exists some Φ′ such that Φ ⇛ Φ′ and Γ; Φ′ ⊢ D.

Proof. Preservation of typability by structural congruence is straightforward, so we concentrate

on preservation of typability by reduction. We proceed by induction on the derivation of C −→ D,

concentrating on the new rules rather than the adapted rules (which are straightforward changes

to the existing proof).

Case E-Monitor.

⟨𝑎,M[monitor 𝑏 𝑀], 𝜎, 𝜌, 𝜔⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌, 𝜔 ∪ {(𝑏,𝑀)}⟩

We consider the case whereM = E[−] for some E; the case in the context of a session is similar.

Assumption:

Γ | 𝑆 ⊲ E[monitor 𝑏 𝑀] : 1 ⊳ end

Γ; · ⊢ E[monitor 𝑏 𝑀]
Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[monitor 𝑏 𝑀], 𝜎, 𝜌, 𝜔⟩

where ∀(𝑏, 𝑁 ) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑁 : 1 ⊳ end.

By Lemma C.2, we know:

Γ ⊢ 𝑏 : Pid Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ monitor 𝑏 𝑀 : 1 ⊳ 𝑆

By Lemma C.3 we know Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end.

Recomposing:

Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end

Γ; · ⊢ E[return ()]
Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[return ()], 𝜎, 𝜌, 𝜔 ∪ (𝑏, 𝑁 )⟩

noting that 𝜔 ∪ (𝑏, 𝑁 ) is safe since Γ ⊢ 𝑏 : Pid and Γ | 𝑆 ⊲ E[return ()] : 1 ⊳ end, as required.

Case E-InvokeM.

⟨𝑎, idle, 𝜎, 𝜌, 𝜔 ∪ {(𝑏,𝑀)}⟩ ∥  𝑏 𝜏−−→ ⟨𝑎,𝑀, 𝜎, 𝜌, 𝜔⟩ ∥  𝑏

Assumption:

Γ; · ⊢ idle Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑀 ) }⟩ Γ; 𝑏 ⊢  𝑏
Γ; Φ1,Φ2, 𝑎,𝑏 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑀 ) }⟩ ∥  𝑏

where ∀(𝑎′, 𝑀) ∈ 𝜔 ∪ {(𝑏, 𝑁 )}. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 : 1 ⊳ end.

Recomposing:
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Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ; · ⊢ 𝑀 Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌, 𝜔⟩ Γ; 𝑏 ⊢  𝑏
Γ; Φ1,Φ2, 𝑎, 𝑏 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌, 𝜔⟩ ∥  𝑏

as required.

Case E-Raise.
Similar to E-RaiseS.

Case E-RaiseS.

⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌, 𝜔⟩ 𝜏−−→  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌

Γ | 𝑆 ⊲ E[raise] : 1 ⊳ end

Γ; 𝑠 [p] : 𝑆 ⊢ (E[raise])𝑠 [p] Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌, 𝜔⟩
where ∀(𝑏,𝑀) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ | end ⊲ 𝑀 : 1 ⊳ end.

Let us write  Φ = {𝑠 [p] :  | 𝑠 [p] : 𝑆 ∈ Φ}. It follows that for a given environment, Φ ∼∼∼▷∗  Φ.
The result follows by noting that due to TH-Handler and TI-Callback we have that fn(Φ1) =

fn(𝜎) and fn(Φ2) = fn(𝜌). Thus:
• Γ;  Φ1 ⊢  𝜎 ,
• Γ;  Φ2 ⊢  𝜌 ,
• Γ;  Φ1, Φ2, 𝑠 [p] :  , 𝑎 ⊢  𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌

with the environment reduction:

Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ∼∼∼▷+  Φ1, Φ2, 𝑠 [p] :  , 𝑎
as required.

Case E-CancelMsg.

𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 ∥  𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]
Assumption:

Γ ⊢ 𝑉 : 𝐴 Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 : (p, q, ℓ (𝐴)) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝑉 )) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉 )) · 𝛿 ∥  𝑠 [q]

Recomposing, we have:

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [q] :  , 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [q]

with

𝑠 [q] :  , 𝑠 : (p, q, ℓ (𝑉 )) ·𝑄
𝑠 :p q::ℓ
−−−−−−→ 𝑠 [q] :  , 𝑠 : 𝑄

as required.
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Case E-CancelAP.

