
Speak Now
Safe Actor Programming with Multiparty Session Types

DRAFT: October 2025

SIMON FOWLER, University of Glasgow, United Kingdom

RAYMOND HU, Queen Mary University of London, UK, United Kingdom

Actor languages such as Erlang and Elixir are widely used for implementing scalable and reliable distributed

applications, but the informally-specified nature of actor communication patterns leaves systems vulnerable

to costly errors such as communication mismatches and deadlocks. Multiparty session types (MPSTs) rule out

communication errors early in the development process, but until now, the nature of actor communication

has made it difficult for actor languages to benefit from session types.

This paper introducesMaty, the first actor language design supporting both static multiparty session typing

and the full power of actors taking part in multiple sessions. Our main insight is to enforce session typing

through a flow-sensitive type-and-effect system, combined with an event-driven programming style and

first-class message handlers. Using MPSTs allows us to guarantee communication safety: a process will never

send or receive an unexpected message, nor will it ever get stuck waiting for a message that will never arrive.

We extendMaty to support Erlang-style supervision and cascading failure, and show that this preserves

Maty’s strong metatheory. We implement Maty in Scala using an API generation approach, and evaluate our

implementation on a series of microbenchmarks, a factory scenario, and a chat server.

1 INTRODUCTION
Modern infrastructure depends on distributed software. Unfortunately, writing distributed software

is difficult: developers must reason about a host of issues such as deadlocks, failures, and adherence

to complex communication protocols. Actor languages such as Erlang and Elixir, and frameworks

like Akka, are popular for writing scalable, resilient systems; Erlang in particular powers the servers

of WhatsApp, which has billions of users worldwide. Actor languages support lightweight processes

that communicate through asynchronous explicit message passing rather than shared memory,

and support robust failure recovery strategies like supervision hierarchies.
Nevertheless, actor languages are not a silver bullet: it is still possible—easy, even—to introduce

subtle bugs that can lead to errors that are difficult to detect, debug, and fix. Examples include

waiting for a message that will never arrive, sending a message that cannot be handled, or sending

an incorrect payload. Multiparty session types (MPSTs) [7, 30] are types for protocols and allow us

to reason about structured interactions between communicating participants. If each participant

typechecks against its session type, then the system is statically guaranteed to correctly implement

the associated protocol, in turn catching communication errors before a program is run.

MPSTs therefore offer a tantalising promise for actor languages: by combining the fault-tolerance

and ease-of-distribution of actor languages with the correctness guarantees given by MPSTs, users

can fearlessly write robust and scalable distributed code, confident in the absence of protocol errors.

Unfortunately, there is a spanner in the works: MPSTs have been primarily studied for channel-based
languages, which have a significantly different communication model, and current session-typing

approaches for actor languages are severely limited in expressiveness. Other behavioural type

systems for actors struggle to capture structured interactions and handle failure effectively.
In this paper we presentMaty, the first actor language that supports statically-checked multiparty

session types and failure handling, combining the error prevention mechanism of session types and

the scalability and fault tolerance of actor languages. Our key insight is to adopt an event-driven
programming style and enforce session typing through a flow-sensitive effect system.

Authors’ addresses: Simon Fowler, University of Glasgow, United Kingdom; Raymond Hu, Queen Mary University of

London, UK, United Kingdom.

2 Simon Fowler and Raymond Hu

1.1 Actor Languages
Actor languages and frameworks are inspired by the actor model [2, 29], where an actor reacts to

incoming messages by spawning new actors, sending a finite number of messages to other actors,

and changing the way it reacts to future messages. Consider the following Akka implementation of

an ID server, which generates a fresh number for every client request:

def idServer(count: Int): Behavior[IDRequest] = {
Behaviors.receive { (context , message) =>

message.replyTo ! IDResponse(count)
idServer(count + 1)

}
}

The idServer function records the current request count as its state, and responds to an incoming

IDRequest by sending the current count before recursing with an incremented request counter.

It is straightforward to specify the client-server protocol for this example as a session type between
these two roles, but there are key problems implementing and verifying even this simple example

in standard MPST frameworks. First, actor programming is inherently reactive: computation is

driven by the reception of a new message, and actors must be able to respond to requests from

a statically-unknown number of clients. Second, each response depends on some common state.
Classical MPSTs are instead based on session 𝜋-calculus, which is effectively a model of proactive
multithreading as opposed to reactive event handling. A standard MPST server process relies on

replication to spawn a separate (𝜋-calculus) process to handle each client session concurrently. For

reference, common notations/patterns include:

Server = 𝑎(𝑥).(𝑃thread (𝑥) | Server) or Server = !𝑎(𝑥) .𝑃thread (𝑥)

def idServer(count: Int , locked: Boolean):
Behavior[IDServerRequest] = {

Behaviors.receive { (context , message) =>
message match {

case IDRequest(replyTo) =>
if (locked) {

replyTo ! Unavailable ()
idServer(count , locked)

} else {
replyTo ! IDResponse(count)
idServer(count + 1, locked)

}
case LockRequest(replyTo) =>

if (locked) {
replyTo ! Unavailable ()
idServer(count , locked)

} else {
replyTo ! Locked(context.self)
idServer(count , true)

}
case Unlock () =>

idServer(count , false)
}

}
}

Fig. 1. ID server extended with locking

This model has no direct support for coordinating

a dynamically variable number of such separate

client-handler processes/sessions, and—crucially—

key safety properties of standard MPSTs such as

deadlock-freedom only hold when each process
engages in a single session and each session can
be conducted fully independently from the oth-
ers (i.e., an embarrassingly parallel situation). Intro-

ducing any method to synchronise shared state be-

tween these processes, be it through an intricate web

of additional internal sessions or some out-of-band

(i.e., non-session-typed) method, means deadlock-

freedom is no longer guaranteed.

Besides safety concerns, the 𝜋-calculus based pro-

gramming model makes it difficult to express im-

portant patterns such as a single process waiting to

reactively receive from senders across multiple sessions, since inputs are normally modelled as

direct, blocking operations.

A locking ID server. Figure 1 shows a simple extension of our ID server, where a participant can

choose to lock the server to prevent it from generating fresh IDs until the lock is released.

In this example, replies depend on whether the ID server is locked. Upon receiving an IDRequest

message, if the server is locked, then it will respond with Unavailable; otherwise, it will reply as

before. If an unlocked server receives a LockRequest message, it responds with Locked and sets the

locked flag. A subsequent Unlock message resets the locked flag.

Speak Now 3

a

b

c

(a) Channels

A B

C

(b) Actors

Fig. 2. Channel- and actor-based languages [24]

This small extension to the example reveals some intricacies: once a client has received a lock, it

is in a different state of the protocol to the remaining clients. First, there is no straightforward way

of guaranteeing that the client ever sends an Unlock message, nor that the Unlock message was sent

by the same actor that acquired the lock. Second, the server must always be able to handle an Unlock

message, even when it is already unlocked—permitting an invalid state. Both of these issues can be

straightforwardly solved using session types in Maty.

1.2 Channels vs. Actors
Session types were originally developed for channel-based languages like Go and Concurrent ML

(Figure 2a). Channel-based languages languages support anonymous processes that communicate

over channel endpoints, supporting either synchronous or asynchronous communication. In actor

languages (Figure 2b) such as Erlang or Elixir, named processes send messages directly to each

others’ mailboxes. The difference in communication models has significant consequences for

distribution and typing. We can easily give a channel endpoint precise types, e.g., Chan(Int) or
a session type such as !Int.!Int.?Bool.end to state that the channel should be used to send two

integers and receive a Boolean. However, efficiently implementing channels requires us to store

buffered data at the same location that it is processed, but difficulties arise when sending channel

endpoints as part of a message (known as distributed delegation). Furthermore, implementing even

basic channel idioms such as choosing between multiple channels requires complex distributed

algorithms [12]. In short, channel-based languages are easy to type but difficult to distribute.
In contrast, actor languages are much easier to distribute, since every message will always be

stored at the process that will handle it. But typing an actor is harder, requiring large variant types,

and behavioural typing is difficult since we can only send to process IDs and receive from mailboxes.

Thus, actors are easy to distribute but difficult to type.

1.3 Key Principles
For session types to be useful for real-world actor programs, we argue that a programming model

and session type discipline must satisfy the following key principles:
(KP1) Reactivity Following the actor model, frameworks like Akka, and Erlang behaviours like

gen_server, computation should be triggered by incoming messages.

(KP2) No Explicit Channels Channel-based languages impose a significantly different program-

ming style, so the programming model should not expose explicit channels to a developer.

(KP3) Multiple Sessions Actors must be able to simultaneously take part in an unbounded and

statically-unknown number of sessions, in order to support server applications. It must be

possible for different participants to be at different states of a protocol.

(KP4) Interaction Between Sessions Much like our ID server example, interactions in one ses-

sion should be able to affect the behaviour of an actor in other sessions.

(KP5) Failure Handling and Recovery The programming model and type discipline should

support failure recovery via supervision hierarchies.

4 Simon Fowler and Raymond Hu

No previous work that applies session types to actor languages satisfies the key principles above.
Mostrous and Vasconcelos [43] investigated session typing for Core Erlang by emulating session-

typed channels using unique references and selective receive. Their approach was unimplemented,

not reactive, exposed a channel-based discipline, and does not support failure, violating KP1, 2,
5. Francalanza and Tabone [25] implemented a binary session typing system for Elixir, but their

approach is limited to typing interactions between isolated pairs of processes and is therefore

severely limited in expressiveness, violating KP1, 3, 4, 5. Harvey et al. [28] used multiparty session

types in an actor language to support safe runtime adaptation, but each actor can only take part in

a single session at a time. It is therefore difficult to write server applications and so the language

does not support general-purpose actor programming, violating KP1, 3, 4.
Neykova and Yoshida [45] and Fowler [21] implement programming frameworks closer to

following our key principles: each actor is programmed in a reactive style and can be involved in

multiple sessions, but both works use dynamic verification of actors using session types as a notation
for generating runtime monitors. They do not consider any formalism, session type system, nor

metatheoretical guarantees, and so there is a significant gap between their conceptual framework

and a concrete static programming language design.

In contrast, Maty supports our key principles by reacting to incoming messages rather than

having an explicit receive operation (KP1); enforcing session typing through a flow-sensitive effect

system rather than explicit channel handles (KP2); using the reactive design to support interleaved

handling of messages from different sessions (KP3); supporting interaction between sessions using

state, self-messages, and an explicit session switching construct (KP4); and supporting graceful

session failure and failure recovery via supervision hierarchies (KP5).

1.4 Contributions
Concretely, we make three specific contributions:

(1) We introduce Maty, the first actor language design with full support for multiparty session

types (§3). We show that Maty enjoys a strong metatheory including type preservation,

progress, and global progress; in practice this means that Maty programs are free of com-

munication mismatches and deadlocks (§4).

(2) We show how to extendMaty with support for Erlang-style failure handling and process

supervision (§5), and prove that this maintains Maty’s strong metatheory.

(3) We detail our implementation of Maty using an API generation approach in Scala (§6), and

demonstrate our implementation on series of benchmarks, a real-world case study from the

factory domain, and a chat server application.

Section 7 discusses related work, and Section 8 concludes.

2 A TOUR OF MATY
In this section we introduce Maty by example, first by considering how to write our ID server, and

then by considering a larger online shop example.

2.1 The Basics: ID Server
Session types. Figure 3 shows the session types for the ID server example. The global type describes

the interactions between the ID server and a client. For simplicity, we assume a standard encoding

of mutually recursive types and use mutually recursive definitions in our examples. The client

starts by sending one of IDRequest, LockRequest, orQuit to the server. On receiving IDRequest,

the server replies with IDResponse if it is unlocked, or Unavailable if it is locked; in both cases,

the protocol then repeats. On receiving LockRequest, the server replies with Locked (if it locks

Speak Now 5

Global Type for ID Server

IDServer ≜
Client → Server : {
IDRequest() .

Server → Client : {
IDResponse(Int) . IDServer,
Unavailable() . IDServer

},
LockRequest() .

Server → Client : {
Locked() .AwaitUnlock,
Unavailable() . IDServer

},
Quit() . end

}
AwaitUnlock ≜
Client → Server : Unlock() . IDServer

Local Type for Server Role

ServerTy ≜
Client&{
IDRequest() .

Client ⊕{
IDResponse(Int) . ServerTy,
Unavailable() . ServerTy

},
LockRequest() .

Client ⊕{
Locked() . ServerLockTy
Unavailable() . ServerTy

},
Quit() . end

}
ServerLockTy ≜

Client&Unlock() . ServerTy
Fig. 3. Session types for the ID server example.

successfully), and the client must then send Unlock before repeating. If already locked, the server

responds with Unavailable. The protocol ends when the server receives a Quit message.

A global type can be projected to local types that describe the protocol from the perspective of

each participant. The local type on the right details the protocol from the server’s viewpoint: the &

operator denotes offering a choice, and the ⊕ operator denotes making a selection. The (omitted)

ClientTy type is similar, but implements the dual actions: where the server offers a choice, the client
makes a selection, and vice-versa. We define a protocol 𝑃 as a mapping from role names to local

session types. In our example we define IDServerProtocol ≜ {Client : ClientTy, Server : ServerTy}.

Programming model. TheMaty programming model is as follows:

• Maty is faithful to the actor model, which has a single thread of execution per actor. This

allows access to shared statewithout needing concurrency control mechanisms like mutexes.

• An actor registers with an access point to register to take part in a session.

• Once a session is established, the actor can send messages according to its session type. The

actor maintains some actor-level state and its active thread must either return an updated

state (if it has completed its part in the protocol), or suspend by installing a message handler
(if it is ready to receive a message). Suspension acts as a yield point to the event loop, and

occurs at precisely the same point as in mainstream actor languages.
• The event loop can then invoke other installed handlers for anymessages in its mailbox—this
is the key mechanism that allows Maty to support multiple sessions.

Implementing the ID server. Figure 4 shows an implementation of the ID server inMaty; we allow

ourselves the use of mutually-recursive definitions, taking advantage of the usual encoding into

anonymous recursive functions. Although we use an effect system that annotates function arrows,

we omit effect annotations where they are not necessary.

The server maintains actor-level state of type (Int × Bool), containing the current ID and a flag

recording whether the server is locked. The idServer function takes an access point [26] and initial

state as an argument, and registers for the Server role. An access point can be thought of as a

“matchmaking service”: actors register to play a role in a session, and the access point establishes a

session once actors have registered for each role. The register construct takes three arguments: an

access point, a role, and a callback to be invoked when the session is established. Once the callback
is invoked, the actor can perform session communication actions for the given role: in this case, the

6 Simon Fowler and Raymond Hu

idServer : (AP(IDServerProtocol) × (Int × Bool))
→ (Int × Bool)

idServer = 𝜆 (ap, state) . registerAgain ap; state

registerAgain : (AP(IDServerProtocol)) → Unit

registerAgain = 𝜆ap.
register ap Server

(𝜆st . registerAgain ap; suspend requestHandler st)
unlockHandler : Handler(ServerLockTy, (Int × Bool))
unlockHandler =

handler Client st {
Unlock() ↦→

let (currentID, locked) = st in
suspend requestHandler (currentID, false)

}
main : Unit

main =

let idServerAP = newAP[IDServerProtocol] in
spawn (idServer (idServerAP, (0, false)) ;
spawn (client idServerAP)

requestHandler : Handler(ServerTy, (Int × Bool))
requestHandler =

handler Client st {
IDRequest() ↦→

let (currentID, locked) = st in
if locked then

Client ! Unavailable() ;
suspend requestHandler st

else
Client ! IDResponse (currentID) ;
suspend requestHandler (currentID + 1, locked),

LockRequest() ↦→
let (currentID, locked) = st in
if locked then

Client ! Unavailable() ;
suspend requestHandler st

else
Client ! Locked() ;
suspend unlockHandler (currentID, true),

Quit() ↦→ st
}

Fig. 4. Maty implementation of ID Server

actor can communicate according to the ServerTy type, namely receiving the initial item request

from a client. The callback first recursively registers to be involved in future sessions, and then

suspends awaiting a message from a client, by installing requestHandler.

A message handler (or simply handler) is a first-class construct that describes how an actor

handles an incoming message: each handler takes the role to receive from; a variable to which

to bind the current actor state; and a series of branches that detail how each message should be

handled. An actor installs a message handler for the current session by invoking the suspend
construct, which reverts the actor back to being idle with an updated state, and indicates that the

given handler should be invoked when a message is received from the Client.

Tying the example together. The requestHandler has type Handler(ServerTy, (Int × Bool)): han-
dlers are parameterised by an input session type and the type of the actor’s state. The handler has

three branches, one for each possible incoming message.Maty uses a flow-sensitive effect system [3,

20, 27] to enforce session typing using pre- and post-conditions on expressions. In the IDRequest

branch, the pre-condition Client ⊕{IDResponse(Int) . ServerTy,Unavailable() . ServerTy} means

that the actor can only send IDResponse or Unavailable messages; all other communication actions

are rejected statically. After either message is sent, the session type advances to ServerTy, allowing

the handler to suspend recursively. The LockRequest branch works similarly; since suspend aborts

the current evaluation context, both branches can be given type (Int × Bool) with post-condition

end to match theQuit branch. The unlockHandler handlesUnlock by updating the state, reinstalling

requestHandler, and suspending. Implementing a client is similar (details omitted). Finally, main

sets up the access point (associating Client with ClientTy and Server with ServerTy), then spawns

idServer with a pair of arguments idServerAP (to allow the server to register for sessions) and

(0, false), its initial state. The main function also spawns the client, passing the same access point.

2.2 A Larger Example: A Shop
Our ID server example demonstrated many of the important parts of Maty, but only considers

interactions between two roles. Let us now consider a larger example of an online shop, depicted

Speak Now 7

Scenario Description

Customer Shop PaymentProcessor

RequestItems()

Items(ItemSummary)

GetItemInfo(ItemID)

ItemInfo(ItemDetails)

Checkout(ItemIDs, PaymentDetails)

ProcessingPayment()

Buy(PaymentDetails, Cost)

OK

OK(DeliveryDate)

PaymentDeclined()

PaymentDeclined()

OutOfStock()

loop

alt

alt

alt

• A Shop can serve many Customers at once.
• The Customer begins by requesting a list of items from

the Shop, which sends back a list of pairs of an item’s

identifier and name.

• The Customer can then repeatedly either request full

details (including description and cost) of an item,

or proceed to checkout.

• To check out, the Customer sends their payment details

and a list of item IDs to the Shop.
• If any items are out of stock, then the Shop notifies the

customer who can then try again. Otherwise, the

Shop notifies the Customer that it is processing
the payment, and forwards the payment details and

total cost to the Payment Processor.
• The Payment Processor responds to the Shop with

whether the payment was successful.

• The Shop relays the result to the Customer, with a

delivery date if the purchase was successful.

Local Types for Shop role

ShopTy ≜
Customer& requestItems() .
Customer ⊕ items([(ItemID × ItemName)]) .
ReceiveCommand

PaymentResponse ≜
PaymentProcessor&{

ok() .
Customer ⊕ ok(DeliveryDate) .
ReceiveCommand,

paymentDeclined() .
Customer ⊕ paymentDeclined() .
ReceiveCommand

}

ReceiveCommand ≜
Customer&{

getItemInfo(ItemID) .
Customer ⊕ itemInfo(Description) .
ReceiveCommand,

checkout(([ItemID] × PaymentDetails)) .
Customer ⊕{

paymentProcessing() .
PaymentProcessor ⊕

buy((PaymentDetails × Price)) .
PaymentResponse,

outOfStock() .
Customer ⊕ outOfStock() .
ReceiveCommand

}
}

Fig. 5. Online Shop Scenario

in Figure 5, that we will use as a running example throughout the rest of the paper. In short, the

scenario involves multiple clients interacting with a single shop, and where the shop connects

with an external payment processor. Figure 5 also shows the local types for the Shop role; we omit

the ClientTy and PPTy types for the Client and PaymentProcessor respectively, but they follow a

similar pattern. The global type closely follows the sequence diagram.

Shop message handlers. Figure 6 shows the shop’s message handlers. After spawning, the shop

suspends with itemReqHandler, awaiting a requestItems message. On receipt, it retrieves the

current stock from its state, sends a summary to the customer, and installs custReqHandler.

The custReqHandler handles the getItemInfo and checkout messages. For getItemInfo, the shop

sends item details and suspends recursively. For checkout, it checks availability: if all items are in

stock, it notifies the customer, updates the stock, sends buy to the payment processor, and installs

paymentHandler; otherwise, it sends outOfStock and reinstalls custReqHandler.

8 Simon Fowler and Raymond Hu

itemReqHandler : Handler(ShopTy, [Item])
itemReqHandler ≜

handler Customer stock {
requestItems() ↦→

Customer ! itemSummary(summary(stock)) ;
suspend custReqHandler stock

}

paymentHandler : [ItemID] →
Handler(PaymentResponse, [Item])

paymentHandler ≜ 𝜆itemIDs.
handler PaymentProcessor stock {
ok() ↦→

Customer ! ok(deliveryDate(itemIDs)) ;
suspend custReqHandler stock

paymentDeclined() ↦→
Customer ! paymentDeclined() ;
let newStock = increaseStock(itemIDs, stock) in
suspend custReqHandler newStock

}

custReqHandler : Handler(ReceiveCommand, [Item])
custReqHandler ≜

handler Customer stock {
getItemInfo(itemID) ↦→

Customer ! itemInfo(lookupItem(itemID, stock)) ;
suspend custReqHandler stock

checkout((itemIDs, details)) ↦→
if inStock(itemIDs, stock) then

Customer ! paymentProcessing() ;
let total = cost(itemIDs, stock) in
let newStock = decreaseStock(itemIDs, stock) in
PaymentProcessor ! buy((details, total)) ;
suspend (paymentHandler itemIDs) newStock

else
Customer ! outOfStock() ;
suspend custReqHandler stock

}

Fig. 6. Implementation of Shop message handlers in Maty

The paymentHandler waits for the processor’s reply: if it receives ok, it sends the delivery

date; if it instead receives paymentDeclined, it restores the previous stock. Both branches reinstall

custReqHandler to handle future requests.

Tying the example together. Finally, we can show how to establish a session using the Shop actors.

Let CustomerProtocol = {Shop : ShopTy,Client : ClientTy, PaymentProcessor : PPTy}.

main ≜
let custAP = newAP[CustomerProtocol] in
spawn (shop (custAP, initialStock)) ;
spawn (paymentProcessor custAP) ;
spawn (customer custAP)

shop ≜ 𝜆 (custAP, stock) . registerAgain custAP ; stock

registerAgain ≜ 𝜆custAP .
register custAP Shop

(𝜆st . registerAgain custAP ; suspend itemReqHandler st)

The shop definition takes the access point and then proceeds to register to take part in a session

to interact with customers. After each session has been established, the session type for the shop

states that it needs to receive a message from a client, so the shop suspends with itemReqHandler.

3 MATY: A CORE ACTOR LANGUAGEWITH MULTIPARTY SESSION TYPES
In this section we introduce Maty, giving its syntax, typing rules, and semantics.

3.1 Syntax
Figure 8 shows the syntax of Maty. We let p, q range over roles, and 𝑥,𝑦, 𝑧, 𝑓 range over variables.

We stratify the calculus into values 𝑉 ,𝑊 and computations𝑀, 𝑁 in the style of fine-grain call-by-
value [39], with different typing judgements for each.

Session types. Although global types are convenient for describing protocols, we instead fol-

low Scalas and Yoshida [52] and base our formalism around local types (projection of global types

onto roles is standard [30, 50]; the local types resulting from projecting a global type satisfy the

properties that we will see in §4 [52]). Selection session types p ⊕{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }𝑖∈𝐼 indicate that a
process can choose to send a message with label ℓ𝑗 and payload type 𝐴 𝑗 to role p, and continue as

session type 𝑆 𝑗 (assuming 𝑗 ∈ 𝐼). Branching session types p&{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }𝑖∈𝐼 indicate that a process

Speak Now 9

Syntax of terms
Roles p, q

Variables 𝑥, 𝑦, 𝑧, 𝑓

Values 𝑉 ,𝑊 ::= 𝑥 | 𝜆𝑥.𝑀 | rec 𝑓 (𝑥) .𝑀 | 𝑐 | (𝑉 ,𝑊) | handler p st {−→𝐻 }
Handler clauses 𝐻 ::= ℓ (𝑥) ↦→ 𝑀

Computations 𝑀,𝑁 ::= let 𝑥 = 𝑀 in 𝑁 | return 𝑉 | 𝑉 𝑊

| if 𝑉 then𝑀 else 𝑁 | let (𝑥, 𝑦) = 𝑉 in 𝑀

| spawn 𝑀 | p ! ℓ (𝑉) | suspend 𝑉 𝑊

| newAP[𝑃] | register 𝑉 p𝑊

Syntax of types and type environments
Output session types 𝑆 ! ::= p ⊕{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼
Input session types 𝑆? ::= p&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼
Session types 𝑆,𝑇 ::= 𝑆 ! | 𝑆? | 𝜇 𝑋 .𝑆 | 𝑋 | end

Protocols 𝑃 ::= {p𝑖 : 𝑆𝑖 }𝑖∈𝐼
Types 𝐴, 𝐵,𝐶 ::= 𝐷 | 𝐴

𝑆,𝑇−−→
𝐶

𝐵 | (𝐴 × 𝐵) | AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) | Handler(𝑆?,𝐶)
Base types 𝐷 ::= Unit | Bool | Int | · · ·
Type environments Γ ::= · | Γ, 𝑥 : 𝐴

Fig. 7. Syntax of terms, types, and type environments

must receive a message. We let 𝑆 ! range over selection (or output) session types, and let 𝑆? range

over branching (or input) session types. Session type 𝜇 𝑋 .𝑆 indicates a recursive session type that

binds variable 𝑋 in 𝑆 ; we take an equi-recursive view of session types and identify each recursive

session type with its unfolding. Finally, end denotes a session type that has finished.

Protocols. A protocol 𝑃 is a collection of roles and their associated session types. Protocols are

used when defining access points, and in Section 4 when describing behavioural properties.

Types. Base types 𝐷 are standard. Since our type system enforces session typing by pre- and

post-conditions, a function type 𝐴
𝑆,𝑇−−→
𝐶

𝐵 states that the function takes an argument of type 𝐴

where the current session type is 𝑆 , and produces a result of type 𝐵 with resulting session type 𝑇 ,

to be run on an actor with state of type 𝐶 . An access point has type AP((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛), mapping

each role to a local type. Finally, a message handler has type Handler(𝑆?, 𝐴) where 𝑆? is an input
session type and 𝐴 is the type of the actor state.

3.2 Typing Rules
Values. Fig. 8 gives the typing rules for Maty. The value typing judgement Γ ⊢ 𝑉 : 𝐴 states

that value 𝑉 has type 𝐴 under environment Γ. Unlike many session type systems, we do not need

linear types since session typing is enforced by effect typing (following Harvey et al. [28]). Typing

rules for variables and constants are standard (we assume constants include the unit value () of
type Unit), and typing rules for anonymous functions and anonymous recursive functions are

adapted to include pre- and postconditions. Message handlers specify how to handle incoming

messages: TV-Handler states that a message handler handler p st {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖 }𝑖 is typable with
type Handler(p&{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }𝑖 ,𝐶) if each continuation𝑀𝑖 is typable with session precondition 𝑆𝑖
where the environment is extended with 𝑥𝑖 of type 𝐴𝑖 and st of type 𝐶 , and all branches have the

postcondition end.

Computations. The computation typing judgement has the form Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇 , read

as “under type environment Γ and evaluating in an actor with state of type 𝐶 , given session

precondition 𝑆 , term𝑀 has type𝐴 and postcondition𝑇 ”. A let-binding let 𝑥 = 𝑀 in 𝑁 evaluates𝑀

and binds its result to 𝑥 in 𝑁 , with the session postcondition from typing𝑀 used as the precondition

10 Simon Fowler and Raymond Hu

Value typing Γ ⊢ 𝑉 : 𝐴

TV-Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

TV-Const

𝑐 has base type 𝐷

Γ ⊢ 𝑐 : 𝐷

TV-Lam

Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵

TV-Rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ ⊢ rec 𝑓 (𝑥) .𝑀 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵

TV-Pair

Γ ⊢ 𝑉 : 𝐴 Γ ⊢ 𝑊 : 𝐵

Γ ⊢ (𝑉 ,𝑊) : (𝐴 × 𝐵)

TV-Handler

(Γ, 𝑥𝑖 : 𝐴𝑖 , st : 𝐶 | 𝐶 | 𝑆𝑖 ⊲ 𝑀𝑖 :𝐶 ⊳ end)𝑖∈𝐼
Γ ⊢ handler p st {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖 }𝑖∈𝐼 : Handler(p&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 ,𝐶)

Computation typing Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Let

Γ | 𝐶 | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆2 ⊲ 𝑁 :𝐵 ⊳ 𝑆3

Γ | 𝐶 | 𝑆1 ⊲ let 𝑥 = 𝑀 in 𝑁 :𝐵 ⊳ 𝑆3

T-Return

Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ return 𝑉 :𝐴 ⊳ 𝑆

T-App

Γ ⊢ 𝑉 : 𝐴
𝑆,𝑇−−→
𝐶

𝐵 Γ ⊢ 𝑊 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ 𝑉 𝑊 :𝐵 ⊳ 𝑇

T-LetPair

Γ ⊢ 𝑉 : (𝐴1 × 𝐴2)
Γ, 𝑥 : 𝐴1, 𝑦 : 𝐴2 | 𝐶 | 𝑆1 ⊲ 𝑀 :𝐵 ⊳ 𝑆2

Γ | 𝐶 | 𝑆1 ⊲ let (𝑥, 𝑦) = 𝑉 in 𝑀 :𝐵 ⊳ 𝑆2

T-If

Γ ⊢ 𝑉 : Bool

Γ | 𝐶 | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ | 𝐶 | 𝑆1 ⊲ 𝑁 :𝐴 ⊳ 𝑆2

Γ | 𝐶 | 𝑆1 ⊲ if 𝑉 then𝑀 else 𝑁 :𝐴 ⊳ 𝑆2

T-Spawn

Γ | 𝐴 | end ⊲ 𝑀 :𝐴 ⊳ end

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 :Unit ⊳ 𝑆

T-Send

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : 𝐴𝑗

Γ | 𝐶 | p ⊕{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 ⊲ p ! ℓ𝑗 (𝑉) :Unit ⊳ 𝑆 𝑗

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶) Γ ⊢ 𝑊 : 𝐶

Γ | 𝐶 | 𝑆? ⊲ suspend 𝑉 𝑊 :𝐴 ⊳ 𝑆 ′

T-NewAP

comp((p𝑖 : 𝑇𝑖)𝑖∈𝐼))
Γ | 𝐶 | 𝑆 ⊲ newAP[(p𝑖 : 𝑇𝑖)𝑖∈𝐼] :AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) ⊳ 𝑆

T-Register

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) Γ ⊢𝑊 : 𝐴
𝑇𝑗 ,end−−−−→

𝐴
𝐴

Γ | 𝐴 | 𝑆 ⊲ register 𝑉 p𝑗 𝑊 :Unit ⊳ 𝑆

Fig. 8. Maty Static Semantics

when typing 𝑁 (T-Let); note that this is the only evaluation context in the system. The return 𝑉

expression is a trivial computation returning value𝑉 and has type𝐴 if𝑉 also has type𝐴 (T-Return).

A function application𝑉 𝑊 is typable by T-App provided that the precondition in the function type

matches the current precondition, and advances the postcondition to that of the function type. Rule

T-LetPair types a pair deconstruction by binding both pair elements in the continuation𝑀 . Rule

T-If types a conditional if its condition is of type Bool and both continuations have the same return

type and postcondition; this design is in keeping with analogous session type systems [25, 28], but

by treating suspend as a control operator (with an arbitrary return type and postcondition) we

can maintain expressiveness by allowing each branch to finish at a different session type.

The spawn 𝑀 construct spawns a new actor that evaluates term 𝑀 ; rule T-Spawn states that if

the spawned actor supports state type 𝐶 , then 𝑀 must also have type 𝐶 to return the initial state.

It must also have pre- and postconditions end because the spawned computation is not yet in a

session and so cannot communicate. Rule T-Send types a send computation p ! ℓ (𝑉) if ℓ is contained
within the selection session precondition, and if𝑉 has the corresponding type; the postcondition is

the session continuation for the specified branch. There is no receive construct, since receiving
messages is handled by the event loop. Instead, when an actor wishes to receive a message, it

must suspend itself with updated state𝑊 and install a message handler using suspend 𝑉 𝑊 . The

T-Suspend rule states that suspend 𝑉 𝑊 is typable if the handler is compatible with the current

Speak Now 11

Runtime syntax

Actor names 𝑎,𝑏

Session names 𝑠

AP names 𝑝

Init. tokens 𝜄

Runtime names 𝛼 ::= 𝑎 | 𝑠 | 𝑝 | 𝜄

Values 𝑈 ,𝑉 ,𝑊 ::= · · · | 𝑝

Type env. Γ ::= · · ·
| Γ, 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖)

Reduction labels 𝑙 ::= 𝑠 | 𝜏

Configurations C, D ::= (𝜈𝛼) C | C ∥ D
| ⟨𝑎, T, 𝜎, 𝜌 ⟩ | 𝑝 (𝜒) | 𝑠 ⊲ 𝛿

Message queues 𝛿 ::= 𝜖 | (p, q, ℓ (𝑉)) · 𝛿
Stored handlers 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉

Initialisation states 𝜌 ::= 𝜖 | 𝜌, 𝜄 ↦→ 𝑉

Thread states T ::= idle(𝑉) | (𝑀)𝑠 [p] | 𝑀

Access point states 𝜒 ::= (p𝑖 ↦→ 𝜄𝑖)𝑖
Evaluation contexts E ::= [] | let 𝑥 = E in 𝑀

Thread contexts M ::= E | (E)𝑠 [p]
Top-level contexts Q ::= [] | ([])𝑠 [p]

Structural congruence (configurations) C ≡ D
C ∥ D ≡ D ∥ C C ∥ (D ∥ D′) ≡ (C ∥ D) ∥ D′ (𝜈𝛼1) (𝜈𝛼2) C ≡ (𝜈𝛼2) (𝜈𝛼1) C (𝜈𝑠) (𝑠 ⊲ 𝜖) ∥ C ≡ C

𝛼 ∉ fn(C)
C ∥ (𝜈𝛼)D ≡ (𝜈𝛼) (C ∥ D)

p1 ≠ p2 ∨ q1 ≠ q2

𝑠 ⊲ 𝜎1 · (p1, q1, ℓ1 (𝑉1)) · (p2, q2, ℓ2 (𝑉2)) · 𝜎2 ≡ 𝑠 ⊲ 𝜎1 · (p2, q2, ℓ2 (𝑉2)) · (p1, q1, ℓ1 (𝑉1)) · 𝜎2

Fig. 9. Operational semantics (1)

session type precondition and state type; since the computation does not return, it can be given an

arbitrary return type and postcondition.

Sessions are initiated using access points: we create an access point for a session with roles and

types (p𝑖 : 𝑆𝑖)𝑖 using newAP[(p𝑖 : 𝑆𝑖)𝑖], which must be annotated with the set of roles and local

types to be involved in the session (T-NewAP). The rule ensures that the protocol supported by

the access point is compliant; will describe this further in §4, but at a high level, if a protocol is

compliant then it is free of communication mismatches and deadlocks.

An actor can register to take part in a session as role p on access point 𝑉 using register 𝑉 p𝑊 ;

function𝑊 is a callback to be invoked once the session is established. Rule T-Register ensures

that the access point must contain a session type 𝑇 associated with role p, and since the initiation

callback will be evaluated when the session is established,𝑀 must be typable under session type 𝑇 .

Since neither newAP nor register perform any communication, the session types are unaltered.

3.3 Operational semantics
Figure 9 introduces runtime syntax (i.e., syntax that is introduced during reduction), along with

structural congruence.

Runtime syntax. To model the concurrent behaviour of Maty processes, we require additional

runtime syntax. Runtime names are identifiers for runtime entities: actor names 𝑎 identify actors;

session names 𝑠 identify established sessions; access points 𝑝 identify access points; and initialisation
tokens 𝜄 associate registration entries in an access point with registered initialisation continuations.

We model communication and concurrency through a language of configurations (reminiscent of

𝜋-calculus processes). A name restriction (𝜈𝛼)C binds runtime name 𝛼 in configuration C, and the

right-associative parallel composition C ∥ D denotes configurations C and D running in parallel.

An actor is represented as a 4-tuple ⟨𝑎,T , 𝜎, 𝜌⟩, where T is a thread that can either be idle with

state 𝑉 (idle(𝑉)); a term𝑀 that is not involved in a session; or (𝑀)𝑠 [p] denoting that the actor is

evaluating term𝑀 playing role p in session 𝑠 . An actor is active if its thread is𝑀 or (𝑀)𝑠 [p] (for
some 𝑠 , p, and 𝑀), and idle otherwise. A handler state 𝜎 maps endpoints to handlers, which are

invoked when an incoming message is received and the actor is idle. The initialisation state 𝜌 maps

initialisation tokens to callbacks to be invoked whenever a session is established. Our reduction rules

12 Simon Fowler and Raymond Hu

Configuration reduction C 𝑙−−→ D

E-Send

⟨𝑎, (E[q ! ℓ (𝑉)])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 𝑠−−→
⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉))

E-React

(ℓ (𝑥) ↦→ 𝑀) ∈ −→
𝐻

⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ handler q st {−→𝐻 }], 𝜌 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉)) ·𝛿 𝑠−−→
⟨𝑎, (𝑀 {𝑉 /𝑥,𝑊 /st})𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿

E-Suspend

⟨𝑎, (E[suspend 𝑉 𝑊])𝑠 [p] , 𝜎, 𝜌 ⟩ 𝜏−−→
⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ 𝑉], 𝜌 ⟩

E-Spawn

⟨𝑎,M[spawn 𝑀], 𝜎, 𝜌 ⟩ 𝜏−−→
(𝜈𝑏) (⟨𝑎,M[return ()], 𝜎, 𝜌 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖 ⟩)

E-Reset

⟨𝑎, Q[return 𝑉], 𝜎, 𝜌 ⟩ 𝜏−−→
⟨𝑎, idle(𝑉), 𝜎, 𝜌 ⟩

E-NewAP

𝑝 fresh

⟨𝑎,M[newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼]], 𝜎, 𝜌 ⟩
𝜏−−→

(𝜈𝑝) (⟨𝑎,M[return 𝑝], 𝜎, 𝜌 ⟩ ∥ 𝑝 ((p𝑖 ↦→ ∅)𝑖∈𝐼))

E-Register

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑉], 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′]) 𝜏−−→
(𝜈𝜄) (⟨𝑎,M[return ()], 𝜎, 𝜌 [𝜄 ↦→ 𝑉] ⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄}]))

E-Init

𝑠 fresh

(𝜈𝜄p𝑖)𝑖∈1..𝑛 (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ ⟨𝑎𝑖 , idle(𝑊𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝑉𝑖] ⟩𝑖∈1..𝑛)
𝜏−−→

(𝜈𝑠) (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑉𝑖 𝑊𝑖)𝑠 [p𝑖] , 𝜎𝑖 , 𝜌𝑖 ⟩𝑖∈1..𝑛)

E-Par

C 𝑙−−→ C′

C ∥ D 𝑙−−→ C′ ∥ D

E-Lift

𝑀 −→M 𝑁

⟨𝑎,M[𝑀], 𝜎, 𝜌 ⟩ 𝜏−−→ ⟨𝑎,M[𝑁], 𝜎, 𝜌 ⟩

E-Nu

C 𝑙−−→ D

(𝜈𝛼) C 𝑙−𝛼−−→ (𝜈𝛼)D

E-Struct

C ≡ C′ C′ 𝑙−−→ D′ D′ ≡ D

C 𝑙−−→ D
where 𝑙 − 𝛼 = 𝜏 if 𝑙 = 𝛼, and 𝑙 otherwise

Fig. 10. Operational semantics (2)

(Figure 10) make use of indexing notation as syntactic sugar for parallel composition: for example,

⟨𝑎𝑖 ,T𝑖 , 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛 is syntactic sugar for the configuration ⟨𝑎1,T1, 𝜎1, 𝜌1⟩ ∥ · · · ∥ ⟨𝑎𝑛,T𝑛, 𝜎𝑛, 𝜌𝑛⟩.
An access point 𝑝 (𝜒) has name 𝑝 and state 𝜒 , where the state maps roles to sets of initialisation

tokens for actors that have registered to take part in the session. Finally, each session 𝑠 is associated

with a queue 𝑠 ⊲ 𝛿 , where 𝛿 is a list of entries (p, q, ℓ (𝑉)) denoting a message ℓ (𝑉) sent from p to q.

Initial configurations. A program𝑀 is run by placing it in an initial configuration (𝜈𝑎) (⟨𝑎,𝑀, 𝜖, 𝜖⟩).

Structural congruence and term reduction. Structural congruence is the smallest congruence

relation defined by the axioms in Figure 9. As with the 𝜋-calculus, parallel composition is associative

and commutative, and we have the usual scope extrusion rule; we write fn(C) to refer to the set

of free names in a configuration C. We also include a structural congruence rule on queues that

allows us to reorder unrelated messages; notably this rule maintains message ordering between

pairs of participants. Consequently, the session-level queue representation is isomorphic to a set of

queues between each pair of roles. Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction (omitted).

Communication and concurrency. It is convenient for our metatheory to annotate each commu-

nication reduction with the name of the session in which the communication occurs, although

we sometimes omit the label where it is not relevant. Rule E-Send describes an actor playing role

p in session 𝑠 sending a message ℓ (𝑉) to role q: the message is appended to the session queue

and the operation reduces to return (). The E-React rule captures the event-driven nature of

the system: if an actor is idle with state 𝑉 , and has a stored handler for 𝑠 [p], and there exists a

matching message in the session queue, then the message is dequeued and the message handler is

Speak Now 13

evaluated with the message payload and state. If an actor is currently evaluating a computation

in the context of a session 𝑠 [p], rule E-Suspend evaluates suspend 𝑉 𝑊 by installing handler 𝑉

for 𝑠 [p] and returning the actor to the idle(𝑊) state. Rule E-Spawn spawns a fresh actor with

empty handler and initialisation state, and E-Reset returns an actor to the idle(𝑉) state once it
has finished evaluating to an updated state 𝑉 .

Session initialisation. Rule E-NewAp creates an access point with a fresh name 𝑝 and empty

mappings for each role. Rule E-Register evaluates register 𝑝 p 𝑉 by creating an initialisation

token 𝜄, storing a mapping from 𝜄 to the callback 𝑉 in the requesting actor’s initialisation state,

and appending 𝜄 to the participant set for p in 𝑝 . Finally, E-Init establishes a session when idle

participants are registered for all roles: the rule discards all initialisation tokens, creates a session

name restriction and empty session queue, and invokes all initialisation callbacks.

Example 3.1. Consider a simple Ping-Pong example. We can describe the protocol as:

PingPong =

{
Pinger : Ponger ⊕ Ping(Unit) . Ponger&Pong(Unit) . end,
Ponger : Pinger&Ping(Unit) . Pinger ⊕ Pong(Unit) . end

}
.

The main function and the initialisation functions for the Pinger and Ponger are described as:

main ≜ let ap = newAP[PingPong] in spawn pinger ap; spawn ponger ap

ponger ≜ 𝜆ap . register ap Ponger pongerCallback

pongerCallback ≜ 𝜆 () .
suspend (handler Pinger st {Ping ↦→ Pinger ! Pong(()) }) ()

pinger ≜ 𝜆ap . register ap Pinger pingerCallback

pingerCallback ≜ 𝜆 () .
Ponger ! Ping(()) ;
suspend (handler Ponger st {Pong ↦→ () }) ()

With these defined, we place the main function in an initial configuration, which creates a new

access point 𝑝 (E-NewAP) and spawns the Pinger and Ponger actors (E-Spawn):

(𝜈𝑎) (⟨𝑎,main, 𝜖, 𝜖 ⟩) −→+ (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎)
(

⟨𝑎, idle(()), 𝜖, 𝜖 ⟩ ∥ ⟨ping, pinger, 𝜖, 𝜖 ⟩ ∥ ⟨pong, ponger, 𝜖, 𝜖 ⟩
∥ 𝑝 (Pinger ↦→ ∅, Ponger ↦→ ∅)

)
At this point, both of the actors can register with the access point (E-Register). By registering,

the access points generate initialisation tokens 𝜄1, 𝜄2, which are stored both in the access point and

also as keys in the actors’ initialisation states. The actors then revert to being idle (E-Reset).

−→+ (𝜈𝜄1) (𝜈𝜄2) (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎)
(⟨𝑎, idle(()), 𝜖, 𝜖 ⟩

∥ ⟨ping, idle(()), 𝜖, 𝜄1 ↦→ pingerCallback⟩ ∥ ⟨pong, idle(()), 𝜖, 𝜄2 ↦→ pongerCallback⟩
∥ 𝑝 (Pinger ↦→ {𝜄1 }, Ponger ↦→ {𝜄2 })

)
Since the access point now has idle registered actors for each role, it establishes a session and

removes the initialisation tokens (E-Init). Both actors evaluate their initialisation callbacks in the

context of the newly-created session:

−→+ (𝜈𝑠) (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎) ©­«
⟨𝑎, idle(()), 𝜖, 𝜖 ⟩
∥ ⟨ping, (pingerCallback ())𝑠 [Pinger] , 𝜖, 𝜖 ⟩ ∥ ⟨pong, (pongerCallback ())𝑠 [Ponger] , 𝜖, 𝜖 ⟩
∥ 𝑝 (Pinger ↦→ ∅, Ponger ↦→ ∅) ∥ 𝑠 ⊲ 𝜖

ª®¬
Following the behaviour in the callbacks, the Ponger suspends awaiting a message (E-Suspend),

and the Pinger sends a message to the Ponger, which is stored in the session queue (E-Send).