(𝜈𝜄) (𝑝 (𝜒 [p ↦→ �̃�′ ∪ {𝜄}]) ∥  𝜄) 𝜏−−→ 𝑝 (𝜒 [p ↦→ �̃�′])
Assumption:

𝑝 : AP(p𝑖 : 𝑆𝑖 )𝑖

{ (p𝑖 : 𝑆𝑖 )𝑖 } Φ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖 )𝑖 } Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ]

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) Γ; 𝜄+ : 𝑆 𝑗 ⊢  𝜄

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝜄
+
: 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄

Γ; Φ,�𝜄′− : 𝑆 𝑗 , 𝑝 ⊢ (𝜈𝜄 ) (𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄} ] ) ∥  𝜄 )

Recomposing:

𝑝 : AP(p𝑖 : 𝑆𝑖 )𝑖

{(p𝑖 : 𝑆𝑖 )𝑖 } Φ ⊢ 𝜒

{(p𝑖 : 𝑆𝑖 )𝑖 } Φ, �𝜄 ′− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ �̃�′]

Γ; Φ, �𝜄 ′− : 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ �̃�′])

as required.

Case E-CancelH.

⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀), 𝜌, 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] 𝜏−−→
⟨𝑎,𝑀, 𝜎, 𝜌, 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [q] ∥  𝑠 [p] if messages(q, p, 𝛿) = ∅

Let D be the following derivation:

Γ; · ⊢ idle

𝑇 = q&{ℓ𝑖 (𝑥𝑖 ) ↦→ 𝑆𝑖 }𝑖 Γ ⊢ 𝑉 : Handler(𝑇 )
Γ | end ⊲ 𝑀 : 1 ⊳ end Γ;Φ1 ⊢ 𝜎
Γ;Φ1, 𝑠 [p] : 𝑇 ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀)] Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀)], 𝜌, 𝜔⟩
Assumption:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ; 𝑠 [p] :  ⊢  𝑠 [p]
Γ; 𝑠 : 𝑄, 𝑠 [p] :  ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [p]

Γ; Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] :  , 𝑎 ⊢ ⟨𝑎, idle, 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑀 ) ], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [p]

We can recompose as follows. Let D′
be the following derivation:

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ; · ⊢ 𝑀 Γ;Φ1 ⊢ 𝜎 Γ;Φ2 ⊢ 𝜌

Γ; Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌, 𝜔⟩
Then we can construct the remaining derivation:

D

Γ; 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ; 𝑠 [p] :  ⊢  𝑠 [p] Γ; 𝑠 [q] :  ⊢  𝑠 [q]
Γ; 𝑠 [p] :  , 𝑠 [q] :  ⊢  𝑠 [p] ∥  𝑠 [q]

Γ; 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  ⊢ 𝑠 ⊲ 𝛿 ∥  𝑠 [p] ∥  𝑠 [q]
Γ; Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  , 𝑎 ⊢ ⟨𝑎,𝑀, 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥  𝑠 [p] ∥  𝑠 [q]

Finally, we need to show environment reduction:
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Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] :  , 𝑎
𝑠 :p q
−−−−→ Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] :  , 𝑠 [q] :  , 𝑎

as required. □

D.2.2 Progress. Maty enjoys a similar progress property since E-CancelMsg discards messages

that cannot be received, and E-CancelMsg invokes the failure continuation whenever a message

will never be sent due to a failure; monitoring is orthogonal. The one change is that zapper threads

for actors may remain if the actor name is free in an existing monitoring or initialisation callback.

We require a slightly-adjusted progress property on environments to account for session failure.

Definition D.3 (Progress (Cancellation-aware environments)). A runtime environment Φ satisfies
progress, written prog (Φ), if Φ=⇒ ∗ Φ′ ̸=⇒ implies that either Φ′ = 𝑠 : 𝜖 or Φ′ = (𝑠 [p𝑖 ] :  )𝑖 , 𝑠 : 𝜖 .

We first need to define a canonical form that takes zapper threads into account.

Definition D.4 (Canonical form (Maty )). A Maty configuration C is in canonical form if it can

be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

with  𝑎𝑘𝑘∈𝑛′ ..𝑛 contained in  ̃𝛼 .

As before, all well-typed configurations can be written in canonical form; as usual the proof

relies on the fact that structural congruence is type-preserving.

Lemma D.5. If Γ; Φ ⊢ C then there exists a D ≡ C where D is in canonical form.