−→+ (𝜈𝑠) (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎) ©­«
⟨𝑎, idle(()), 𝜖, 𝜖 ⟩ ∥ ⟨ping, (suspend (handler Ponger st {Pong ↦→ () }) ())𝑠 [Pinger] , 𝜖, 𝜖 ⟩
∥ ⟨pong, idle(()), 𝑠 [Ponger] ↦→ handler Pinger st {Ping ↦→ Pinger ! Pong(()) }, 𝜖 ⟩
∥ 𝑝 (Pinger ↦→ ∅, Ponger ↦→ ∅) ∥ 𝑠 ⊲ (Pinger, Ponger, Ping(()))

ª®¬
The Pinger can now suspend, awaiting a message from the Ponger (E-Suspend). Since there is a

queued message for the idle Ponger, we can re-activate the suspended handler (E-React):

−→+ (𝜈𝑠) (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎)
©­­«

⟨𝑎, idle(()), 𝜖, 𝜖 ⟩
∥ ⟨ping, idle(()), 𝑠 [Pinger] ↦→ handler Ponger st {Pong ↦→ () }, 𝜖 ⟩
∥ ⟨pong, (Pinger ! Pong(()))𝑠 [Ponger] , 𝜖, 𝜖 ⟩
∥ 𝑝 (Pinger ↦→ ∅, Ponger ↦→ ∅) ∥ 𝑠 ⊲ 𝜖

ª®®¬
Finally, the Ponger can send a Pong back to the Pinger, which activates the stored handler:

14 Simon Fowler and Raymond Hu

Runtime types, environments, and labels
Polarised initialisation tokens 𝜄± ::= 𝜄+ | 𝜄−

Queue types 𝑄 ::= 𝜖 | (p, q, ℓ (𝐴)) · 𝑄
Runtime type environments Δ ::= · | Δ, 𝑎 | Δ, 𝑝 | Δ, 𝜄± : 𝑆 | Δ, 𝑠 [p] : 𝑆 | Δ, 𝑠 : 𝑄

Labels 𝛾 ::= 𝑠 : p ↑ q::ℓ | 𝑠 : p ↓ q::ℓ | end(𝑠, p)

Structural congruence (queue types) 𝑄 ≡ 𝑄 ′

p1 ≠ p2 ∨ q1 ≠ q2

𝑄1 · (p1, q1, ℓ1 (𝐴1)) · (p2, q2, ℓ2 (𝐴2)) · 𝑄2 ≡ 𝑄1 · (p2, q2, ℓ2 (𝐴2)) · (p1, q1, ℓ1 (𝐴1)) · 𝑄2

Runtime type environment reduction Δ
𝛾
−→ Δ′

Lbl-Send Δ, 𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄
𝑠 :p↑q::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗)) (if 𝑗 ∈ 𝐼)

Lbl-Recv Δ, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 : (q, p, ℓ𝑗 (𝐴𝑗)) · 𝑄
𝑠 :q↓p::ℓ𝑗−−−−−−→ Δ, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄 (if 𝑗 ∈ 𝐼)

Lbl-End Δ, 𝑠 [p] : end
end(𝑠,p)
−−−−−−→ Δ

Lbl-Rec Δ, 𝑠 [p] : 𝜇 𝑋 .𝑆
𝛾
−→ Δ′ (if Δ, 𝑠 [p] : 𝑆 {𝜇 𝑋 .𝑆/𝑋 }

𝛾
−→ Δ′)

Fig. 11. Labelled transition system on runtime type environments

−→+ (𝜈𝑠) (𝜈ping) (𝜈pong) (𝜈𝑝) (𝜈𝑎)
(

⟨𝑎, idle(()), 𝜖, 𝜖 ⟩ ∥ ⟨ping, (())𝑠 [Pinger] , 𝜖, 𝜖 ⟩ ∥ ⟨pong, (())𝑠 [Ponger] , 𝜖, 𝜖 ⟩
∥ 𝑝 (Pinger ↦→ ∅, Ponger ↦→ ∅) ∥ 𝑠 ⊲ 𝜖

)
Both actors have now finished the session and therefore revert to being idle (E-Reset).

4 METATHEORY
In order to prove metatheoretical properties aboutMaty, we define an extrinsic [49] type system

for Maty configurations. Note that our configuration type system is purely metatheoretical
and used only to establish inductive invariants required for our proofs; we do not need to
implement it in a typechecker and we do not require runtime type checking.

Following Scalas and Yoshida [52] we begin by showing a type semantics for sets of local types.

Using this semantics we can ensure that collections of local types are compliant, meaning that

communicated messages are always compatible and that communication is deadlock-free, and use

this to prove type preservation, progress, and global progress for Maty configurations.

Relations. We write R?
, R+

, and R∗
for the reflexive, transitive, and reflexive-transitive closures

of a relation R respectively. We write R1R2 for the composition of relations R1 and R2.

Runtime types and environments. Runtime environments are used to type configurations and to

define behavioural properties on sets of local types. Unlike type environments Γ, runtime type

environments Δ are linear to ensure safe use of session endpoints, and also to ensure that there

is precisely one instance of each actor and access point. Runtime type environments can contain

actor names 𝑎; access point names 𝑝 ; polarised initialisation tokens 𝜄± : 𝑆 (since each initialisation

token is used twice: once in the access point and one inside an actor’s initialisation state); session

endpoints 𝑠 [p] : 𝑆 ; and finally session queue types 𝑠 : 𝑄 . Queue types mirror the structure of queue

entries and consist of a series of triples (p, q, ℓ (𝐴)). We include structural congruence on queue

types to match structural congruence on queues, and extend this to runtime environments.

Labelled transition system on environments. Figure 11 shows the LTS on runtime type environ-

ments. The Lbl-Send reduction gives the behaviour of an output session type interacting with

a queue: supposing we send a message with some label ℓ𝑗 from p to q, we advance the session

type for p to the continuation 𝑆 𝑗 and add the message to the end of the queue. The Lbl-Recv

rule handles receiving and works similarly, instead consuming the message from the queue. Rule

Speak Now 15

Lbl-End allows us to discard a session endpoint from the environment if it does not support any

further communication, and Lbl-Rec allows reduction of recursive session types by considering

their unrolling. We write Δ =⇒ Δ′
if Δ ≡

𝛾
−→≡ Δ′

for some synchronisation label 𝛾 , and conversely

write Δ ̸=⇒ if there exists no Δ′
such that Δ =⇒ Δ′

.

Protocol Properties. In order to prove type preservation and progress properties on Maty configu-

rations, we need to ensure each protocol in the system is compliant, meaning that it is safe and

deadlock-free. Safety is the minimum we can expect from a protocol in order for us to prove type

preservation: a safe runtime type environment ensures that communication does not introduce

type errors. Intuitively, safety ensures that a message received from a queue is of the expected type,

thereby ruling out communication mismatches; safety properties must also hold under unfoldings of

recursive session types and safety must be preserved by environment reduction. Deadlock-freedom

on runtime type environments requires that every message that is sent in a protocol can eventually

be received, and that a participant will never wait for a message that will never arrive.

Definition 4.1 (Compliance). A runtime environment Δ is compliant, written comp(Δ), if it is safe
and deadlock-free:
Safe An environment Δ is safe, written safe(Δ), if:
• Δ = Δ′, 𝑠 [p] : q&{ℓ𝑖 (𝐴𝑖).𝑆𝑖 }𝑖∈𝐼 , 𝑠 : 𝑄 with 𝑄 ≡ (q, p, ℓ𝑗 (𝐵 𝑗)) ·𝑄 ′

implies 𝑗 ∈ 𝐼 and 𝐵 𝑗 = 𝐴 𝑗 ; and

• Δ = Δ′, 𝑠 [p] : 𝜇 𝑋 .𝑆 implies safe(Δ′, 𝑠 [p] : 𝑆{𝜇 𝑋 .𝑆/𝑋 }); and
• safe(Δ) and Δ =⇒ Δ′

implies safe(Δ′).
Deadlock-free An environment Δ is deadlock-free, written df(Δ), if Δ=⇒∗ Δ′ ̸=⇒ implies Δ′ = 𝑠 : 𝜖 .

A protocol {p𝑖 : 𝑆𝑖 }𝑖∈1..𝑛 is compliant if comp(𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛) for an arbitrary 𝑠 .

Checking compliance for an asynchronous protocol is undecidable in general [52], but various

sound and tractable mechanisms can ensure it in practice. For example, syntactic projections

from global types produce safe and deadlock-free sets of local types [52]. Furthermore, multiparty

compatibility [18] allows safety to be verified by bounded model checking; this is the core approach

implemented in Scribble [34], used by our implementation.

We have therefore designed our type system to be agnostic to any specific implementationmethod

for validating compliance, as common in recent MPST language design papers (e.g., [28, 38]).

4.1 Configuration typing
Figure 12 shows the typing rules for Maty configurations. The configuration typing judgement

Γ;Δ ⊢ C can be read, “under type environment Γ and runtime type environment Δ, configuration
C is well typed”. We have three rules for name restrictions: read bottom-up, T-APName adds 𝑝 to

both the type and runtime environments, and rule T-InitName adds tokens of both polarities to

the runtime type environment. Rule T-SessionName is key to the generalised multiparty session

typing approach introduced by Scalas and Yoshida [52]: to type a name restriction (𝜈𝑠)C, the type
environment Δ′

consists of a set of session endpoints {𝑠 [p𝑖]}𝑖 with session types 𝑆p𝑖 , along with

a session queue 𝑠 : 𝑄 . Environment Δ′
must be compliant. The condition 𝑠 ∉ snames(Δ) ensures

that no other endpoint or queue with session name 𝑠 may be present in the initial environment.

Rule T-Par types two parallel subconfigurations under disjoint runtime environments. Rule T-AP

types an access point: it requires that the access point reference is included in Γ and through the

auxiliary judgement {(p𝑖 : 𝑆𝑖)𝑖 } Δ ⊢ 𝜒 ensures that each initialisation token in the access point has

a compatible type. We also require that the protocol supported by the access point is compliant.

Rule T-Actor types an actor ⟨𝑎,T , 𝜎, 𝜌⟩ using three auxiliary judgements. The thread state typing

judgement Γ;Δ | 𝐶 ⊢ T ensures that an active thread either performs all pending communication

actions, or it suspends. The handler typing judgement Γ;Δ | 𝐶 ⊢ 𝜎 ensures that the stored

16 Simon Fowler and Raymond Hu

Configuration typing rules Γ;Δ ⊢ C

T-APName

Γ, 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) ;Δ, 𝑝 ⊢ C
Γ;Δ ⊢ (𝜈𝑝) C

T-InitName

Γ;Δ, 𝜄+ : 𝑆, 𝜄− : 𝑆 ⊢ C
Γ;Δ ⊢ (𝜈𝜄) C

T-SessionName

Δ′ = {𝑠 [p𝑖] : 𝑆p𝑖 }𝑖∈1..𝑛, 𝑠 : 𝑄

comp(Δ′) 𝑠 ∉ snames(Δ)
Γ;Δ,Δ′ ⊢ C
Γ;Δ ⊢ (𝜈𝑠) C

T-ActorName

Γ;Δ, 𝑎 ⊢ C
Γ;Δ ⊢ (𝜈𝑎) C

T-Par

Γ;Δ1 ⊢ C Γ;Δ2 ⊢ D
Γ;Δ1,Δ2 ⊢ C ∥ D

T-AP

𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) ∈ Γ
{{p𝑖 : 𝑆𝑖 }𝑖∈𝐼 } Δ ⊢ 𝜒 comp({p𝑖 : 𝑆𝑖 }𝑖∈𝐼)

Γ;Δ, 𝑝 ⊢ 𝑝 (𝜒)

T-Actor

Γ;Δ1 | 𝐴 ⊢ T
Γ;Δ2 | 𝐴 ⊢ 𝜎 Γ;Δ3 | 𝐴 ⊢ 𝜌

Γ;Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌 ⟩

T-EmptyQueue

Γ;𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖
T-ConsQueue

Γ ⊢ 𝑉 : 𝐴 Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎

Γ;𝑠 : ((p, q, ℓ (𝐴)) · 𝑄) ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉)) · 𝜎

Access point typing { (p𝑖 : 𝑆𝑖)𝑖 } Δ ⊢ 𝜒

TA-Empty

{ (p𝑖 : 𝑆𝑖)𝑖∈1..𝑛 } · ⊢ ·

TA-Entry

𝑗 ∈ 𝐼 { (p𝑖 : 𝑆𝑖)𝑖∈𝐼 } Δ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖)𝑖∈𝐼 } Δ, �𝜄− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄̃]

Thread state typing Γ;Δ | 𝐴 ⊢ T

TT-Idle

Γ ⊢ 𝑉 : 𝐴

Γ; · | 𝐴 ⊢ idle(𝑉)

TT-Sess

Γ | 𝐴 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐴 ⊢ (𝑀)𝑠 [p]

TT-NoSess

Γ | 𝐴 | end ⊲ 𝑀 :𝐴 ⊳ end

Γ; · | 𝐴 ⊢ 𝑀

Handler state typing Γ;Δ | 𝐴 ⊢ 𝜎

TH-Empty

Γ; · | 𝐴 ⊢ 𝜖

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆?, 𝐴) Γ;Δ | 𝐴 ⊢ 𝜎
Γ;Δ, 𝑠 [p] : 𝑆? | 𝐴 ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉]

Initialisation state typing Γ;Δ | 𝐴 ⊢ 𝜌

TI-Empty

Γ; · | 𝐴 ⊢ 𝜖

TI-Callback

Γ ⊢ 𝑉 : 𝐴
𝑆,end−−−−→
𝐴

𝐴 Γ;Δ | 𝐴 ⊢ 𝜌

Γ;Δ, 𝜄+ : 𝑆 | 𝐴 ⊢ 𝜌 [𝜄 ↦→ 𝑉]
Meta-level definitions

snames(Δ) = {𝑠 | 𝑠 : 𝑄 ∈ Δ ∨ ∃p.(𝑠 [p] ∈ dom(Δ)) }

Fig. 12. Typing of Configurations

handlers match the types in the runtime environments, and the initialisation state typing judgement

Γ;Δ | 𝐶 ⊢ 𝜌 ensures that all initialisation callbacks match the session type of the initialisation token.

Finally, T-EmptyQueue and T-ConsQueue ensure that queued messages match the queue type.

4.2 Properties
With configuration typing defined, we can begin to describe the properties enjoyed by Maty.

4.2.1 Preservation. Typing is preserved by reduction; consequently we know that communication

actions must match those specified by the session type. Full proofs can be found in Appendix B.

Theorem 4.2 (Preservation). Typability is preserved by structural congruence and reduction.
(≡) If Γ;Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ;Δ′ ⊢ D.
(→) If Γ;Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ where safe(Δ′)

and Γ;Δ′ ⊢ D.

Remark 4.3 (Session Fidelity). Traditionally, session fidelity is presented as a property that all

communication in a system conforms to its associated session type, i.e., that if a process performs

a communication action then there is a corresponding (meta-theoretical) type reduction [15, 30].

Speak Now 17

Fidelity is often an implicit corollary of type preservation in works on functional session types (e.g.,

[23, 26, 28, 41]). Alternatively, session fidelity in [52] (and derived works) refer to session fidelity

as the property that at least one typing context reduction can be reflected by a process. We follow

the former definition and account for preservation through our preservation theorem.

4.2.2 Progress. In general, just because two protocols are individually deadlock-free does not mean

that the system as a whole is deadlock-free, due to the possibility of inter-session deadlocks. For

example, consider the following two trivially deadlock-free protocols:

{p : q&{ℓ1 (Unit) . end}, q : p ⊕{ℓ1 (Unit) . end}} {r : s&{ℓ2 (Unit) . end}, s : r ⊕{ℓ2 (Unit) . end}}
Even with an asynchronous semantics, a standard multiparty process calculus would admit the

following deadlocking process, since each send is blocked by a receive:

𝑠1 [p] [q]&ℓ1 (𝑥) . 𝑠2 [r] [s] ⊕ ℓ2 (𝑦) . 0 ∥ 𝑠2 [s] [r]&ℓ2 (𝑎) . 𝑠1 [q] [p] ⊕ ℓ1 (𝑏) . 0

There are various approaches to ruling out inter-session deadlocks: some approaches restrict

each subprocess to only play a single role in a single session (e.g., [52]); this would rule out the

above example but is too restrictive for our setting. Other approaches (e.g., [15]) overlay additional

interaction type systems to rule out inter-process deadlocks, again at the cost of expressiveness

and type system complexity. Finally, logically-inspired approaches to multiparty session typing

(e.g., [9]) treat sessions as monolithic processes (𝜈𝑠) (𝑃1 ∥ · · · ∥ 𝑃𝑛) that mean that such cycles

cannot arise. Programming with such processes requires “multi-fork” style session initiations that

combine channel- and process creation, and therefore are inapplicable to our programming model.

Maty does not suffer from inter-process deadlocks because of our event-driven programming

style where although an actor is involved in many sessions at a time, only one is active at once, and
code within handlers does not block. Since an actor yields and installs a handler whenever it needs

to receive a message, the actor can then schedule any handler that has a waiting message.

To show this intuition formally, we start by classifying a canonical form for configurations.

Definition 4.4 (Canonical form). A configuration C is in canonical form if it can be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)

Every well typed configuration can be written in canonical form; the result follows from the

structural congruence rules and Theorem 4.2.

Compliance requires the session types in every session to satisfy progress. Due to our event-

driven design, the property transfers to configurations: a non-reducing closed configuration cannot

be blocked on any session communication and so cannot contain any sessions.

Progress states that since (by compliance) all protocols are deadlock-free, a configuration can

either reduce, or it contains no sessions and no further sessions can be established.

Theorem 4.5 (Progress). If ·;· ⊢ C, then either there exists some D such that C −→ D, or C is
structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑉𝑗), 𝜖, 𝜌 𝑗 ⟩𝑗∈1..𝑛)

4.2.3 Global Progress. Assuming that actors only run terminating threads—a common assumption

in event-driven systems—we actually obtain the stronger property of global progress, which ensures

that communication can eventually happen in every active session.

We begin by defining configuration contexts G ::= [] | (𝜈𝛼)G | G ∥ C | C ∥ G that allow us

to focus on a subconfiguration.We say that ⟨𝑎,𝑀, 𝜎, 𝜌⟩ is an actor subconfiguration of a configuration
C if C = G[⟨𝑎,𝑀, 𝜎, 𝜌⟩] for some configuration context G.

18 Simon Fowler and Raymond Hu

Definition 4.6 (Active environment / session). We say that a runtime type environment Δ is active,
written active(Δ), if it contains at least one entry of the form 𝑠 [p] : 𝑆 where 𝑆 ≠ end.

Given a derivation Γ;Δ ⊢ C, let us write activeSessions(C) for the set of names of sessions in

C typable under active environments. We now classify thread-terminating actors: actors that will

eventually either suspend with a handler or fully evaluate to a value. A thread reduction for an

actor 𝑎 is a configuration reduction that affects the active thread of 𝑎.

Definition 4.7 (Thread Reduction). A reduction C −→ D where C = G1 [⟨𝑎,M[𝑀], 𝜎, 𝜌⟩] and
D = G2 [⟨𝑎,M[𝑁], 𝜎 ′, 𝜌 ′⟩] is a thread reduction for 𝑎 if ⟨𝑎,M[𝑀], 𝜎, 𝜌⟩ is a subconfiguration of

the fired redex of C, and ⟨𝑎,M[𝑁], 𝜎 ′, 𝜌 ′⟩ is a subconfiguration of its contractum.

A maximal thread reduction C −→∗ D for 𝑎 is a sequence of thread reductions for 𝑎 where there

exist no further thread reductions for 𝑎 from D.

Definition 4.8 (Thread-Terminating). An actor subconfiguration ⟨𝑎,T , 𝜎, 𝜌⟩ of a configuration
C = G[⟨𝑎,T , 𝜎, 𝜌⟩] is thread-terminating if either T = idle(𝑉) for some 𝑉 , or T = M[𝑀] such
that there exists no infinite thread reduction for 𝑎 from C.

We deliberately design our metatheory to be agnostic to the precise method used to ensure

termination. Concretely, to ensure that actors are always thread-terminating, we could for example

use straightforward type system restrictions like requiring all callbacks and handlers to be total or

use primitive recursion. We could also use effect-based analyses (e.g. those used for ensuring safe

database programming [40]). We conjecture we could also adapt type systems designed to enforce

fair termination [14, 48]; we discuss this further in Section 7. The additional power of exceptions

described in Section 5 would also allow the smooth integration of run-time termination analyses.

All of the example callbacks and handlers discussed in the paper would preserve thread-termination.

Next, we show that reduction in one actor will never inhibit reduction in another. The result

follows because all communication is asynchronous and (in part due to Theorem 4.5), given a well-

typed configuration, all constructs occurring in an active thread can always reduce immediately.

Lemma 4.9 (Independence of Thread Reductions). If ·;· ⊢ C where C = G1 [⟨𝑎,M[𝑀], 𝜎, 𝜌⟩]
and C −→ G2 [⟨𝑎,M[𝑁], 𝜎 ′, 𝜌 ′⟩] is a thread reduction for 𝑎, then for every D and G3 such that
C −→ D and D = G3 [⟨𝑎,M[𝑀], 𝜎, 𝜌⟩] it follows that D −→ G4 [⟨𝑎,M[𝑁], 𝜎 ′, 𝜌 ′⟩] for some G4.

Definition 4.10 (Idle Configuration). An actor subconfiguration ⟨𝑎,T , 𝜎, 𝜌⟩ of a configuration C is

idle if T = idle(𝑉) for some 𝑉 . Configuration C is idle if all of its actor subconfigurations are idle.

It follows by typing and from Lemma 4.9 that every thread-terminating actor subconfiguration

of a configuration C eventually evaluates to either return 𝑉 or suspend 𝑉 𝑊 and that (via

E-Suspend or E-Return) C further evaluates to an idle configuration.

Corollary 4.11. If ·;· ⊢ C and C is thread-terminating, then C −→∗ D where D is idle.

Finally, due to session typing and compliance, every active session in a well-typed idle configu-

ration can reduce. The result follows as a special case of Theorem 4.5.

Lemma 4.12. If ·;· ⊢ C where C is idle, then for every 𝑠 ∈ activeSessions(C), C ≡ (𝜈𝑠)D andD 𝑠−−→.

Since (by Theorem 4.2) we can always use the structural congruence rules to hoist a session

name restriction to the topmost level, global progress follows as an immediate corollary.

Corollary 4.13 (Global Progress). If ·;· ⊢ C where C is thread-terminating, then for every
𝑠 ∈ activeSessions(C), C ≡ (𝜈𝑠)D for some D, and D 𝜏−−→

∗ 𝑠−−→.

Speak Now 19

Syntax

Types 𝐴, 𝐵 ::= · · · | Pid

Values 𝑉 ,𝑊 ::= · · · | 𝑎

Computations 𝑀,𝑁 ::= · · · | suspend 𝑈 𝑉 𝑊

| monitor𝑉 𝑊 | raise

Monitored processes 𝜔 ::= �(𝑎,𝑉)
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌,𝜔 ⟩

| 𝑎 | 𝑠 [p] | 𝜄

Modified typing rules for computations Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Spawn

Γ | 𝐴 | end ⊲ 𝑀 :𝐴 ⊳ end

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 :Pid ⊳ 𝑆

T-Suspend

Γ ⊢ 𝑈 : Handler(𝑆?,𝐶) Γ ⊢ 𝑉 : 𝐶 Γ ⊢ 𝑊 : 𝐶
end,end−−−−−→

𝐶
𝐶

Γ | 𝐶 | 𝑆? ⊲ suspend 𝑈 𝑉 𝑊 :𝐴 ⊳ 𝑇

T-Monitor

Γ ⊢ 𝑉 : Pid Γ ⊢ 𝑊 : 𝐶
end,end−−−−−→

𝐶
𝐶

Γ | 𝐶 | 𝑆 ⊲ monitor𝑉 𝑊 :Unit ⊳ 𝑆
T-Raise

Γ | 𝐶 | 𝑆 ⊲ raise :𝐴 ⊳ 𝑇

Modified configuration reduction rules C 𝑙−−→ D

E-React ⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ (handler q st {−→𝐻 },𝑈)], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉)) ·𝛿
𝑠−−→ ⟨𝑎, (𝑀 {𝑉 /𝑥,𝑊 /st})𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 if (ℓ (𝑉) ↦→ 𝑀) ∈ −→

𝐻

E-Spawn ⟨𝑎,M[spawn 𝑀], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ (𝜈𝑏) (⟨𝑎,M[return 𝑏], 𝜎, 𝜌,𝜔 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖, ∅⟩)
E-Suspend ⟨𝑎, (E[suspend 𝑈 𝑉 𝑊])𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ ⟨𝑎, idle(𝑉), 𝜎 [𝑠 [p] ↦→ (𝑈 ,𝑊)], 𝜌,𝜔 ⟩
E-Monitor ⟨𝑎,M[monitor 𝑏 𝑉], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑉) }⟩
E-InvokeM ⟨𝑎, idle(𝑊), 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑉) }⟩ ∥ 𝑏 𝜏−−→ ⟨𝑎, (𝑉 𝑊), 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑏
E-Raise ⟨𝑎, E[raise], 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ 𝑎 ∥ 𝜎 ∥ 𝜌
E-RaiseS ⟨𝑎, (E[raise])𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ 𝜏−−→ 𝑎 ∥ 𝑠 [p] ∥ 𝜎 ∥ 𝜌
E-CancelMsg 𝑠 ⊲ (p, q, ℓ (𝑉)) · 𝛿 ∥ 𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q]
E-CancelAP (𝜈𝜄) (𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄}]) ∥ 𝜄) 𝜏−−→ 𝑝 (𝜒 [p ↦→ 𝜄′])

E-CancelH ⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ (handler q st {−→𝐻 },𝑉)], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q]
𝜏−−→ ⟨𝑎, (𝑉 𝑊), 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q] ∥ 𝑠 [p] if messages(q, p, 𝛿) = ∅

where messages(p, q, 𝛿) = {ℓ (𝑉) | (r, s, ℓ (𝑉)) ∈ 𝛿 ∧ p = r ∧ q = s}
Structural congruence C ≡ D
(𝜈𝑠) (𝑠 [p𝑖]𝑖∈1..𝑛 ∥ 𝑠 ⊲ 𝜖) ∥ C ≡ C

(𝜈𝑎) (𝑎) ∥ C ≡ C

Syntactic sugar
 𝜎 ≜ 𝑠1 [p1] ∥ · · · ∥ 𝑠𝑛 [p𝑛] (where dom(𝜎) = {𝑠𝑖 [p𝑖] }𝑖∈1..𝑛)
 𝜌 ≜ 𝜄1 ∥ · · · ∥ 𝜄𝑛 (where dom(𝜌) = {𝜄𝑖 }𝑖∈1..𝑛)

Fig. 13. Maty : Modified syntax and reduction rules

5 FAILURE HANDLING AND SUPERVISION
A major factor in the success of actor languages is their support for the let-it-crash philosophy:

actors encountering errors should crash and be restarted by a supervisor actor. So far, we have not

accounted for failure. A crashed actor cannot send messages, so we need a mechanism to prevent

sessions from getting ‘stuck’. Our solution builds on affine sessions [23, 28, 38, 44]: the core idea
is that a role can be marked as cancelled, preventing further participation. Trying to receiving

from a cancelled participant when there are no pending messages in the queue raises an exception,

triggering a crash and propagating the failure.

Figure 13 shows the additional syntax, typing rules, and reduction rules needed for supervision

and cascading failure; we call this extensionMaty . We make actors addressable, so spawn returns

a process identifier (PID) of type Pid. Themonitor𝑉 𝑊 construct installs a callback function𝑊

to be evaluated should the actor referred to by 𝑉 crash. The raise construct signifies a user-level

error has occurred, for example if fileExists(path)) then processFile(path) else raise. Raising an
exception causes an actor to crash and cancels all the sessions in which it is involved. The raise
construct, like suspend, can be given an arbitrary return type and post-condition since it does not

20 Simon Fowler and Raymond Hu

return a value to a calling context. We also modify the suspend construct to take an additional

callback to be run if the sender fails and the message is never sent; a sensible piece of syntactic

sugar would be suspend 𝑉 𝑊 ≜ suspend 𝑉 𝑊 (𝜆st . raise) to propagate the failure.

We can make our shop actor robust by using a shopSup actor that restarts it upon failure:

shopSup ≜ 𝜆custAP .monitor (spawn shop (custAP, initialStock)) (shopSup custAP)
The shopSup actor spawns a shop actor and monitors the resulting PID. Any failure of the shop

actor will be detected by the shopSupwhich will restart the actor and monitor it again. The restarted

shop actor will re-register with the access points and can then take part in subsequent sessions.

Configurations. To capture the additional runtime behaviour we need to extend the language of

configurations. The actor configuration becomes ⟨𝑎,T , 𝜎, 𝜌, 𝜔⟩, where 𝜔 pairs monitored PIDs with

callbacks to be evaluated should the actor crash. We also introduce three kinds of “zapper thread”,

 𝑎, 𝑠 [p], 𝜄 to indicate the cancellation of an actor, role, or initialisation token respectively.

Reduction rules by example. Consider the supervised Shop example after the Customer has sent

a Checkout request and is awaiting a response. Instead of suspending to handle the request, the

Shop raises an exception. This scenario can be represented by the following configuration, where

shop, cust, and pp are actors playing the Shop, Customer, and PaymentProcessor in session s, and
sup is monitoring shop:

(𝜈sup) (𝜈shop) (𝜈cust) (𝜈pp) (𝜈s)
©­­­­«

⟨shop, (raise)𝑠 [Shop] , 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨cust, idle(()), 𝑠 [Customer] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle(()), 𝑠 [PaymentProcessor] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (Customer, Shop, checkout(([123], 510)))
∥ ⟨sup, idle(()), 𝜖, 𝜖, (shop, shopSup cAP) ⟩

ª®®®®¬
For brevity we shorten Shop, Customer, and PaymentProcessor to S, C, and PP respectively. We

let configuration contextG = (𝜈sup) (𝜈shop) (𝜈cust) (𝜈pp) (𝜈s) ([] ∥ ⟨sup, idle(()), 𝜖, 𝜖, (shop, shopSup cAP)⟩).
Since the shop actor is playing role 𝑠 [S] and raising an exception, by E-RaiseS the actor is

replaced with zapper threads shop and 𝑠 [S].

G


⟨shop, (raise)𝑠 [S] , 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨cust, idle(()), 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle(()), 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout(([123], 510)))

 −→ G

 shop ∥ 𝑠 [S]
∥ ⟨cust, idle(()), 𝑠 [C] ↦→ (checkoutHandler, raise), 𝜖, 𝜖 ⟩
∥ ⟨pp, idle(()), 𝑠 [PP] ↦→ (buyHandler, raise), 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ (C, S, checkout(([123], 510)))


Next, since 𝑠 [S] has been cancelled, the checkout message can never be received and so is

removed from the queue (E-CancelMsg). Similarly since both C and PP are waiting for messages

from cancelled role S, they both evaluate their failure computations, raise (E-CancelH). In turn this
results in the cancellation of the cust and pp actors, and the 𝑠 [C] and 𝑠 [PP] endpoints (E-RaiseS).

−→+ G

 shop ∥ 𝑠 [S]
∥ ⟨cust, idle(()), (raise)𝑠 [C] , 𝜖, 𝜖 ⟩
∥ ⟨pp, idle(()), (raise)𝑠 [PP] , 𝜖, 𝜖 ⟩
∥ 𝑠 ⊲ 𝜖

 −→+ G
[
 shop ∥ 𝑠 [S] ∥ cust ∥ 𝑠 [C] ∥ pp ∥ 𝑠 [PP] ∥ 𝑠 ⊲ 𝜖

]
At this point the session has failed and can be garbage collected, leaving the supervisor actor

and the zapper thread for shop. Since the supervisor was monitoring shop, which has crashed, the

monitor callback is invoked (E-InvokeM) which finally re-spawns and monitors the Shop actor.

−→ (𝜈shop) (𝜈sup)
(
 shop
∥ ⟨sup, shopSup cAP (), 𝜖, 𝜖, 𝜖 ⟩

)
−→+ (𝜈shop′) (𝜈sup)

(
⟨shop′, shop (cAP, initialStock), 𝜖, 𝜖, 𝜖 ⟩
∥ ⟨sup, idle(()), 𝜖, 𝜖, (shop′, shopSup cAP) ⟩

)
5.1 Metatheory
All metatheoretical results continue to hold. Figure 14 shows the necessary modifications to the

configuration typing rules and type LTS. We extend runtime type environments to cancellation-
aware environments Φ that include an additional entry of the form 𝑠 [p] : , denoting that endpoint
𝑠 [p] has been cancelled. We also need to extend the type LTS to account for failure propagation;

Speak Now 21

Runtime syntax
Cancellation-aware runtime envs. Φ ::= · | Φ, 𝑝 | Φ, 𝜄± : 𝑆 | Φ, 𝑠 [p] : 𝑆 | Φ, 𝑠 [p] : | Φ, 𝑠 : 𝑄

Labels 𝛾 ::= · · · | 𝑠 [p] | 𝑠 : p q::ℓ | 𝑠 : p q

Modified typing rules for configurations Γ;Φ ⊢ C Γ;Φ | 𝜎 ⊢

T-ActorName

Γ, 𝑎 : Pid;Φ, 𝑎 ⊢ C
Γ;Φ ⊢ (𝜈𝑎) C

T-ZapActor

Γ;𝑎 ⊢ 𝑎

T-ZapRole

Γ;𝑠 [p] : ⊢ 𝑠 [p]

T-ZapTok

Γ;𝜄+ : 𝑆 ⊢ 𝜄

T-Actor

Γ;Φ1 | 𝐶 ⊢ T Γ;Φ2 | 𝐶 ⊢ 𝜎 Γ;Φ3 | 𝐶 ⊢ 𝜌

∀(𝑏,𝑉) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ ⊢ 𝑉 : 𝐶
end,end−−−−−→

𝐶
𝐶

Γ;Φ1,Φ2,Φ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌,𝜔 ⟩

TH-Handler

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶)
Γ ⊢ 𝑊 : 𝐶

end,end−−−−−→
𝐶

𝐶 Γ;Φ | 𝐶 ⊢ 𝜎

Γ;Φ, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑊)]

Additional LTS rules Φ
𝛾
−→ Φ′ Φ ∼∼∼▷

s[p]

Φ

Lbl-ZapMsg Φ, 𝑠 [q] : , 𝑠 : (p, q, ℓ (𝐴)) · 𝑄
𝑠 :p q::ℓ
−−−−−→ Φ, 𝑠 [q] : , 𝑠 : 𝑄

Lbl-ZapRecv Φ, 𝑠 [p]:q&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 , 𝑠 [q]: , 𝑠 :𝑄
𝑠 :p q
−−−−→ Φ, 𝑠 [p]: , 𝑠 [q]: , 𝑠 :𝑄 (if messages(q, p,𝑄) = ∅)

Lbl-Zap Φ, 𝑠 [p] : 𝑆 ∼∼∼▷
s[p]

Φ, 𝑠 [p] :

Fig. 14. Maty : Modified configuration typing rules and type LTS

we take a similar approach to Barwell et al. [6]. Rule Lbl-Zap accounts for the possibility that in

any given reduction step, a role may be cancelled (for example, as a result of E-RaiseS), but it is a

separate relation since it is unnecessary for determining behavioural properties of types.

5.1.1 Preservation. We need a slightly modified preservation theorem in order to account for

cancelled roles; specifically we write⇛ for the relation =⇒?∼∼∼▷∗. The safety property is unchanged
for cancellation-aware environments.

Theorem 5.1 (Preservation (−→, Maty)). If Γ;Φ ⊢ C with safe(Φ) and C −→ D, then there
exists some Φ′ such that Φ ⇛ Φ′ and safe(Φ′) and Γ;Φ′ ⊢ D.

5.1.2 Progress. Maty enjoys progress since E-CancelMsg discards messages that cannot be

received, and E-CancelMsg invokes the failure continuation whenever a message will never be

sent due to a failure. Monitoring is orthogonal. The one change is that zapper threads for actors

may remain if the actor name is free in an existing monitoring or initialisation callback. We require

a slightly-adjusted deadlock-freedom property and canonical form to account for session failure.

Definition 5.2 (Deadlock-freedom and compliance (Maty)). A runtime environment Φ is deadlock-
free, written df (Φ), if Φ=⇒ ∗ Φ′ ̸=⇒ implies that either Φ′ = 𝑠 : 𝜖 or Φ′ = (𝑠 [p𝑖] :)𝑖∈𝐼 , 𝑠 : 𝜖 .
A runtime environment Φ is compliant, written comp (Φ), if safe(Φ) and df (Φ).

Definition 5.3. AMaty configuration C is in canonical form if it can be written:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗 ∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗 ∈1..𝑚 ∥ ⟨𝑎𝑘 , T𝑘 , 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘 ⟩𝑘∈1..𝑛′−1 ∥ ̃𝛼)

with (𝑎𝑘)𝑘∈𝑛′ ..𝑛 contained in ̃𝛼 .

Theorem 5.4 (Progress (Maty)). If ·;· ⊢ C, then either there exists some D such that C −→ D,
or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑈 𝑗), 𝜖, 𝜌 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ (𝑎 𝑗) 𝑗∈𝑛′ ..𝑛)

5.1.3 Global Progress. A modified version of global progress holds: in every active session, after a

number of reductions each session will either be cancelled or perform a communication action.

22 Simon Fowler and Raymond Hu

Theorem 5.5 (Global Progress (Maty)). If ·;· ⊢ C where C is thread-terminating, then for every
𝑠 ∈ activeSessions(C), then there exist D and D1 such that C ≡ (𝜈𝑠)D where D 𝜏−−→

∗
D1 and either

D1

𝑠−−→, or D1 ≡ D2 for some D2 where 𝑠 ∉ activeSessions(D2).

5.2 Discussion
The semantics of raise follows the Erlang “let it crash” methodology that favours crashing upon

errors over defensive programming. However, cancellation is flexible enough to support other

failure-handling strategies: we can for example implement a leave𝑉 construct, that allows an actor

to exit a session and update its state to 𝑉 without terminating, using the following reduction rule:

⟨𝑎, (E[leave𝑉])𝑠 [p] , 𝜎, 𝜌,𝜔 ⟩ −→ ⟨𝑎, idle(𝑉), 𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 [p]
Maty’s combination of event-driven concurrency and cancellation also makes handling timeouts

straightforward. We could for example extend the suspend 𝑈 𝑉 𝑊 construct to suspend 𝑈 𝑉 t𝑊 ,

where t is some deadline and invoke the failure-handling computation if the deadline is missed. The

failure-handling callback could then e.g. either retry or raise an exception. Indeed, Hou et al. [31]

show how session cancellation can be used to enable flexible timed session types and we expect

that their results could be incorporated into our design.

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation
Based on our formal design, we have implemented a toolchain for Maty-style event-driven actor

programming in Scala. It adopts the state machine based API generation approach of Scribble [33]:

(1) The user specifies global types in the Scribble protocol description language [56].

(2) Our toolchain internally uses Scribble to validate global types according to the MPST-based

safety conditions, project them to local types for each role, and construct a representation of

each local type based on communicating finite state machines (CFSM) [8].

(3) From each CFSM, the toolchain generates a typed, protocol-and-role-specific API for the user to
implement that role as an event-driven Maty actor in native Scala.

Typed APIs for Maty actor programming. Consider the Shop role in our running example (Fig. 5).

Fig. 15 shows the CFSM for Shop (with abbreviated message labels) and a summary of the main

generated types and operations (omitting the type annotations for the sid and pay parameters).

The toolchain generates Scala types for each CFSM state: non-blocking states (sends or suspends)

are coloured blue, whereas blocking states (inputs) are red.

Non-blocking state types provide methods for outputs and suspend actions, with types specific

to each state. The return type corresponds to the successor state type, enabling chaining of session

actions: e.g., state type S2 has method Customer_sendItems for the transition C!Is. The successor

state type S3Suspend includes a suspend method to install a handler for the input event of state 3,

and to yield control back to the event loop. The Done.type type ensures that each handler must

either complete the protocol or perform a suspend. Input state types are traits implemented by

case classes generated for each input message. The event loop calls the user-specified handler with

the corresponding case class upon each input event, with each case class carrying an instance of

the successor state type. For example, S3 (state 3) is implemented by case classes GetItemInfo and

Checkout for its input transitions, which respectively carry instances of successor states S4 and S5.

The API guides the user through the protocol to construct aMaty actor with compatible handlers

for every possible input event. For example, Fig. 16 handles state S1 and could be safely supplied to

the suspendmethod of S1Suspend immediately following a new session initiation. It further handles
S3 (so could also be supplied to S3Suspend), where the shop receives either GetItemInfo or Checkout.

Speak Now 23

1

2 3

4

5

6

7

8

9

C?
RI

C!Is

C?
GI

C!
II

C?
CO

C!
OO

S

C!
PP

P!
Bu

y

P?OK

P?IF

C!
OK

C!
IF

State State types Methods (send, suspend) or Input cases (extends state type trait)
1 S1Suspend suspend[D](d: D, f: (D, S1) => Done.type): Done.type

S1 case class RequestItems(sid, pay, succ: S2) extends S1
2 S2 Customer_sendItems(pay: ItemList): S3Suspend
3 S3Suspend suspend[D](d: D, f: (D, S3) => Done.type): Done.type

S3 case class GetItemInfo(sid, pay, succ: S4) extends S3
case class Checkout(sid, pay, succ: S5) extends S3

4 S4 Customer_sendItemInfo(pay): S3Suspend
5 S5 Customer_sendProcessingPayment(): S6

Customer_sendOutOfStock(): S3Suspend
6 S6 PaymentProcessor_sendBuy(pay): S7Suspend
7 S7Suspend suspend[D](d: D, f: (D, S7) => Done.type): Done.type

S7 case class OK(sid, pay, succ: S8) extends S7
case class InsufficientFunds(sid, pay, succ: S9) extends S7

8 S8 Customer_sendOK(pay): S3Suspend
9 S9 Customer_sendInsufficientFunds(pay): S3Suspend

Fig. 15. (left) CFSM for the Shop role in the Customer-Shop-PaymentProcessor protocol, and (right) summary

of state types and methods in the toolchain-generated Scala API for this role.

// d can be used for internal, _session-specific_ actor data
def custReqHandler[T: S1orS3](d: DataS, s: T): Done.type = {
s match {
case c: S1 => c match {
// pay is message payload; succ is successor state
case RequestItems(sid, pay, succ) =>
succ.Customer_sendItems(d.summary())

.suspend(d, custReqHandler[S3]) }
case c: S3 => c match {
case GetItemInfo(sid, pay, succ) =>
succ.Customer_sendItemInfo(d.lookupItem(pay))

.suspend(d, custReqHandler[S3])
case Checkout(sid, pay, succ) =>
if (d.inStock(pay)) {
succ.Customer_sendProcessingPayment()

.PaymentProcessor_sendBuy(d.total(pay))

.suspend(d, paymentResponseHandler)

// ...continuing on from the left column
} else {
val sus = succ.Customer_sendOutOfStock()
// d.staff: LOption[R1] -- this is a..
// .."frozen" instance of state type R1
d.staff match {
// R1 is the Restock protocol state type
case x: LSome[R1] =>
ibecome(d, x, restockHndlr)

case _: LNone =>
// Error handling
throw new RuntimeException

}
sus.suspend(d, custReqHandler[S3])

}
}}}

Fig. 16. Example handler code from a Maty actor implemented in Scala using the toolchain-generated API

The runtime for our APIs executes sessions over TCP and uses the Java NIO library to run the

actor event loops. It supports fully distributed sessions between remoteMaty actors.

Switching between sessions. As well as supporting the core features and failure handling capabili-

ties of Maty, our implementation also includes the ability to proactively switch between sessions.

Figure 16 shows how this functionality can be used to switch into a long-running Restock session

when more stock is needed. For this purpose, the API allows the user to “freeze” unused state type

instances as a type LOption[S] and resume them later by an inline ibecome. It allows the callback

for a session switching behaviour to be performed inline with the currently active handler.

Discussion. Following our formal model, our generated APIs support a conventional style of

actor programming where non-blocking operations are programmed in direct-style, in contrast to

approaches that invert both input and output actions [54, 57] through the event loop.

Static Scala typing ensures that handlers safely handle all possible input events at every stage

(by exhaustive matching of case classes), and that state types offer only the permitted operations at

each state (by method typing). Our API design requires linear usage of state type objects (e.g., s and
succ) and frozen session instances. Following other works [11, 33, 47, 51, 55], we check linearity in

a hybrid fashion: the Done return types in Fig. 15 statically require suspend to be invoked at least

24 Simon Fowler and Raymond Hu

Table 1. Selected case studies, examples from Savina, and key features of their Maty programs.