It is also useful to see that the progress property on environments is preserved even if some

roles become cancelled.

Lemma D.6. If prog (Φ) then prog (zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role may prevent Lbl-Recv from firing, but in this case would enable either a

Lbl-ZapRecv and Lbl-ZapMsg reduction. □

Thread progress needs to change to take into account the possibility of an exception due to

E-Raise or E-RaiseExn:

Lemma D.7 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌⟩]. If ·; · ⊢ C then either:
• T = idle, or
• there exist G′,T ′, 𝜎 ′, 𝜌 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′⟩], or
• C −→ G′ [ 𝑎 ∥  𝜎 ∥  𝜌] if T = E[raise], or
• C −→ G′ [ 𝑎 ∥  𝑠 [p] ∥  𝜎 ∥  𝜌] if T = (E[raise])𝑠 [p] .

Proof. As with Lemma C.12 but taking into account that:

• monitor 𝑏 𝑀 can always reduce by E-Monitor;

• raise can always reduce by either E-Raise or E-RaiseS.

□

Theorem D.8 (Progress (Maty )). If ·; · ⊢prog C, then either there exists some D such that
C −→ D, or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ ( 𝑎 𝑗 ) 𝑗∈𝑛′ ..𝑛)
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Proof. The reasoning is similar to that of Theorem 3.6. By Lemma D.5, C can be written in

canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

with ( 𝑎𝑘 )𝑘∈𝑛′ ..𝑛 contained in  ̃𝛼 .
By repeated applications of Lemma D.7, either the configuration can reduce or all threads are

idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗 ) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must either be contained

in an actor, or exist as a zapper thread  𝑠 [p] ∈  ̃𝛼 . Let us first consider the case that the endpoint
is contained in an actor; we know by previous reasoning that each role must have an associated

stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

There are two potential reductions: either Lbl-Sync-Recv in the case that the queue has a message,

or Lbl-ZapRecv if the sender is cancelled and the queue does not have a message. In the case

of Lbl-Sync-Recv, since all actors are idle we can reduce using E-React as usual. In the case of

Lbl-ZapRecv typing dictates that we have a zapper thread for the sender and so can reduce by

E-CancelH.

It now suffices to reason about the case where all endpoints are zapper threads (and thus by

linearity, where all handler environments are empty). In this case we can repeatedly reduce with

E-CancelMsg until all queues are cleared, at which point we have a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙 ) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖 )𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝜖) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle, 𝜖, 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥  ̃𝛼)

We must now account for the remaining zapper threads. If there exists a zapper thread  𝑎 where

𝑎 is contained within some monitoring environment 𝜔 then we can reduce with E-InvokeM. If 𝑎

does not occur free in any initialisation callback or monitoring callback then we can eliminate it

using the garbage collection congruence (𝜈𝑎) ( 𝑎) ∥ C ≡ C.
Next, we eliminate all zapper threads for initialisation tokens using E-CancelAP.

Finally, we can eliminate all failed sessions (𝜈𝑠) ( 𝑠 [p1] ∥ · · · ∥  𝑠 [p𝑛] ∥ 𝑠 ⊲ 𝜖), and we are left

with a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle, 𝜖, 𝜌 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ ( 𝑎 𝑗 ) 𝑗∈𝑛′ ..𝑛)
as required. □

D.2.3 Global Progress.

Lemma D.9 (Session Progress (Maty )). If ·; · ⊢fprog (𝜈𝑠 : Δ𝑠 )C, then there exists some D1 such

that C 𝜏−−→
∗
D1 and either D1

𝑠−−→, or (𝜈𝑠)D1 ≡ D2 for some D2 where 𝑠 ∉ activeSessions(D2).

Proof. The proof is as with Theorem 3.8, except we must account for failed sessions arising as

a consequence of reduction. □

A modified version of global progress holds: for every active session, in a finite number of

reductions, either the session can make a communication action, or all endpoints become cancelled

and can be garbage collected.
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Theorem D.10 (Global Progress (Maty )). If ·; · ⊢fprog C, then for every 𝑠 ∈ activeSessions(C),

then there exist D and D1 such that C ≡ (𝜈𝑠)D where D 𝜏−−→
∗
D1 and either D1

𝑠−−→, or D1 ≡ D2

for some D2 where 𝑠 ∉ activeSessions(D2).

Proof. Arises as a corollary of Lemma D.9. □
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