MPST(s) Maty actor programs

⊕/& 𝜇 C/P mSA mRA PP dSp dTo mAP dAP be self

Shop (Fig. 6) ✓ ✓ ✓ ✓ ✓ ✓
ShopRestock (Fig. 16) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Robot [22] ✓ ✓ ✓ ✓ (✓)
Chat [21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ping-self [36] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ping [36] ✓ ✓
Fib [35] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dining-self [36] ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓
Dining [36] ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓
Sieve [36] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

⊕/& = Branch type(s) 𝜇 = Recursive type(s) C/P = Concurrent/Parallel types mSA = Multiple sessions/actor

mRA = Multiple roles/actor PP = Parameterised number of actors dSp = Dynamic actor spawning

dTo = Dynamic topology mAP = Multiple APs dAP = Dynamic AP creation be = ibecome self = Self communication

once, but our APIs rule out multiple uses dynamically. We exploit our formal support for failure

handling (Sec. 5) to treat dynamic linearity errors as failures and retain safety and progress.

In summary, our toolchain enables Scala programming of Maty actors that support concurrent

handling of multiple heterogeneously-typed sessions, and ensures their safe execution. A statically

well-typed actor will never select an unavailable branch or send/receive an incompatible payload

type, and an actor system will never become stuck due to mismatching I/O actions. As in the theory,

the system without ibecome will enjoy global progress provided every handler is terminating (e.g.,

by avoiding general recursion/infinite iteration). Although we make no formal claims about the

system with ibecome, we conjecture that it will also enjoy progress up-to re-invocation of frozen

sessions stored in the actor’s state.

6.2 Evaluation
Table 1 summarises selected examples from the Savina [36] benchmark suite (lower) and larger case

studies (upper); Appendix A contains sequence diagrams for the larger examples. Notably, key design

features of Maty, e.g. support for handling multiple sessions per actor (mSA) and implementing

multiple protocols/roles within actors (mRA), are crucial to expressing many concurrency patterns.

For example, the Shop actor in both Shop examples plays the distinct Shop roles in the main Shop

protocol and Shop-Staff protocol simultaneously, and handles these sessions concurrently.

The “-self” versions of Ping and Dining are versions faithful to the original Akka programs that

involve internal coordination using self ! msg operations, but our APIs can express equivalent

behaviour more simply without needing self-communication.

The (✓) distinguishes simpler forms of dynamic topologies (dTo) due to a parameterised number

of clients dynamically connecting to a central server, from richer structures such as the parent-

children tree topology dynamically created in Fib and the user-driven dynamic connections between

clients and chat rooms in Chat; note both the latter involve dynamic access point creation (dAP).

Robot coordination. In this scenario, a real-world factory use case from Actyx AG [1] that was

originally described by Fowler et al. [22], multiple Robots access a Warehouse with a single door.

Only one Robot is allowed in the warehouse at a time. Concretely, each Robot actor establishes a

separate session with the Door and Warehouse actors. Maty’s event-driven model allows the Door

and Warehouse to each be implemented as a single actor that can safely handle the concurrent

interleavings of events across any number (PP, dSP) of separate Robot sessions (mSA).

Chat server. This use case [21] involves an arbitrary number of Clients (PP) using a Registry

to create new chat Rooms, and to dynamically join and leave any existing Room. We model each

Client, the Registry and each Room as separate actors. Rooms are created by spawning new Room

actors (dSp) with fresh access points (dAP, mAP), and we allow any Client to establish sessions

Speak Now 25

with the Registry or any Room asynchronously (dTo). We decompose the Client-Registry and the

Client-Room interactions into separate protocols (C/P, mAP), and use ibecome (be) in the Room

actor to broadcast chat messages to all Clients currently in that Room.

7 RELATEDWORK
Several works have investigated event-driven session typing. Zhou et al. [57] introduce a multiparty

session type discipline that supports statically-checked refinement types, implemented in F★; to

avoid needing to reason about linearity, users implement callbacks for each send and receive action.

This approach is used by Miu et al. [42] for session-typed web applications, and by Thiemann [54]

in Agda [46]. In contrast, our approach only yields control to the event loop on actor receives, as in
idiomatic actor programming. Hu et al. [32] and Kouzapas et al. [37] introduced a binary session

𝜋-calculus with primitives used to implement an event loop; our work instead encodes an event

loop directly in the semantics. Viering et al. [55] use event-driven programming in a framework for

fault-tolerant session-typed distributed programming. Their model involves inversion of control

on output as well as input events. They establish a version of global progress for a system of

subsessions spawned in a tree hierarchy. By contrast, we establish our global progress property for

every session in the system. These works all focus on process calculi rather than language design.

Ciccone et al. [14] developed fair termination for synchronous multiparty sessions, a strong

property that subsumes our global progress: it implies every role fairly terminates, whereas our

coarser-grained property is per session. Padovani and Zavattaro [48] developed fair termination for

asynchronous binary sessions and show that fair termination implies orphan message freedom [13].

Our system ensures orphan message freedom for terminated multiparty sessions (as in [17, 19]), but

we do not aim to restrictMaty to terminating sessions. We may be able to strengthen our formal

results by adapting the fairness conditions discussed in [14, 48] (developed for session 𝜋-calculi) to

our event-driven actor setting; however, features such as combining session creation and parallel

composition into one term (based on linear logic) are more restrictive than in our model.

Mostrous and Vasconcelos [43] were first to investigate session typing for actors, using Erlang’s

unique reference generation and selective receive to impose a channel-based communication model.

Their approach remains unimplemented and only supports binary session types. Francalanza and

Tabone [25] implement binary session typing in Elixir using pre- and post-conditions on module-

level functions, but their approach can only reason about interactions between pairs of participants.
Our approach is inspired by the model introduced by Neykova and Yoshida [45] (later implemented

in Erlang [21]), but our language design supports static checking and is formalised. EnsembleS [28]

enforces session typing using a flow-sensitive effect system, focusing on supporting safe adaptive
systems. However, each EnsembleS actor can only take part in a single session at a time.

Mailbox types [16, 22] capture the expected contents of a mailbox as a commutative regular ex-

pression, and ensure that processes do not receive unexpected messages. Mailbox and session types

both aim to ensure safe communication but address different problems: session types suit structured
interactions among known participants, whereas mailbox types are better when participants are

unknown and message ordering is unimportant. Mailbox types cannot yet handle failure.

Castellani et al. [10] developed internal delegation where channels can be migrated within a

multiparty session. Our actor model hides channels; however, internal delegation may provide

a way to formally relate our model to session 𝜋-calculi via encodings (cf. [37]). Barbanera et al.

[4, 5] emphasize simplified, compositional models of multiparty sessions. It would be interesting

to formally compare their approach, based on parallel composition and forwarding, against our

model, where a single-threaded actor can embed handlers for any number of concurrent sessions.

Scalas et al. [53] introduce a behavioural type system with dependent function types, allowing

functions to be checked against interaction patternswritten in a type-level DSL, enabling verification

26 Simon Fowler and Raymond Hu

of properties such as liveness and termination. Their behavioural type discipline is different to

session typing (e.g., supporting parameterised server interactions but not branching). Our session-

based approach is designed for structured interactions among known participants, and it is unclear

how their actor API would scale to processes handling multiple session-style interactions.

8 CONCLUSION AND FUTUREWORK
This paper introduces Maty, an actor language that rules out communication mismatches and

deadlocks using multiparty session types. Key to our approach is a novel combination of a flow-

sensitive effect system and first-class message handlers. We have extendedMaty with the ability to

switch between sessions and recover from failures. In future it would be interesting to investigate

path-dependent types in our implementation.

Speak Now 27

DATA AVAILABILITY STATEMENT
We will submit our implementation and examples as an artifact, and will upload the extended

version of the paper with full proofs to arXiv upon acceptance.

REFERENCES
[1] 2023. Actyx AG. https://actyx.io

[2] Gul A. Agha. 1990. ACTORS - a model of concurrent computation in distributed systems. MIT Press.

[3] Robert Atkey. 2009. Parameterised notions of computation. J. Funct. Program. 19, 3-4 (2009), 335–376.
[4] Franco Barbanera, Viviana Bono, and Mariangiola Dezani-Ciancaglini. 2025. Open compliance in multiparty sessions

with partial typing. J. Log. Algebraic Methods Program. 144 (2025), 101046. https://doi.org/10.1016/J.JLAMP.2025.101046

[5] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida. 2023. Multicompatibility for

Multiparty-Session Composition. In International Symposium on Principles and Practice of Declarative Programming,
PPDP 2023, Lisboa, Portugal, October 22-23, 2023, Santiago Escobar and Vasco T. Vasconcelos (Eds.). ACM, 2:1–2:15.

https://doi.org/10.1145/3610612.3610614

[6] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. 2022. Generalised Multiparty Session Types with

Crash-Stop Failures. In CONCUR (LIPIcs, Vol. 243). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 35:1–35:25.

[7] Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti Venneri. 2008. Session and

Union Types for Object Oriented Programming. In Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday (Lecture Notes in Computer Science, Vol. 5065), Pierpaolo Degano, Rocco De Nicola,

and José Meseguer (Eds.). Springer, 659–680. https://doi.org/10.1007/978-3-540-68679-8_41

[8] Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. J. ACM 30, 2 (apr 1983), 323?342.

https://doi.org/10.1145/322374.322380

[9] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises

Duality: A Logical Explanation of Multiparty Session Types. In CONCUR (LIPIcs, Vol. 59). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 33:1–33:15.

[10] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. 2020. Global types with internal

delegation. Theor. Comput. Sci. 807 (2020), 128–153. https://doi.org/10.1016/J.TCS.2019.09.027

[11] David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed

programming using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated

communication structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1–29:30. https://doi.org/10.1145/3290342

[12] Avik Chaudhuri. 2009. A Concurrent ML Library in Concurrent Haskell. In ICFP. ACM.

[13] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of

Subtyping in Session Types. Log. Methods Comput. Sci. 13, 2 (2017). https://doi.org/10.23638/LMCS-13(2:12)2017

[14] Luca Ciccone, Francesco Dagnino, and Luca Padovani. 2024. Fair termination of multiparty sessions. J. Log. Algebraic
Methods Program. 139 (2024), 100964. https://doi.org/10.1016/J.JLAMP.2024.100964

[15] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global progress for

dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26, 2 (2016), 238–302.
[16] Ugo de’Liguoro and Luca Padovani. 2018. Mailbox Types for Unordered Interactions. In ECOOP (LIPIcs, Vol. 109).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:28.

[17] Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet Communicating Automata. In

Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 194–213. https://doi.org/10.

1007/978-3-642-28869-2_10

[18] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characteri-

sation and Synthesis of Global Session Types. In ICALP (2) (Lecture Notes in Computer Science, Vol. 7966). Springer,
174–186.

[19] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Char-

acterisation and Synthesis of Global Session Types. In Automata, Languages, and Programming - 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 7966), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg (Eds.). Springer, 174–186.

https://doi.org/10.1007/978-3-642-39212-2_18

[20] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive Type Qualifiers. In PLDI. ACM, 1–12.

[21] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session Actors. In ICE (EPTCS, Vol. 223). 36–50.
[22] Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder. 2023. Special Delivery:

Programming with Mailbox Types. Proc. ACM Program. Lang. 7, ICFP (2023), 78–107.

https://actyx.io
https://doi.org/10.1016/J.JLAMP.2025.101046
https://doi.org/10.1145/3610612.3610614
https://doi.org/10.1007/978-3-540-68679-8_41
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/J.TCS.2019.09.027
https://doi.org/10.1145/3290342
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/J.JLAMP.2024.100964
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18

28 Simon Fowler and Raymond Hu

[23] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional asynchronous session types: session

types without tiers. Proc. ACM Program. Lang. 3, POPL (2019), 28:1–28:29.

[24] Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing Metaphors: Actors as Channels and Channels as Actors.

In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:28.

[25] Adrian Francalanza and Gerard Tabone. 2023. ElixirST: A session-based type system for Elixir modules. J. Log.
Algebraic Methods Program. 135 (2023), 100891.

[26] Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types. J. Funct.
Program. 20, 1 (2010), 19–50.

[27] Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic Effects. In ECOOP (LIPIcs, Vol. 74). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:31.

[28] Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021. Multiparty Session Types for Safe Runtime

Adaptation in an Actor Language. In ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

10:1–10:30.

[29] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Artificial

Intelligence. In IJCAI. William Kaufmann, 235–245.

[30] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. ACM,

273–284.

[31] Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida. 2024. Fearless Asynchronous Communications with Timed

Multiparty Session Protocols. In ECOOP (LIPIcs, Vol. 313). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1–

19:30.

[32] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. 2010. Type-Safe Eventful

Sessions in Java. In ECOOP 2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June
21-25, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 329–353. https:

//doi.org/10.1007/978-3-642-14107-2_16

[33] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification Through Endpoint API Generation. In FASE
(Lecture Notes in Computer Science, Vol. 9633). Springer, 401–418.

[34] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In FASE (Lecture
Notes in Computer Science, Vol. 10202). Springer, 116–133.

[35] Shams Imam. [n. d.]. Savina Actor Benchmark Suite. https://github.com/shamsimam/savina. Accessed: 2024-11-13.

[36] Shams Mahmood Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation

of Actor Libraries. In AGERE!@SPLASH. ACM, 67–80.

[37] Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. 2016. On asynchronous eventful session

semantics. Math. Struct. Comput. Sci. 26, 2 (2016), 303–364.
[38] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2022. Stay Safe Under Panic: Affine Rust Programming

with Multiparty Session Types. In ECOOP (LIPIcs, Vol. 222). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

4:1–4:29.

[39] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming

languages. Information and Computation 185, 2 (2003), 182–210.

[40] Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In TLDI. ACM, 91–102.

[41] Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP (Lecture Notes in Computer
Science, Vol. 9032). Springer, 560–584.

[42] Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. 2021. Communication-safe web programming in

TypeScript with routed multiparty session types. In CC. ACM, 94–106.

[43] Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2011. Session Typing for a Featherweight Erlang. In COORDI-
NATION (Lecture Notes in Computer Science, Vol. 6721). Springer, 95–109.

[44] Dimitris Mostrous and Vasco T. Vasconcelos. 2018. Affine Sessions. Log. Methods Comput. Sci. 14, 4 (2018).
[45] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017).
[46] Ulf Norell. 2008. Dependently Typed Programming in Agda. In Advanced Functional Programming (Lecture Notes in

Computer Science, Vol. 5832). Springer, 230–266.
[47] Luca Padovani. 2017. A simple library implementation of binary sessions. J. Funct. Program. 27 (2017), e4. https:

//doi.org/10.1017/S0956796816000289

[48] Luca Padovani and Gianluigi Zavattaro. 2025. Fair Termination of Asynchronous Binary Sessions. In 39th European
Conference on Object-Oriented Programming, ECOOP 2025, June 30 to July 2, 2025, Bergen, Norway (LIPIcs, Vol. 333),
Jonathan Aldrich and Alexandra Silva (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:29. https:

//doi.org/10.4230/LIPICS.ECOOP.2025.24

[49] John C. Reynolds. 2000. The Meaning of Types—From Intrinsic to Extrinsic Semantics. Technical Report RS-00-32.

BRICS.

https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-642-14107-2_16
https://github.com/shamsimam/savina
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.4230/LIPICS.ECOOP.2025.24
https://doi.org/10.4230/LIPICS.ECOOP.2025.24

Speak Now 29

[50] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty

Sessions for Safe Distributed Programming. In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 24:1–24:31.

[51] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and

Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 21:1–21:28. https://doi.org/10.4230/

LIPICS.ECOOP.2016.21

[52] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang.
3, POPL (2019), 30:1–30:29.

[53] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying message-passing programs with dependent

behavioural types. In PLDI. ACM, 502–516.

[54] Peter Thiemann. 2023. Intrinsically Typed Sessions with Callbacks (Functional Pearl). Proc. ACM Program. Lang. 7,
ICFP (2023), 711–739.

[55] Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. 2021. A multiparty session typing discipline for

fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–30.

[56] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The Scribble Protocol Language. In TGC
(Lecture Notes in Computer Science, Vol. 8358). Springer, 22–41.

[57] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically verified

refinements for multiparty protocols. Proc. ACM Program. Lang. 4, OOPSLA (2020), 148:1–148:30.

https://doi.org/10.4230/LIPICS.ECOOP.2016.21
https://doi.org/10.4230/LIPICS.ECOOP.2016.21

30 Simon Fowler and Raymond Hu

Appendices

APPENDIX CONTENTS

A Details of Case Study Protocols 31

A.1 Robots 31

A.2 Chat Server 32

B Supplement to Section 4 33

B.1 Omitted Definitions 33

B.2 Preservation 33

B.3 Progress 42

C Supplement to Section 5 44

C.1 Progress 47

D Formal Model of Session Switching Extension 49

D.1 Metatheory 51

Speak Now 31

A DETAILS OF CASE STUDY PROTOCOLS
In this section we detail the protocols and sequence diagrams for the two case studies.

A.1 Robots
The robots protocol can be found below, both as a Scribble global type and a sequence diagram.

Role R stands for Robot, D stands for Door, and W stands for Warehouse.

global protocol Robot(role R, role D, role W) {
Want(PartNum) from R to D;
choice at D {

Busy() from D to R;
Cancel () from D to W;

} or {
GoIn() from D to R;
Prepare(PartNum) from D to W;
Inside () from R to D;
Prepared () from W to D;
Deliver () from D to W;
Delivered () from W to R;
PartTaken () from R to W;
WantLeave () from R to D;
GoOut () from D to R;
Outside () from R to D;
TableIdle () from W to D;

}
}

Robot Door Warehouse

Want(PartNum)

Busy()

Open door

GoIn()

Prepare(PartNum)

Drive in

Inside()

Close door

Prepared()

Deliver()

Lock table

Delivered()

Take part

PartTaken()

WantLeave()

Open door

GoOut()

Drive out

Outside()

Close door

TableIdle()

alt [Door is already in use]

[Door is not in use]

Below is the straightforward user code for a Door actor to repeatedly register for an unbounded

number of Robot sessions. The Door actor will safely handle all Robot sessions concurrently,

coordinated by its encapsulated state (e.g., isBusy). The generated ActorDoorAPI provides a register

method for the formal register operation, and d1Suspend is a user-defined handler that registers

once more after every session initiation.

1 class Door(pid: Pid, port: Int, apHost: Host, apPort: Int) extends ActorDoor(pid) {
2 private var isBusy = false // Shared state -- n.b. every actor is a single-threaded event loop
3 def spawn(): Unit = { super.spawn(this.port); regForInit(new DataD(...)) }
4 def regForInit(d: DataD) = register(this.port, apHost, apPort, d, d1Suspend)
5 def d1Suspend(d: DataD, s: D1Suspend): Done.type = { regForInit(new DataD(...)); s.suspend(d, d1) }
6 ... // def d1(d: DataD, s: D1): Done.type ... etc.

32 Simon Fowler and Raymond Hu

A.2 Chat Server

global protocol ChatServer(role C, role S) {
choice at C {

LookupRoom(RoomName) from C to S;
choice at S {

RoomPort(RoomName , Port) from S to C;
} or {

RoomNotFound(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
CreateRoom(RoomName) from C to S;
choice at S {

CreateRoomSuccess(RoomName) from S to C;
} or {

RoomExists(RoomName) from S to C;
}
do ChatServer(C, S);

} or {
ListRooms () from C to S;
RoomList(StringList) from S to C;
do ChatServer(C, S);

} or {
Bye(String) from C to S;

}
}

global protocol ChatSessionCtoR(role C, role R) {
choice at C {

OutgoingChatMessage(String) from C to R;
do ChatSessionCtoR(C, R);

} or {
LeaveRoom () from C to R;

}
}

global protocol ChatSessionRtoC(role R, role C){
choice at R {

IncomingChatMessage(String) from R to C;
do ChatSessionRtoC(R, C);

} or {
Bye() from R to C;

}
}

Client Server

LookupRoom(RoomName)

RoomPort(RoomName, Port)

RoomNotFound(RoomName)

CreateRoom(RoomName)

CreateRoomSuccess(RoomName)

RoomExists(RoomName)

ListRooms()

RoomList(StringList)

Bye()

loop [until after Bye message]

alt

alt

alt

Client Room

OutgoingChatMessage(String)

LeaveRoom()

loop [until LeaveRoom message]

alt

Client Room

IncomingChatMessage(String)

Bye()

loop [until Bye message]

alt

Speak Now 33

B SUPPLEMENT TO SECTION 4
B.1 Omitted Definitions
Term reduction𝑀 −→M 𝑁 is standard 𝛽-reduction:

Term reduction rules 𝑀 −→M 𝑁

let 𝑥 = return 𝑉 in 𝑀 −→M 𝑀{𝑉 /𝑥}
(𝜆𝑥 .𝑀) 𝑉 −→M 𝑀{𝑉 /𝑥}

(rec 𝑓 (𝑥).𝑀) 𝑉 −→M 𝑀{rec 𝑓 (𝑥).𝑀/𝑓 ,𝑉 /𝑥}
if true then𝑀 else 𝑁 −→M 𝑀

if false then𝑀 else 𝑁 −→M 𝑁

E[𝑀] −→M E[𝑁] (if𝑀 −→M 𝑁)

B.2 Preservation
We begin with some unsurprising auxiliary lemmas.

Lemma B.1 (Substitution). If Γ, 𝑥 : 𝐵 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and Γ ⊢ 𝑉 : 𝐵, then Γ | 𝑆 |
𝐶 ⊲ 𝑀{𝑉 /𝑥} :𝐴 ⊳ 𝑇 .

Proof. By induction on the derivation of Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 . □

Lemma B.2 (Subterm typability). Suppose D is a derivation of Γ | 𝐶 | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇 . Then
there exists some subderivation D′ of D concluding Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑆 ′ for some type 𝐵 and session
type 𝑆 ′, where the position of D′ in D corresponds to that of the hole in E.

Proof. By induction on the structure of E. □

Lemma B.3 (Replacement). If:
(1) D is a derivation of Γ | 𝐶 | 𝑆 ⊲ E[𝑀] :𝐴 ⊳ 𝑇

(2) D′ is a subderivation of D concluding Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 ′ where the position of D′ in D
corresponds to that of the hole in E

(3) Γ | 𝐶 | 𝑆 ′ ⊲ 𝑁 :𝐵 ⊳ 𝑇 ′

then Γ | 𝐶 | 𝑆 ′ ⊲ E[𝑁] :𝐴 ⊳ 𝑇 .

Proof. By induction on the structure of E. □

Since type environments are unrestricted, we also obtain a weakening result.

Lemma B.4 (Weakening). (1) If Γ ⊢ 𝑉 : 𝐵 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 ⊢ 𝑉 : 𝐵.
(2) If Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴 | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇 .
(3) If Γ;Δ | 𝐶 ⊢ 𝜎 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ | 𝐶 ⊢ 𝜎 .
(4) If Γ;Δ | 𝐶 ⊢ 𝜌 and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ | 𝐶 ⊢ 𝜌 .
(5) If Γ;Δ ⊢ C and 𝑥 ∉ dom(Γ), then Γ, 𝑥 : 𝐴;Δ ⊢ C.

Proof. By mutual induction on all premises. □

Lemma B.5 (Preservation (terms)). If Γ | 𝑆 | 𝐶 ⊲ 𝑀 :𝐴 ⊳ 𝑇 and 𝑀 −→M 𝑁 , then Γ | 𝑆 |
𝐶 ⊲ 𝑁 :𝐴 ⊳ 𝑇 .

Proof. A standard induction on the derivation of𝑀 −→M 𝑁 , noting that functional reduction

does not modify the session type. □

Next, we introduce some MPST-related lemmas that are helpful for proving preservation of

configuration reduction. We often make use of these lemmas implicitly.

34 Simon Fowler and Raymond Hu

Lemma B.6. If safe(Δ,Δ′), then safe(Δ).

Proof sketch. Splitting a context only removes potential reductions. Only by adding reductions

could we violate safety. □

Lemma B.7. If safe(Δ1,Δ2) and Δ1 =⇒ Δ′
1
, then safe(Δ′

1
,Δ2).

Proof. By induction on the derivation of Δ1 ≡
𝜋
=⇒≡ Δ′

1
.

It suffices to consider the cases where reduction could potentially make the combined environ-

ments unsafe.

In the case of Lbl-Sync-Send, the resulting reduction adds a message (p, q, ℓ𝑖 (𝐴𝑖)) to a queue 𝑄 .

The only way this could violate safety is if there were some entry 𝑠 [q] : p&{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }𝑖∈𝐼 , and
𝑄 ≡ (p, q, ℓ𝑗 (𝐴 𝑗)) ·𝑄 ′

where 𝑗 ∈ 𝐼 , but (𝑄 · (p, q, ℓ𝑘 (𝐴𝑘)) ≡ (p, q, ℓ𝑘 (𝐴𝑘)) ·𝑄 ′′
with 𝑘 ∉ 𝐼 . However,

this is impossible since it is not possible to permute this message ahead of the existing message

because of the side-conditions on queue equivalence.

A similar argument applies for Lbl-Sync-Recv. □

Lemma B.8. If Γ;Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎 and Γ ⊢ 𝑉 : 𝐴, then Γ;Δ, 𝑠 : (𝑄 · (p, q, ℓ (𝐴))) ⊢ 𝑠 ⊲ 𝜎 · (p, q, ℓ (𝑉))

Proof. A straightforward induction on the derivation of Γ;Δ, 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝜎 . □

LemmaB.9. If safe(Δ1) and safe(Δ2) for environmentsΔ1,Δ2 such that snames(Δ1)∩snames(Δ2) =
∅ and where Δ1,Δ2 is defined, then safe(Δ1,Δ2).

Proof. By inspection of the definition of safe(−) and the environment reduction rules, noting

that each are only defined on a single session. □

Lemma B.10. Given environments Δ1,Δ2 such that safe(Δ1,Δ2) and snames(Δ1) ∩ snames(Δ2) = ∅
and Δ1,Δ2 =⇒? Δ′ such that safe(Δ′), either:

(1) Δ′ = Δ; or
(2) Δ′ = Δ′

1
,Δ2 such that Δ1 =⇒ Δ′

1
and safe(Δ′

1
); or

(3) Δ′ = Δ1,Δ
′
2
such that Δ2 =⇒ Δ′

2
and safe(Δ′

2
).

Proof. By inspection of the reduction rules for =⇒, noting that reduction only affects a single

session and that the session names in Δ1,Δ2 are disjoint. □

Lemma B.11 (Preservation (Eqivalence)). If Γ;Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ
such that Γ;Δ′ ⊢ D.

Proof. By induction on the derivation of C ≡ D. The only case that causes the type environment

to change is queue message reordering, which can be made typable by mirroring the change in the

queue type. □

Lemma B.12 (Preservation (Configuration reduction)). If Γ;Δ ⊢ C with safe(Δ) and C −→
D, then there exists some Δ′ such that Δ =⇒? Δ′ such that safe(Δ′) and Γ;Δ′ ⊢ D.

Proof. By induction on the derivation of C −→ D. In each case where Δ =⇒ Δ′
for some Δ′

,

by the definition of safety it follows that safe(Δ′).
Case E-Send.

⟨𝑎, (E[q ! ℓ (𝑉)])𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿 −→ ⟨𝑎, (E[return ()])𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ (𝑉))

Speak Now 35

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[q ! ℓ (𝑉)] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[q ! ℓ (𝑉)])𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;𝑠 [p] : 𝑆,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉)])𝑠 [p] , 𝜎, 𝜌⟩ Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ;𝑠 [p] : 𝑆,Δ2,Δ3, 𝑠 : 𝑄, 𝑎 ⊢ ⟨𝑎, (E[q ! ℓ (𝑉)])𝑠 [p] , 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿

By Lemma B.2 we have that Γ | 𝐶 | q ⊕{ℓ𝑖 (𝐴𝑖) : 𝑇𝑖 }𝑖∈𝐼 ⊲ q ! ℓ𝑗 (𝑉) :Unit ⊳ 𝑇𝑗 and therefore that

𝑆 = q ⊕{ℓ𝑖 (𝐴𝑖) : 𝑇𝑖 }𝑖∈𝐼 .
Since Γ | 𝐶 | 𝑇𝑗 ⊲ return () :Unit ⊳ 𝑇𝑗 , we can show by Lemma B.3 we have that Γ | 𝐶 |

𝑇𝑗 ⊲ E[return ()] :𝐶 ⊳ end.

By Lemma B.8, Γ;𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴 𝑗)) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉)).
Therefore, recomposing:

Γ | 𝐶 | 𝑇𝑗 ⊲ E[return ()] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑇𝑗 | 𝐶 ⊢ (E[return ()])𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩ Γ;𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐴𝑗)) ⊢ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉))
Γ;𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗)), 𝑎 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑠 ⊲ 𝛿 · (p, q, ℓ𝑗 (𝑉))

Finally,

𝑠 [p] : q ⊕{ℓ𝑖 (𝐴𝑖) : 𝑇𝑖 }𝑖∈𝐼 ,Δ2,Δ3, 𝑠 : 𝑄, 𝑎 =⇒ 𝑠 [p] : 𝑇𝑗 ,Δ2,Δ3, 𝑠 : 𝑄 · (p, q, ℓ𝑗 (𝐵 𝑗)), 𝑎 by Lbl-Send

as required.

Case E-React.

ℓ (𝑥) ↦→ 𝑀 ∈ −→
𝐻

⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ handler q st {−→𝐻 }], 𝜌⟩ ∥ 𝑠 ⊲ (q, p, ℓ (𝑉)) · 𝛿 −→ ⟨𝑎, (𝑀{𝑉 /𝑥,𝑈 /st})𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿
For simplicity (and equivalently) let us refer to ℓ as ℓ𝑗 .

Let D be the following derivation:

(Γ, 𝑥𝑖 : 𝐵𝑖 , st : 𝐶 | 𝐶 | 𝑆𝑖 ⊲ 𝑀𝑖 :𝐶 ⊳ end)𝑖∈𝐼
Γ ⊢ handler q st { (ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖)𝑖∈𝐼 } : Handler(𝑆?,𝐶) Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ;Δ2, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ handler q st {−→𝐻 }]
Γ ⊢ 𝑈 : 𝐶

Γ;𝐶 | · ⊢ idle(𝑈) Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ handler q st {−→𝐻 }], 𝜌 ⟩

Assumption:

D

Γ ⊢ 𝑉 : 𝐴 Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ;𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄) ⊢ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉)) · 𝛿

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄), 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ handler q st {−→𝐻 }], 𝜌⟩ ∥ 𝑠 ⊲ (q, p, ℓ𝑗 (𝑉)) · 𝛿

where 𝑆? = p&{ℓ𝑖 (𝐵𝑖).𝑆𝑖 }𝑖∈𝐼 .
Since safe(Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) ·𝑄)), 𝑎 we have that 𝑗 ∈ 𝐼 and 𝐴 = 𝐵 𝑗 .

Similarly since ℓ𝑗 (𝑥 𝑗) ↦→ 𝑀 ∈ −→
𝐻 we have that Γ, 𝑥 𝑗 : 𝐵 𝑗 , st : 𝐶 | 𝐶 | 𝑆 𝑗 ⊲ 𝑀 :𝐶 ⊳ end.

By Lemma B.1, Γ | 𝐶 | 𝑆 𝑗 ⊲ 𝑀{𝑉 /𝑥 𝑗 ,𝑈 /st} :𝐶 ⊳ end.

Let D′
be the following derivation:

36 Simon Fowler and Raymond Hu

Γ | 𝑆 𝑗 | 𝐶 ⊲ 𝑀{𝑉 /𝑥 𝑗 ,𝑈 /st} :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 𝑗 | 𝐶 ⊢ (𝑀{𝑉 /𝑥 𝑗 ,𝑈 /st})𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑎 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 ,𝑈 /st})𝑠 [p], 𝜎, 𝜌⟩

Recomposing:

D′ Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄, 𝑎 ⊢ ⟨𝑎, (𝑀{𝑉 /𝑥 𝑗 ,𝑈 /st})𝑠 [p], 𝜎, 𝜌⟩ ∥ 𝑠 ⊲ 𝛿

Finally, we note that Δ2,Δ3, 𝑠 [p] : 𝑆?, 𝑠 : ((q, p, ℓ𝑗 (𝐴)) · 𝑄), 𝑎 =⇒ Δ2,Δ3, 𝑠 [p] : 𝑆 𝑗 , 𝑠 : 𝑄, 𝑎 by

Lbl-Recv as required.

Case E-Suspend.

⟨𝑎, (E[suspend 𝑉 𝑊])𝑠 [p], 𝜎, 𝜌⟩ −→ ⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ 𝑉], 𝜌⟩

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[suspend 𝑉 𝑊] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[suspend 𝑉 𝑊])𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;𝑠 [p] : 𝑆,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, (E[suspend 𝑉 𝑊])𝑠 [p], 𝜎, 𝜌⟩

By Lemma B.2 we have that:

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶) Γ ⊢𝑊 : 𝐶

Γ | 𝐶 | 𝑆? ⊲ suspend 𝑉 𝑊 :𝐴 ⊳ 𝑇

for any arbitrary 𝐴,𝑇 , and showing that 𝑆 = 𝑆?.

Recomposing:

Γ ⊢𝑊 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑊)
Γ ⊢ 𝑉 : Handler(𝑆?,𝐶) Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ;Δ2, 𝑠 [p] : 𝑆? | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ 𝑉] Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;𝑠 [p] : 𝑆?,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, idle(𝑊), 𝜎 [𝑠 [p] ↦→ 𝑉], 𝜌⟩

as required.

Case E-Spawn.

⟨𝑎,M[spawn 𝑀], 𝜎, 𝜌⟩ −→ (𝜈𝑏) (⟨𝑎,M[return ()], 𝜎, 𝜌⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖⟩)

(with 𝑏 fresh)

There are two subcases based on whether M = E[−] or M = (E[−])𝑠 [p] . Both are similar so

we will prove the latter case.

Assumption:

Speak Now 37

Γ | 𝐶 | 𝑆 ⊲ E[spawn 𝑀] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[spawn 𝑀])𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[spawn 𝑀])𝑠 [p], 𝜎, 𝜌⟩
By Lemma B.2:

Γ | 𝐴 | end ⊲ 𝑀 :𝐴 ⊳ end

Γ | 𝐶 | 𝑆 ⊲ spawn 𝑀 :Unit ⊳ 𝑆

By Lemma B.3, Γ | 𝐶 | 𝑆 ⊲ E[return ()] :𝐶 ⊳ end.

Thus, recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ()] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[return ()])𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩

Γ | 𝐴 | end ⊲ 𝑀 :𝐴 ⊳ end

Γ; · | 𝐴 ⊢ 𝑀 Γ; · | 𝐴 ⊢ 𝜖
Γ; · | 𝐴 ⊢ 𝜖

Γ;𝑏 ⊢ ⟨𝑏,𝑀, 𝜖, 𝜖 ⟩
Γ;Δ2,Δ3, 𝑠 [p] : 𝑆, 𝑎,𝑏 ⊢ ⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖 ⟩

Γ;Δ2,Δ3, 𝑠 [p] : 𝑆, 𝑎 ⊢ (𝜈𝑏) (⟨𝑎, (E[return ()])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ ⟨𝑏,𝑀, 𝜖, 𝜖 ⟩)

as required.

Case E-Reset.

⟨𝑎,Q[return 𝑉], 𝜎, 𝜌⟩ −→ ⟨𝑎, idle(𝑉), 𝜎, 𝜌⟩
There are two subcases based on whether Q = [−] or Q = ([−])𝑠 [p] . We prove the latter case;

the former is similar but does not require a context reduction.

Assumption:

Γ ⊢ 𝑉 : 𝐶

Γ | 𝐶 | end ⊲ return 𝑉 :𝐶 ⊳ end

Γ; 𝑠 [p] : end | 𝐶 ⊢ (return 𝑉)𝑠 [p] Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [p] : end, 𝑎 ⊢ ⟨𝑎, (return 𝑉)𝑠 [p], 𝜎, 𝜌⟩

We can show that Δ2,Δ3, 𝑠 [p] : end, 𝑎
end(𝑠,p)
=======⇒ Δ2,Δ3, 𝑎, so we can reconstruct:

Γ ⊢ 𝑉 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑉) Γ;Δ2 | 𝐶 ⊢ 𝜎 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, idle(𝑉), 𝜎, 𝜌⟩
as required.

Case E-NewAP.

𝑝 fresh

⟨𝑎,M[newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼]], 𝜎, 𝜌⟩ −→ (𝜈𝑝) (⟨𝑎,M[return 𝑝], 𝜎, 𝜌⟩ ∥ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈𝐼))
As usual we prove the case where M = (E[−])𝑠 [p] ; the case where M = (E[−]) is similar.

38 Simon Fowler and Raymond Hu

Assumption:

Γ | 𝐶 | 𝑇 ⊲ E[newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼]] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑇 | 𝐶 ⊢ (E[newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼]])𝑠 [p]
Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, (E[newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼]])𝑠 [p], 𝜎, 𝜌⟩
By Lemma B.2:

comp((p𝑖 : 𝑆𝑖)𝑖∈𝐼)
Γ | 𝐶 | 𝑇 ⊲ newAP[(p𝑖 : 𝑆𝑖)𝑖∈𝐼] :AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) ⊳ 𝑇

By Lemma B.3, Γ, 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) | 𝐶 | 𝑇 ⊲ E[return 𝑝] :𝐶 ⊳ end.

Let Γ′ = Γ, 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼).
By Lemma B.4, since 𝑝 is fresh we have that Γ′;Δ2 | 𝐶 ⊢ 𝜎 and Γ′;Δ3 | 𝐶 ⊢ 𝜌 .

Recomposing:

Γ′ | 𝐶 | 𝑇 ⊲ E[return 𝑝] :𝐶 ⊳ end

Γ′; 𝑠 [p] : 𝑇 | 𝐶 ⊢ (E[return 𝑝])𝑠 [p] Γ′;Δ2 | 𝐶 ⊢ 𝜎
Γ′;Δ3 | 𝐶 ⊢ 𝜌

Γ′;Δ2,Δ3, 𝑠 [p] : 𝑇, 𝑎 ⊢ ⟨𝑎, (E[return 𝑝])𝑠 [p] , 𝜎, 𝜌 ⟩

𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈𝐼) ∈ Γ′ (· ⊢ 𝜖 : 𝑆𝑖)𝑖∈𝐼
comp((p𝑖 : 𝑆𝑖)𝑖∈𝐼)

Γ′;𝑝 ⊢ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈𝐼)
Γ′;Δ2,Δ3, 𝑠 [p] : 𝑇, 𝑎, 𝑝 ⊢ ⟨𝑎, (E[return 𝑝])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈𝐼)
Γ;Δ2,Δ3, 𝑠 [p] : 𝑇 ⊢ (𝜈𝑝) (⟨𝑎, (E[return 𝑝])𝑠 [p] , 𝜎, 𝜌 ⟩ ∥ 𝑝 ((p𝑖 ↦→ 𝜖)𝑖∈𝐼))

as required.

Case E-Register.

𝜄 fresh

⟨𝑎,M[register 𝑝 p 𝑉], 𝜎, 𝜌⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′]) −→ (𝜈𝜄) (⟨𝑎,M[return ()], 𝜎, 𝜌 [𝜄 ↦→ 𝑉]⟩ ∥ 𝑝 (𝜒 [p ↦→ 𝜄′ ∪ {𝜄}]))
Again, we prove the case where M = (E[−])𝑠 [q] and let p = p𝑗 for some 𝑗 .

Let Δ = Δ2,Δ3,Δ4, �𝜄−𝑗 : 𝑆 𝑗 , 𝑠 [p] : 𝑇, 𝑎, 𝑝 .
Let D be the following derivation:

Γ | 𝐶 | 𝑇 ⊲ E[register 𝑝 p𝑗 𝑉] :𝐶 ⊳ end

Γ; 𝑠 [q] : 𝑇 | 𝐶 ⊢ (E[register 𝑝 p𝑗 𝑉])𝑠 [q] Γ;Δ2 | 𝐶 ⊢ 𝜎
Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ2,Δ3, 𝑠 [q] : 𝑇, 𝑎 ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑉])𝑠 [q], 𝜎, 𝜌⟩
Assumption:

D

{ (p𝑖 : 𝑆𝑖)𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖)𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′] 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛) ∈ Γ

comp((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛)

Γ;Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′])

Γ;Δ ⊢ ⟨𝑎, (E[register 𝑝 p𝑗 𝑉])𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′])

By Lemma B.2:

Γ ⊢ 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖) Γ ⊢ 𝑉 : 𝐶
𝑆 𝑗 ,end−−−−−→
𝐶

𝐶

Γ | 𝐶 | 𝑇 ⊲ register 𝑝 p𝑗 𝑉 :Unit ⊳ 𝑇

Speak Now 39

By Lemma B.3, Γ | 𝐶 | 𝑇 ⊲ E[return ()] :𝐶 ⊳ end.

Now, let D′
be the following derivation:

Γ | 𝐶 | 𝑇 ⊲ E[return ()] :𝐶 ⊳ end

Γ; 𝑠 [q] : 𝑇 | 𝐶 ⊢ (E[return ()])𝑠 [q]
Γ ⊢ 𝑉 : 𝐶

𝑆 𝑗 ,end−−−−→
𝐶

𝐶 Γ;Δ3 | 𝐶 ⊢ 𝜌

Γ;Δ3, 𝜄
+
: 𝑆 𝑗 | 𝐶 ⊢ 𝜌 [𝜄+ ↦→ 𝑉] Γ;Δ2 | 𝐶 ⊢ 𝜎

Γ;Δ2,Δ3, 𝑠 [q] : 𝑆, 𝜄+ : 𝑆 𝑗 , 𝑎 ⊢ ⟨𝑎, (E[return ()])𝑠 [q] , 𝜎, 𝜌 ⟩

Finally, we can recompose:

D

{ (p𝑖 : 𝑆𝑖)𝑖∈1..𝑛 } Δ4 ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖)𝑖∈1..𝑛 } Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}] 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛) ∈ Γ

comp((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛)

Γ;Δ4,
−−−−−→
𝜄′−𝑗 : 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}])

Γ;Δ, 𝜄+ : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ ⟨𝑎, (E[return ()])𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}])

Γ;Δ ⊢ (𝜈𝜄) (⟨𝑎, (E[return ()])𝑠 [q] , 𝜎, 𝜌 ⟩ ∥ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}]))

as required.

Case E-Init.

𝑠 fresh

(𝜈𝜄p𝑖)𝑖∈1..𝑛 (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ ⟨𝑎𝑖 , idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ (𝜆st𝑖 . 𝑀𝑖)]⟩𝑖∈1..𝑛)

𝜏−−→
(𝜈𝑠) (𝑝 ((p𝑖 ↦→ 𝜄′

p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ ⟨𝑎𝑖 , (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖], 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛)

For each actor composed in parallel we have:

Γ ⊢ 𝜆st𝑖 . 𝑀𝑖 : 𝐶𝑖

𝑆𝑖 ,end−−−−→
𝐶𝑖

𝐶𝑖 Γ;Δ𝑖3 | 𝐶𝑖 ⊢ 𝜌

Γ;𝐶𝑖 | Δ𝑖3 , 𝜄
+
𝑖 : 𝑆𝑖 ⊢ 𝜌𝑖 [𝜄p𝑖 ↦→ 𝜆st𝑖 . 𝑀𝑖]

Γ ⊢ 𝑈𝑖 : 𝐶𝑖

Γ; · | 𝐶𝑖 ⊢ idle(𝑈𝑖) Γ;Δ𝑖2 | 𝐶𝑖 ⊢ 𝜎𝑖
Γ;Δ𝑖2 ,Δ𝑖3 , 𝜄

+
𝑖 : 𝑆𝑖 , 𝑎𝑖 ⊢ ⟨𝑎𝑖 , idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ (𝜆st𝑖 . 𝑀𝑖)] ⟩

Let:

• Δtok+ = 𝜄+
1
: 𝑆1, . . . , 𝜄

+
𝑛 : 𝑆𝑛

• Δtok− = 𝜄−
1
: 𝑆1, . . . , 𝜄

−
𝑛 : 𝑆𝑛

• Δa = Δ12
,Δ13

, . . . ,Δ𝑛2
,Δ𝑛3

, 𝑎1, . . . , 𝑎𝑛
• Δb = Δa,Δtok+

Then by repeated use of TC-Parwe have that Γ;Δa,Δtok+ ⊢ (⟨𝑎, idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝜆st𝑖 . 𝑀𝑖]⟩)𝑖∈1..𝑛
Assumption (given some Δ):

𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖) ∈ Γ

{p𝑖 : 𝑆𝑖 } Δ,Δtok− ⊢ (p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛
comp((p𝑖 : 𝑆𝑖)𝑖∈1..𝑛)

Γ;Δ,Δtok− ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛) Γ;Δa,Δtok+ ⊢ (⟨𝑎, idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝜆st𝑖 . 𝑀𝑖] ⟩)𝑖∈1..𝑛
Γ;Δ,Δa,Δtok+,Δtok− ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′

p𝑖
∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ (⟨𝑎, idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝜆st𝑖 . 𝑀𝑖] ⟩)𝑖∈1..𝑛

Γ;Δ,Δa ⊢ (𝜈𝜄1) · · · (𝜈𝜄𝑛) (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖

∪ {𝜄p𝑖 })𝑖∈1..𝑛) ∥ (⟨𝑎, idle(𝑈𝑖), 𝜎𝑖 , 𝜌𝑖 [𝜄p𝑖 ↦→ 𝜆st𝑖 . 𝑀𝑖] ⟩)𝑖∈1..𝑛)

By Lemma B.1 we can show that for each callback function 𝜆st𝑖 . 𝑀𝑖 , it is the case that Γ | 𝐶𝑖 |
𝑆𝑖 ⊲ 𝑀𝑖 {𝑈𝑖/st𝑖 } :𝐶𝑖 ⊳ end.

40 Simon Fowler and Raymond Hu

Through the access point typing rules we can show that we can remove each 𝜄p𝑖 from the access

point: Γ;Δ ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛).

Similarly, for each actor composed in parallel we can construct:

Γ | 𝐶𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 {𝑈𝑖/st𝑖 } :𝐶𝑖 ⊳ end

Γ; 𝑠 [p𝑖] : 𝑆𝑖 | 𝐶𝑖 ⊢ (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖] Γ;Δ𝑖2 | 𝐶𝑖 ⊢ 𝜎𝑖 Γ;Δ𝑖3 | 𝐶𝑖 ⊢ 𝜌𝑖

Γ;Δ𝑖2 ,Δ𝑖3 , 𝑠 [p𝑖] : 𝑆𝑖 ⊢ ⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖], 𝜎𝑖 , 𝜌𝑖⟩
Let Δ𝑠 = 𝑠 [p1] : 𝑆1, . . . , 𝑠 [p𝑛] : 𝑆𝑛
Then by repeated use of TC-Par we have that Γ;Δ𝑎,Δs ⊢ ⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖], 𝜎𝑖 , 𝜌𝑖⟩𝑖∈1..𝑛 .
Recomposing:

comp(Δs)
Γ;Δ ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′

p𝑖
)𝑖∈1..𝑛)

Γ;𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 Γ;Δa,Δs ⊢ (⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛
Γ;Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛

Γ;Δ,Δa,Δs, 𝑠 : 𝜖 ⊢ 𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛

Γ;Δ,Δa ⊢ (𝜈𝑠) (𝑝 ((p𝑖 ↦→ 𝜄′
p𝑖
)𝑖∈1..𝑛) ∥ 𝑠 ⊲ 𝜖 ∥ (⟨𝑎, (𝑀𝑖 {𝑈𝑖/st𝑖 })𝑠 [p𝑖] , 𝜎𝑖 , 𝜌𝑖 ⟩)𝑖∈1..𝑛)

as required.

Case E-Lift.
Immediate by Lemma B.5.

Case E-Nu.

There are different subcases based onwhether 𝛼 is an access point name, initialisation token name,

actor name, or session name. All except session names follow from a straightforward application of

the induction hypothesis so we prove the case where 𝛼 = 𝑠 for some session name 𝑠 .

Assumption:

Δ𝑠 = {𝑠 [p𝑖] : 𝑆p𝑖 }𝑖∈1..𝑛, 𝑠 : 𝑄 comp(Δ𝑠) 𝑠 ∉ snames(Δ)
Γ;Δ,Δ𝑠 ⊢ C
Γ;Δ ⊢ (𝜈𝑠)C

with C −→ C′
.

Since comp(Δ𝑠) we have that safe(Δ𝑠) and df(Δ𝑠).
Since 𝑠 ∉ Δ and therefore snames(Δ) ∩ snames(Δ𝑠) = ∅, by Lemma B.9 we have that safe(Δ,Δ𝑠).
By the IH we have that there exists some Δ′

such that Δ,Δ𝑠 =⇒? Δ′
, where safe(Δ′) and

Γ;Δ′ ⊢ C′
.

By Lemma B.10, there are three subcases:

• Δ′ = Δ, which follows trivially.

• Δ′ = Δ′′,Δ𝑠 where Δ =⇒ Δ′′
with safe(Δ′′) and we can therefore show:

Δ𝑠 = {𝑠 [p𝑖] : 𝑆p𝑖 }𝑖∈1..𝑛, 𝑠 : 𝑄 comp(Δ𝑠) 𝑠 ∉ snames(Δ′′)
Γ;Δ′′,Δ𝑠 ⊢ C′

Γ;Δ′′ ⊢ (𝜈𝑠)C′

as required.

• Δ′ = Δ,Δ′
𝑠 where Δ𝑠 =⇒ Δ′

𝑠 and safe(Δ′
𝑠). It follows from the definition of progress that

df(Δ′
𝑠) and thus comp(Δ′

𝑠). We can therefore show:

Speak Now 41

Δ′
𝑠 = {𝑠 [p𝑖] : 𝑆 ′p𝑖 }𝑖∈1..𝑚, 𝑠 : 𝑄

′
comp(Δ′

𝑠) 𝑠 ∉ snames(Δ)
Γ;Δ,Δ′

𝑠 ⊢ C′

Γ;Δ ⊢ (𝜈𝑠)C′

as required.

Case E-Par.
Immediate by the IH and Lemma B.7.

Case E-Struct.
Immediate by the IH and Lemma B.11.

□

Theorem 4.2 (Preservation). Typability is preserved by structural congruence and reduction.
(≡) If Γ;Δ ⊢ C and C ≡ D then there exists some Δ′ ≡ Δ such that Γ;Δ′ ⊢ D.
(→) If Γ;Δ ⊢ C with safe(Δ) and C→D, then there exists some Δ′ such that Δ =⇒? Δ′ where safe(Δ′)

and Γ;Δ′ ⊢ D.

Proof. Immediate from Lemmas B.11 and B.12. □

42 Simon Fowler and Raymond Hu

B.3 Progress
Let Ψ be a type environment containing only references to access points:

Ψ ::= · | Ψ, 𝑝 : AP((p𝑖 : 𝑆𝑖)𝑖)
Functional reduction satisfies progress.

Lemma B.13 (Term Progress). If Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2 then either:
• 𝑀 = return 𝑉 for some value 𝑉 ; or
• there exists some 𝑁 such that𝑀 −→M 𝑁 ; or
• 𝑀 can be written E[𝑀 ′] where𝑀 ′ is a communication or concurrency construct, i.e.

– 𝑀 = spawn 𝑁 for some 𝑁 ; or
– 𝑀 = p ! ℓ (𝑉) for some role p and message ℓ (𝑉); or
– 𝑀 = suspend 𝑉 𝑊 or some 𝑉 ,𝑊 ; or
– 𝑀 = newAP[(p𝑖 : 𝑇𝑖)] for some collection of participants (p𝑖 : 𝑇𝑖)
– 𝑀 = register 𝑉 p𝑊 for some values 𝑉 ,𝑊 and role p

Proof. A standard induction on the derivation of Ψ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2; there are 𝛽-reduction rules

for all STLC terms, leaving only values and communication / concurrency terms. □

The key thread progress lemma shows that each actor is either idle, or can reduce; the proof is

by inspection of T , noting there are reduction rules for each construct; the runtime typing rules

ensure the presence of any necessary queues or access points.

Lemma B.14 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌⟩]. If ·;· ⊢ C then either T = idle(𝑉) for
some value𝑉 , or there exist G′,T ′, 𝜎 ′, 𝜌 ′,𝑉 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′⟩] is a thread reduction
for 𝑎.

Proof. If T = idle(𝑉) then the theorem is satisfied, so consider the cases where T = 𝑀 or

T = (𝑀)𝑠 [p] . By Lemma B.13, either𝑀 can reduce (and the configuration can reduce via E-Lift),

𝑀 is a value (and the thread can reduce by E-Reset), or𝑀 is a state, communication or concurrency

construct. Of these:

• get and set can reduce by E-Get and E-Set respectively

• spawn 𝑁 can reduce by E-Spawn

• suspend 𝑉 can reduce by E-Suspend

• newAP[(p𝑖 : 𝑆𝑖)𝑖] can reduce by E-NewAP

Next, consider register 𝑝 p 𝑀 . Since we begin with a closed environment, it must be the case that

𝑝 is 𝜈-bound so by T-APName and T-AP there must exist some subconfiguration 𝑝 (𝜒) of G; the
configuration can therefore reduce by E-Register.

Finally, consider𝑀 = q ! ℓ (𝑉). It cannot be the case that T = q ! ℓ (𝑉) since by T-Send the term

must have an output session type as a precondition, whereas TT-NoSess assigns a precondition

of end. Therefore, it must be the case that T = (q ! ℓ (𝑉))𝑠 [p] for some 𝑠, p. Again since the initial

runtime typing environment is empty, it must be the case that 𝑠 is 𝜈-bound and so by T-SessionName

and T-EmptyQueue/T-ConsQueue theremust be some session queue 𝑠⊲𝛿 . The threadmust therefore

be able to reduce by E-Send. □

Proposition B.15. If Γ;Δ ⊢ C then there exists a D ≡ C where D is in canonical form.

Theorem 4.5 (Progress). If ·;· ⊢ C, then either there exists some D such that C −→ D, or C is
structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑉𝑗), 𝜖, 𝜌 𝑗 ⟩𝑗∈1..𝑛)

Speak Now 43

Proof. By Proposition B.15 C can be written in canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)
By repeated applications of Lemma B.14, either the configuration can reduce or all threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle(𝑈𝑘), 𝜎𝑘 , 𝜌𝑘⟩𝑘∈1..𝑛)
By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must be contained in

precisely one actor. There are two ways an endpoint can be used: either by TT-Sess in order to run

a term in the context of a session, or by TH-Handler to record a receive session type as a handler.

Since all threads are idle, it must be the case the only applicable rule is TH-Handler and therefore

each role must have an associated stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

Since all session endpoints must have a receive session type, the only type reductions possible are

through Lbl-Sync-Recv. Since all threads are idle we can pick the top message from any session

queue and reduce the actor with the associated stored handler by E-React.

The only way we could not do such a reduction is if there were to be no sessions, leaving us with

a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑈 𝑗), 𝜎 𝑗 , 𝜌 𝑗 ⟩𝑗∈1..𝑛)
□

44 Simon Fowler and Raymond Hu

C SUPPLEMENT TO SECTION 5
This appendix details the full formal development and proofs for Maty (Section 5).

First, it is useful to show that safety is preserved even if several roles are cancelled; we use this

lemma implicitly throughout the preservation proof.

Let us write roles(Δ) = {p | 𝑠 [p] : 𝑆 ∈ Φ} to retrieve the roles from an environment. Let us

also define the operation zap(Φ, p̃) that cancels any role in the given set, i.e., zap(𝑠 [p1] : 𝑆1, 𝑠 [p2] :
𝑆2, 𝑎, {p1}) = 𝑠 [p1] : , 𝑠 [p2] : 𝑆2, 𝑎.

Lemma C.1. If safe(Φ) then safe(zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role does not affect safety; the only way to violate safety is by adding further

unsafe communication reductions. □

Theorem 5.1 (Preservation (−→, Maty)). If Γ;Φ ⊢ C with safe(Φ) and C −→ D, then there
exists some Φ′ such that Φ ⇛ Φ′ and safe(Φ′) and Γ;Φ′ ⊢ D.

Proof. Preservation of typability by structural congruence is straightforward, so we concentrate

on preservation of typability by reduction. We proceed by induction on the derivation of C −→ D,

concentrating on the new rules rather than the adapted rules (which are straightforward changes

to the existing proof).

Case E-Monitor.

⟨𝑎,M[monitor 𝑏 𝑉], 𝜎, 𝜌, 𝜔⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌, 𝜔 ∪ {(𝑏,𝑉)}⟩
We consider the case whereM = E[−] for some E; the case in the context of a session is similar.

Assumption:

Γ | 𝑆 | 𝐶 ⊲ E[monitor 𝑏 𝑉] :𝐶 ⊳ end

Γ; · | 𝐶 ⊢ E[monitor 𝑏 𝑉]
Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌

Γ;Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[monitor 𝑏 𝑉], 𝜎, 𝜌, 𝜔⟩

where ∀(𝑏,𝑊) ∈ 𝜔. Γ ⊢ 𝑏 : Pid ∧ Γ ⊢𝑊 : 𝐶
end,end−−−−−→

𝐶
𝐶 .

By Lemma B.2, we know:

Γ ⊢ 𝑏 : Pid Γ ⊢ 𝑉 : 𝐶
end,end−−−−−→

𝐶
𝐶

Γ | 𝐶 | 𝑆 ⊲ monitor 𝑏 𝑉 :Unit ⊳ 𝑆

By Lemma B.3 we know Γ | 𝐶 | 𝑆 ⊲ E[return ()] :𝐶 ⊳ end.

Recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ()] :𝐶 ⊳ end

Γ; · | 𝐶 ⊢ E[return ()]
Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌

Γ;Φ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[return ()], 𝜎, 𝜌, 𝜔 ∪ (𝑏,𝑉)⟩

noting that 𝜔 ∪ (𝑏,𝑉) is well-typed since Γ ⊢ 𝑏 : Pid and Γ ⊢ 𝑉 : 𝐶
end,end−−−−−→

𝐶
𝐶 , as required.

Case E-InvokeM.

⟨𝑎, idle(𝑈), 𝜎, 𝜌, 𝜔 ∪ {(𝑏,𝑉)}⟩ ∥ 𝑏 𝜏−−→ ⟨𝑎,𝑉 𝑈 , 𝜎, 𝜌, 𝜔⟩ ∥ 𝑏
Assumption:

Speak Now 45

Γ ⊢ 𝑈 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑈) Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌

Γ;Φ1,Φ2, 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑉) }⟩ Γ;𝑏 ⊢ 𝑏
Γ;Φ1,Φ2, 𝑎,𝑏 ⊢ ⟨𝑎, idle(𝑈), 𝜎, 𝜌,𝜔 ∪ { (𝑏,𝑉) }⟩ ∥ 𝑏

where ∀(𝑎′,𝑊) ∈ 𝜔 ∪ {(𝑏,𝑉)}. Γ ⊢ 𝑏 : Pid ∧ Γ ⊢𝑊 : 𝐶
end,end−−−−−→

𝐶
𝐶 .

Recomposing:

Γ ⊢ 𝑉 : 𝐶
end,end−−−−−→

𝐶
𝐶 Γ ⊢ 𝑈 : 𝐶

Γ | 𝐶 | end ⊲ 𝑉 𝑈 :𝐶 ⊳ end

Γ; · | 𝐶 ⊢ 𝑉 𝑈 Γ;Φ1 | 𝑈 ⊢ 𝜎 Γ;Φ2 | 𝑈 ⊢ 𝜌

Γ;Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑉 𝑈 , 𝜎, 𝜌, 𝜔⟩ Γ;𝑏 ⊢ 𝑏
Γ;Φ1,Φ2, 𝑎, 𝑏 ⊢ ⟨𝑎,𝑉 𝑈 , 𝜎, 𝜌, 𝜔⟩ ∥ 𝑏

as required.

Case E-Raise.
Similar to E-RaiseS.

Case E-RaiseS.

⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌, 𝜔⟩ 𝜏−−→ 𝑎 ∥ 𝑠 [p] ∥ 𝜎 ∥ 𝜌

Γ | 𝐶 | 𝑆 ⊲ E[raise] :Unit ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[raise])𝑠 [p] Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ;Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ⊢ ⟨𝑎, (E[raise])𝑠 [p], 𝜎, 𝜌, 𝜔⟩
Let us write Φ = {𝑠 [p] : | 𝑠 [p] : 𝑆 ∈ Φ}. It follows that for a given environment, Φ ∼∼∼▷∗ Φ.
The result follows by noting that due to TH-Handler and TI-Callback we have that fn(Φ1) =

fn(𝜎) and fn(Φ2) = fn(𝜌). Thus:
• Γ; Φ1 ⊢ 𝜎 ,
• Γ; Φ2 ⊢ 𝜌 ,
• Γ; Φ1, Φ2, 𝑠 [p] : , 𝑎 ⊢ 𝑎 ∥ 𝑠 [p] ∥ 𝜎 ∥ 𝜌

with the environment reduction:

Φ1,Φ2, 𝑠 [p] : 𝑆, 𝑎 ∼∼∼▷+ Φ1, Φ2, 𝑠 [p] : , 𝑎
as required.

Case E-CancelMsg.

𝑠 ⊲ (p, q, ℓ (𝑉)) · 𝛿 ∥ 𝑠 [q] 𝜏−−→ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q]
Assumption:

Γ ⊢ 𝑉 : 𝐴 Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ;𝑠 : (p, q, ℓ (𝐴)) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉)) · 𝛿 Γ;𝑠 [q] : ⊢ 𝑠 [q]
Γ;𝑠 [q] : , 𝑠 : (p, q, ℓ (𝑉)) ·𝑄 ⊢ 𝑠 ⊲ (p, q, ℓ (𝑉)) · 𝛿 ∥ 𝑠 [q]

46 Simon Fowler and Raymond Hu

Recomposing, we have:

Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ;𝑠 [q] : ⊢ 𝑠 [q]
Γ;𝑠 [q] : , 𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q]

with

𝑠 [q] : , 𝑠 : (p, q, ℓ (𝑉)) ·𝑄
𝑠 :p q::ℓ
−−−−−−→ 𝑠 [q] : , 𝑠 : 𝑄

as required.

Case E-CancelAP.

(𝜈𝜄) (𝑝 (𝜒 [p ↦→ 𝜄̃′ ∪ {𝜄}]) ∥ 𝜄) 𝜏−−→ 𝑝 (𝜒 [p ↦→ 𝜄̃′])
Assumption:

𝑝 : AP(p𝑖 : 𝑆𝑖)𝑖

{ (p𝑖 : 𝑆𝑖)𝑖 } Φ ⊢ 𝜒

{ (p𝑖 : 𝑆𝑖)𝑖 } Φ, �𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}]

Γ;Φ, �𝜄′− : 𝑆 𝑗 , 𝜄
−
: 𝑆 𝑗 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}]) Γ;𝜄+ : 𝑆 𝑗 ⊢ 𝜄

Γ;Φ, �𝜄′− : 𝑆 𝑗 , 𝜄
+
: 𝑆 𝑗 , 𝜄

−
: 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}]) ∥ 𝜄

Γ;Φ, �𝜄′− : 𝑆 𝑗 , 𝑝 ⊢ (𝜈𝜄) (𝑝 (𝜒 [p𝑗 ↦→ 𝜄′ ∪ {𝜄}]) ∥ 𝜄)

Recomposing:

𝑝 : AP(p𝑖 : 𝑆𝑖)𝑖

{(p𝑖 : 𝑆𝑖)𝑖 } Φ ⊢ 𝜒

{(p𝑖 : 𝑆𝑖)𝑖 } Φ, �𝜄 ′− : 𝑆 𝑗 ⊢ 𝜒 [p𝑗 ↦→ 𝜄̃′]

Γ;Φ, �𝜄 ′− : 𝑆 𝑗 , 𝑝 ⊢ 𝑝 (𝜒 [p𝑗 ↦→ 𝜄̃′])

as required.

Case E-CancelH.

⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑊), 𝜌, 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q] 𝜏−−→
⟨𝑎,𝑊 𝑈 , 𝜎, 𝜌, 𝜔⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [q] ∥ 𝑠 [p] if messages(q, p, 𝛿) = ∅

Let D be the following derivation:

Γ ⊢ 𝑈 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑈)

𝑇 = q&{ℓ𝑖 (𝑥𝑖) ↦→ 𝑆𝑖 }𝑖 Γ ⊢ 𝑉 : Handler(𝑇,)
Γ ⊢ 𝑊 : 𝐶

end,end−−−−−→
𝐶

𝐶 Γ;Φ1 | 𝐶 ⊢ 𝜎

Γ;Φ1, 𝑠 [p] : 𝑇 | 𝐶 ⊢ 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑊)] Γ;Φ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝑈 : 𝐶

Γ;Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑊)], 𝜌,𝜔 ⟩

Assumption:

D

Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿 Γ;𝑠 [p] : ⊢ 𝑠 [p]
Γ;𝑠 : 𝑄, 𝑠 [p] : ⊢ 𝑠 ⊲ 𝛿 ∥ 𝑠 [p]

Γ;Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] : , 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎 [𝑠 [p] ↦→ (𝑉 ,𝑊)], 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [p]

We can recompose as follows. Let D′
be the following derivation:

Speak Now 47

Γ ⊢𝑊 : 𝐶
end,end−−−−−→

𝐶
𝐶 Γ ⊢ 𝑈 : 𝐶

Γ | 𝐶 | end ⊲ 𝑊 𝑈 :𝐶 ⊳ end

Γ; · | 𝐶 ⊢𝑊 𝑈 Γ;Φ1 | 𝐶 ⊢ 𝜎 Γ;Φ2 | 𝐶 ⊢ 𝜌

Γ;Φ1,Φ2, 𝑎 ⊢ ⟨𝑎,𝑊 𝑈 , 𝜎, 𝜌, 𝜔⟩
Then we can construct the remaining derivation:

D′
Γ;𝑠 : 𝑄 ⊢ 𝑠 ⊲ 𝛿

Γ;𝑠 [p] : ⊢ 𝑠 [p] Γ;𝑠 [q] : ⊢ 𝑠 [q]
Γ;𝑠 [p] : , 𝑠 [q] : ⊢ 𝑠 [p] ∥ 𝑠 [q]

Γ;𝑠 : 𝑄, 𝑠 [p] : , 𝑠 [q] : ⊢ 𝑠 ⊲ 𝛿 ∥ 𝑠 [p] ∥ 𝑠 [q]
Γ;Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] : , 𝑠 [q] : , 𝑎 ⊢ ⟨𝑎,𝑊 𝑈 ,𝜎, 𝜌,𝜔 ⟩ ∥ 𝑠 ⊲ 𝛿 ∥ 𝑠 [p] ∥ 𝑠 [q]

Finally, we need to show environment reduction:

Φ1,Φ2, 𝑠 [p] : 𝑇, 𝑠 : 𝑄, 𝑠 [q] : , 𝑎
𝑠 :p q
−−−−→ Φ1,Φ2, 𝑠 : 𝑄, 𝑠 [p] : , 𝑠 [q] : , 𝑎

as required. □

C.1 Progress
Thread progress needs to change to take into account the possibility of an exception due to E-Raise

or E-RaiseExn:

Lemma C.2 (Thread Progress). Let C = G[⟨𝑎,T , 𝜎, 𝜌⟩]. If ·;· ⊢ C then either:
• T = idle(𝑉), or
• there exist G′,T ′, 𝜎 ′, 𝜌 ′ such that C −→ G′ [⟨𝑎,T ′, 𝜎 ′, 𝜌 ′⟩], or
• C −→ G′ [𝑎 ∥ 𝜎 ∥ 𝜌] if T = E[raise], or
• C −→ G′ [𝑎 ∥ 𝑠 [p] ∥ 𝜎 ∥ 𝜌] if T = (E[raise])𝑠 [p] .

Proof. As with Lemma B.14 but taking into account that:

• monitor 𝑏 𝑉 can always reduce by E-Monitor;

• raise can always reduce by either E-Raise or E-RaiseS.

□

As before, all well-typed configurations can be written in canonical form; as usual the proof

relies on the fact that structural congruence is type-preserving.

Lemma C.3. If Γ;Φ ⊢ C then there exists a D ≡ C where D is in canonical form.

It is also useful to see that the progress property on environments is preserved even if some

roles become cancelled.

Lemma C.4. If df (Φ) then df (zap(Φ, p̃)) for any p̃ ⊆ roles(Φ).

Proof. Zapping a role may prevent Lbl-Recv from firing, but in this case would enable either a

Lbl-ZapRecv or Lbl-ZapMsg reduction. □

Theorem 5.4 (Progress (Maty)). If ·;· ⊢ C, then either there exists some D such that C −→ D,
or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑈 𝑗), 𝜖, 𝜌 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ (𝑎 𝑗) 𝑗∈𝑛′ ..𝑛)

48 Simon Fowler and Raymond Hu

Proof. The reasoning is similar to that of Theorem 4.5. By Lemma C.3, C can be written in

canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 ,T𝑘 , 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥ ̃𝛼)

with (𝑎𝑘)𝑘∈𝑛′ ..𝑛 contained in ̃𝛼 .
By repeated applications of Lemma C.2, either the configuration can reduce or all threads are

idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle(𝑈𝑘), 𝜎𝑘 , 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥ ̃𝛼)
By the linearity of runtime type environments Δ, each role endpoint 𝑠 [p] must either be contained

in an actor, or exist as a zapper thread 𝑠 [p] ∈ ̃𝛼 . Let us first consider the case that the endpoint
is contained in an actor; we know by previous reasoning that each role must have an associated

stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.

There are two potential reductions: either Lbl-Sync-Recv in the case that the queue has a message,

or Lbl-ZapRecv if the sender is cancelled and the queue does not have a message. In the case

of Lbl-Sync-Recv, since all actors are idle we can reduce using E-React as usual. In the case of

Lbl-ZapRecv typing dictates that we have a zapper thread for the sender and so can reduce by

E-CancelH.

It now suffices to reason about the case where all endpoints are zapper threads (and thus by

linearity, where all handler environments are empty). In this case we can repeatedly reduce with

E-CancelMsg until all queues are cleared, at which point we have a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲𝜖) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle(𝑈𝑘), 𝜖, 𝜌𝑘 , 𝜔𝑘⟩𝑘∈1..𝑛′−1 ∥ ̃𝛼)
We must now account for the remaining zapper threads. If there exists a zapper thread 𝑎 where

𝑎 is contained within some monitoring environment 𝜔 then we can reduce with E-InvokeM. If 𝑎

does not occur free in any initialisation callback or monitoring callback then we can eliminate it

using the garbage collection congruence (𝜈𝑎) (𝑎) ∥ C ≡ C.
Next, we eliminate all zapper threads for initialisation tokens using E-CancelAP.

Finally, we can eliminate all failed sessions (𝜈𝑠) (𝑠 [p1] ∥ · · · ∥ 𝑠 [p𝑛] ∥ 𝑠 ⊲ 𝜖), and we are left

with a configuration of the form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑚) (𝜈𝑎 𝑗∈1..𝑛) (𝑝1 (𝜒1)𝑖∈1..𝑚 ∥ ⟨𝑎 𝑗 , idle(𝑈𝑘), 𝜖, 𝜌 𝑗 , 𝜔 𝑗 ⟩𝑗∈1..𝑛′−1 ∥ (𝑎 𝑗) 𝑗∈𝑛′ ..𝑛)
as required. □

C.1.1 Global Progress. A modified version of global progress holds: for every active session, in a

finite number of reductions, either the session can make a communication action, or all endpoints

become cancelled and can be garbage collected.

Theorem 5.5 (Global Progress (Maty)). If ·;· ⊢ C where C is thread-terminating, then for every
𝑠 ∈ activeSessions(C), then there exist D and D1 such that C ≡ (𝜈𝑠)D where D 𝜏−−→

∗
D1 and either

D1

𝑠−−→, or D1 ≡ D2 for some D2 where 𝑠 ∉ activeSessions(D2).

Proof. Follows the same structure as the proof of Corollary 4.13, the main difference being that

instead of E-React firing, it may be the case that E-CancelH fires to propagate a failure. In this

case, if all session endpoints for an active session 𝑠 are cancelled, then it would be possible to use

the garbage collection congruence to eliminate the failed session. □

Speak Now 49

Modified syntax
Session names s, t

Values 𝑉 ,𝑊 ::= · · · | (𝑉 ,𝑊)
Computations 𝑀,𝑁 ::= · · · | let (𝑥, 𝑦) = 𝑀 in 𝑁

| suspend
!
s 𝑉 𝑊 | suspend

?
𝑉 𝑊 | become s𝑉

Send-suspended sessions 𝐷 ::= (𝑠 [p],𝑉)
Handler state 𝜎 ::= 𝜖 | 𝜎, 𝑠 [p] ↦→ 𝑉 | 𝜎, s ↦→ −→

𝐷

Switch request queue 𝜃 ::= 𝜖 | 𝜃 · (s,𝑉)
Configurations C, D ::= · · · | ⟨𝑎, T, 𝜎, 𝜌,𝑉 ⟩𝜃

Modified typing rules Γ ⊢ 𝑉 : 𝐴 Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

Γ ⊢ 𝑉 : 𝐴 Γ ⊢ 𝑊 : 𝐵

Γ ⊢ (𝑉 ,𝑊) : (𝐴 × 𝐵)
Γ ⊢ 𝑉 : (𝐴1 × 𝐴2) Γ | 𝐶 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ | 𝐶 | 𝑆 ⊲ let (𝑥, 𝑦) = 𝑉 in 𝑀 :𝐵 ⊳ 𝑇

T-Suspend?

Γ ⊢ 𝑉 : Handler(𝑆?,𝐶) Γ ⊢ 𝑊 : 𝐶

Γ | 𝐶 | 𝑆? ⊲ suspend
?
𝑉 𝑊 :𝐴 ⊳ 𝑇

T-Suspend!

Σ(s) = (𝑆 !, 𝐴)

Γ ⊢ 𝑉 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

𝐶

Γ | 𝐶 | 𝑆 ! ⊲ suspend
!
s 𝑉 :𝐵 ⊳ 𝑇

T-Become

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝐶 | 𝑆 ⊲ become s𝑉 :Unit ⊳ 𝑆

Modified configuration typing rules Γ;Δ ⊢ C Γ;Δ | 𝐶 ⊢ 𝜎 Γ ⊢ 𝜃

T-Actor

Γ;Δ1 | 𝑈 ⊢ T Γ;Δ2 | 𝑈 ⊢ 𝜎
Γ;Δ3 | 𝑈 ⊢ 𝜌 Γ ⊢ 𝜃

Γ;Δ1,Δ2,Δ3, 𝑎 ⊢ ⟨𝑎, T, 𝜎, 𝜌, 𝜃 ⟩

TH-SendHandler

Γ;Δ | 𝐶 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

𝐶)𝑖

Γ;Δ, (𝑠𝑖 [p𝑖] : 𝑆 !)𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖],𝑉𝑖)𝑖

TR-Empty

Γ ⊢ 𝜖

TR-Reqest

Γ ⊢ 𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝜃 · (s,𝑉)

Modified reduction rules C −→ D

E-Suspend!-1 ⟨𝑎, (E[suspend
!
s 𝑉 𝑊])𝑠 [p] , 𝜎, 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle(𝑊), 𝜎 [s ↦→ (𝑠 [p],𝑉)], 𝜌, 𝜃 ⟩ (s ∉ dom(𝜎))

E-Suspend!-2 ⟨𝑎, (E[suspend
!
s 𝑉 𝑊])𝑠 [p] , 𝜎 [s ↦→ −→

𝐷], 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎, idle(𝑊), 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉)], 𝜌, 𝜃 ⟩

E-Become ⟨𝑎,M[become s𝑉], 𝜎, 𝜌, 𝜃 ⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌, 𝜃 · (s,𝑉) ⟩
E-Activate ⟨𝑎, idle(𝑈), 𝜎 [s ↦→ (𝑠 [p],𝑉) · −→𝐷], 𝜌, (s,𝑊) · 𝜃 ⟩ 𝜏−−→ ⟨𝑎, (𝑉 (𝑊,𝑈))𝑠 [p] , 𝜎 [s ↦→ −→

𝐷], 𝜌, 𝜃 ⟩

Fig. 17. Maty⇄: Modified syntax, typing, and reduction rules

D FORMAL MODEL OF SESSION SWITCHING EXTENSION
In Section 6 we described the implementation of Maty to support proactive switching between

sessions. In this appendix we introduce a formal model of a similar feature that switches between

sessions by queueing requests to invoke a send-suspended session, and activates send-suspended

sessions when the event loop reverts to being idle.

Suppose that we want to adapt our Shop example to maintain a long-running session with a

supplier and request a delivery whenever an item runs out of stock. The key difference to our

original example is that we need to switch to the Restock session as a consequence of receiving a
buy message in a customer session.

We can describe a Restock session with the following simple local types:

50 Simon Fowler and Raymond Hu

ShopRestock ≜
𝜇 loop.

Supplier ⊕ order(([ItemID] × Quantity)) .
Supplier& ordered(Quantity) . loop

SupplierRestock ≜
𝜇 loop.

Shop& order(([ItemID] × Quantity)) .
Shop ⊕ ordered(Quantity) . loop

Whereas before we only needed to suspend an actor in a receiving state, this workflow requires

us to also suspend an actor in a sending state, and switch into the session at a later stage. We call

this extension Maty⇄. Below, we can see the extension of the shop example with the ability to

switch into the restocking session; the new constructs are shaded.

ShopRestock ≜
𝜇 loop.

Supplier ⊕ order(([ItemID] ×Quantity)) .
Supplier& ordered(Quantity) . loop

custReqHandler ≜
handler Customer st {

getItemInfo(itemID) ↦→ [. . .]
checkout((itemIDs, details)) ↦→
let items = get in
if inStock(itemIDs, items) then [. . .]
else

Customer ! outOfStock();
become Restock itemIDs;
suspend

?
custReqHandler st

}

shop ≜ 𝜆(custAP, restockAP).
register custAP Shop

(𝜆st .shop (custAP, Shop) 𝜆st . suspend
?
itemReqHandler st);

register restockAP Shop (𝜆st . suspend
!
Restock restockHandler st);

initialStock

restockHandler ≜ 𝜆(itemIDs, st) .
Supplier ! order((itemIDs, 10));
suspend

?
(

handler Supplier st {
ordered(quantity) ↦→

increaseStock(itemIDs, quantity);
suspend

!
Restock restockHandler st})

The program is implicitly parameterised by a mapping from static names like Restock to pairs

of session types and payload types (in our scenario, Restock maps to (ShopRestock, [ItemID]) to
show that an actor can suspend when its session type is ShopRestock, and must provide a list of

ItemIDs when switching back into the session). We split the suspend construct into suspend
?
𝑉

(to suspend awaiting an incoming message, as previously), and suspend
!
s 𝑉 (to suspend session

with name s given a function 𝑉 , until switched into), and introduce the become s𝑉 construct to

switch into a suspended session. Specifically, become s𝑉 queues s to run when the actor is next

idle. We modify the shop definition to also register with the restockAP access point, suspending

the session (in a state that is ready to send) with the restockHandler. The restockHandler takes an

item ID, sends an order message to the supplier, and suspends again.

Speak Now 51

Metatheory. Maty⇄ satisfies preservation. Since (by design) become operations are dynamic

and not encoded in the protocol (for example, we might wish to queue two invocations of a

send-suspended session to be executed in turn), there is no type-level mechanism of guaranteeing

that a send-suspended session is invoked, soMaty⇄ instead enjoys progress up-to invocation of

send-suspended sessions (see Appendix C).

Our extension to allow session switching is shown in Figure 17.We introduce a set of distinguished

session identifiers s; each session identifier is associated with a local type and a payload in an

environment Σ, i.e., for each s we have Σ(s) = (𝑆 !, 𝐴) for some 𝑆 !, 𝐴. We then split the suspend
construct into two: suspend

?
𝑉 𝑊 (which, as before, installs a message handler 𝑉 and suspends

an actor with updated state𝑊) and suspend
!
s 𝑉 𝑊 , which suspends a session in a send state,

installing a function 𝑉 taking a payload of the given type. Finally we introduce a become s 𝑉

construct that queues a request for the event loop to invoke s next time the actor is idle and a

send-suspended session is available.

D.1 Metatheory
D.1.1 Preservation. As would be expected, Maty⇄ satisfies preservation.

Theorem D.1 (Preservation). Preservation (as defined in Theorem 4.2) continues to hold inMaty⇄.

Proof. Preservation of typing under structural congruence follows straightforwardly.

For preservation of typing under reduction, we proceed by induction on the derivation of

C −→ D.

Case E-Suspend!-1.
Similar to E-Suspend!-2.

Case E-Suspend!-2.

⟨𝑎, (E[suspend
!
s 𝑉 𝑊])𝑠 [p], 𝜎 [s ↦→ −→

𝐷], 𝜌, 𝜃⟩ 𝜏−−→ ⟨𝑎, idle(𝑊), 𝜎 [s ↦→ −→
𝐷 · (𝑠 [p],𝑉)], 𝜌, 𝜃⟩

Assumption:

Γ | 𝐶 | 𝑆 ⊲ E[suspend
!
s 𝑉 𝑊] :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 | 𝐶 ⊢ (E[suspend
!
s 𝑉 𝑊])𝑠 [p]

Γ;Δ1 | 𝐶 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴)

(Γ ⊢ 𝑊𝑖 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

Unit)𝑖

Γ;Δ1, (𝑠𝑖 [q𝑖] : 𝑆 !)𝑖 | 𝐶 ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖],𝑊𝑖)𝑖]
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃

Γ;Δ1,Δ2, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖] : 𝑆 !)𝑖 , 𝑎 ⊢ ⟨𝑎, E[suspend
!
s 𝑉 𝑊], 𝜎 [s ↦→ (𝑠𝑖 [q𝑖],𝑊𝑖)𝑖], 𝜌, 𝜃 ⟩

Consider the subderivation Γ | 𝑆 ⊲ E[suspend
!
s 𝑉 𝑊] :Unit ⊳ end. By Lemma B.2 there exists

a subderivation:

Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : (𝐴 ×𝐶) 𝑆 !,end−−−−→
𝐶

𝐶 Γ ⊢𝑊 : 𝐶

Γ | 𝑆 ! ⊲ suspend
!
s 𝑉 𝑊 :𝐵 ⊳ end

Therefore we have that 𝑆 = 𝑆 !.

Recomposing:

Γ ⊢ 𝑊 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑊)

Γ;Δ1 | 𝐶 ⊢ 𝜎 Σ(s) = (𝑆 !, 𝐴)

(Γ ⊢ 𝑊𝑖 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

𝐶)𝑖 Γ ⊢ 𝑉 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

𝐶

Γ;Δ1, (𝑠𝑖 [q𝑖] : 𝑆 !)𝑖 , 𝑠 [p] : 𝑆 ! | 𝐶 ⊢ 𝜎 [s ↦→ (𝑠𝑖 [q𝑖],𝑊𝑖)𝑖 · (𝑠 [p],𝑉)]
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃

Γ;Δ1,Δ2, 𝑠 [p] : 𝑆, (𝑠𝑖 [q𝑖] : 𝑆 !)𝑖 , 𝑎 ⊢ ⟨𝑎, idle(𝑊), 𝜎 [s ↦→ (𝑠𝑖 [q𝑖],𝑊𝑖)𝑖 · (𝑠 [p],𝑉)], 𝜌, 𝜃 ⟩

52 Simon Fowler and Raymond Hu

as required.

Case E-Become.

⟨𝑎,M[become s𝑉], 𝜎, 𝜌, 𝜃⟩ 𝜏−−→ ⟨𝑎,M[return ()], 𝜎, 𝜌, 𝜃 · (s,𝑉)⟩
Assumption (considering the case thatM = E[−] for some E; the case in the context of a session

is identical):

Γ | 𝑆 | 𝐶 ⊲ E[become s𝑉] :𝐶 ⊳ end

Γ; · | 𝐶 ⊢ E[become s𝑉]
Γ;Δ1 | 𝐶 ⊢ 𝜎
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃
Γ;Δ1,Δ2, 𝑎 ⊢ ⟨𝑎,T , 𝜎, 𝜌, 𝜃⟩

By Lemma B.2 we have:

Σ(s) = (𝑇,𝐴) Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 | 𝐶 ⊲ become s𝑉 :Unit ⊳ 𝑆

By Lemma B.3 we can show that Γ | 𝑆 | 𝐶 ⊲ E[return ()] :𝐶 ⊳ end.

Recomposing:

Γ | 𝐶 | 𝑆 ⊲ E[return ()] :Unit ⊳ end

Γ; · | 𝐶 ⊢ E[return ()] Γ;Δ1 | 𝐶 ⊢ 𝜎
Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝜃 · (s,𝑉)

Γ;Δ1,Δ2, 𝑎 ⊢ ⟨𝑎, E[return ()], 𝜎, 𝜌, 𝜃 · (s,𝑉) ⟩

as required.

Case E-Activate.

⟨𝑎, idle(𝑈), 𝜎 [s ↦→ (𝑠 [p],𝑉) · −→𝐷], 𝜌, (s,𝑊) · 𝜃⟩ 𝜏−−→ ⟨𝑎, (𝑉 (𝑊,𝑈))𝑠 [p], 𝜎 [s ↦→ −→
𝐷], 𝜌, 𝜃⟩

Let D be the subderivation:

Γ;Δ1 | 𝐶 ⊢ 𝜎
Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑉 : (𝐴 ×𝐶) 𝑆 !,end−−−−→

𝐶
𝐶 (Γ ⊢ 𝑉𝑖 : (𝐴 ×𝐶) 𝑆 !,end−−−−→

𝐶
𝐶)𝑖

Γ;Δ1, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖] : 𝑆 !)𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠 [p],𝑉) · (𝑠𝑖 [p𝑖],𝑉𝑖)𝑖
Assumption:

Γ ⊢ 𝑈 : 𝐶

Γ; · | 𝐶 ⊢ idle(𝑈) D Γ;Δ2 | 𝐶 ⊢ 𝜌

Γ ⊢ 𝜃 Σ(s) = (𝑆 !, 𝐴) Γ ⊢ 𝑊 : 𝐴

Γ ⊢ (s,𝑊) · 𝜃
Γ;Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖] : 𝑆 !)𝑖 , 𝑎 ⊢ ⟨𝑎, idle(𝑈), 𝜎 [s ↦→ (𝑠 [p],𝑉) · (𝑠𝑖 [p𝑖],𝑉𝑖)𝑖], 𝜌, (s,𝑊) · 𝜃 ⟩

Let D′
be the subderivation:

Γ ⊢ 𝑉 : 𝐴
𝑆 !,end−−−−−→
𝐶

𝐶

Γ ⊢𝑊 : 𝐴 Γ ⊢ 𝑈 : 𝐶

Γ ⊢ (𝑊,𝑈) : (𝐴 ×𝐶)

Γ | 𝐶 | 𝑆 ! ⊲ 𝑉 (𝑊,𝑈) :𝐶 ⊳ end

Γ; 𝑠 [p] : 𝑆 ! | 𝐶 ⊢ (𝑉 (𝑊,𝑈))𝑠 [p]

Recomposing:

Speak Now 53

D

Γ;Δ1 | 𝐶 ⊢ 𝜎

Σ(s) = (𝑆 !, 𝐴) (Γ ⊢ 𝑉𝑖 : (𝐴 × 𝐶) 𝑆 !,end−−−−→
𝐶

𝐶)𝑖

Γ;Δ1, (𝑠𝑖 [p𝑖] : 𝑆 !)𝑖 | 𝐶 ⊢ 𝜎, s ↦→ (𝑠𝑖 [p𝑖],𝑉𝑖)𝑖 Γ;Δ2 | 𝐶 ⊢ 𝜌 Γ ⊢ 𝜃
Γ;Δ1,Δ2, 𝑠 [p] : 𝑆 !, (𝑠𝑖 [p𝑖] : 𝑆 !)𝑖 , 𝑎 ⊢ ⟨𝑎, (𝑉 (𝑊,𝑈))𝑠 [p] , 𝜎 [s ↦→ (𝑠𝑖 [p𝑖],𝑉𝑖)𝑖], 𝜌, 𝜃 ⟩

as required. □

D.1.2 Progress. Since (by design) become operations are dynamic and not encoded in the protocol

(for example, we might wish to queue two invocations of a send-suspended session to be executed

in turn), there is no type-level mechanism of guaranteeing that a send-suspended session is ever

invoked. Although all threads can reduce as before, Maty⇄ satisfies a weaker version of progress

where non-reducing configurations can contain send-suspended sessions.

Theorem D.2 (Progress (Maty⇄)). If ·;· ⊢df C, then either there exists someD such that C −→ D,
or C is structurally congruent to the following canonical form:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle(𝑈𝑘), 𝜎𝑘 , 𝜌𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
where for each session 𝑠 𝑗 there exists some mapping 𝑠 𝑗 [p] ↦→ (s,𝑉) (for some role p, static session
name s, and callback 𝑉) contained in some 𝜎𝑘 where 𝜃𝑘 does not contain any requests for s.

Proof. The proof follows that of Theorem 4.5. Thread progress (Lemma B.14) holds as before,

since we can always evaluate become by E-Become, and we can always evaluate suspend
!
by

E-Suspend-!1 or E-Suspend-!2.

Following the same reasoning as Theorem 4.5 we can write C in canonical form, where all

threads are idle:

(𝜈𝜄) (𝜈𝑝𝑖∈1..𝑙) (𝜈𝑠 𝑗∈1..𝑚) (𝜈𝑎𝑘∈1..𝑛) (𝑝𝑖 (𝜒𝑖)𝑖∈1..𝑙 ∥ (𝑠 𝑗 ⊲ 𝛿 𝑗) 𝑗∈1..𝑚 ∥ ⟨𝑎𝑘 , idle(𝑉𝑘), 𝜎𝑘 , 𝜌𝑘 , 𝜃𝑘⟩𝑘∈1..𝑛)
However, there are now three places each role endpoint 𝑠 [p] can be used: either by TT-Sess to

run a term in the context of a session or by TH-Handler to record a receive-suspended session

type as before, but now also by TH-SendHandler to record a send-suspended session type. As

before, the former is impossible as all threads are idle, so now we must consider the cases for

TH-Handler.

Following the same reasoning as Theorem 4.5, we can reduce any handlers that have waiting

messages. Thus we are finally left with the scenario where the session type LTS can reduce, but

not the configuration: this can only happen when the sending reduction is send-suspended, as

required. □

	Abstract
	1 Introduction
	1.1 Actor Languages
	1.2 Channels vs. Actors
	1.3 Key Principles
	1.4 Contributions

	2 A Tour of Maty
	2.1 The Basics: ID Server
	2.2 A Larger Example: A Shop

	3 Maty: A Core Actor Language with Multiparty Session Types
	3.1 Syntax
	3.2 Typing Rules
	3.3 Operational semantics

	4 Metatheory
	4.1 Configuration typing
	4.2 Properties

	5 Failure Handling and Supervision
	5.1 Metatheory
	5.2 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References
	A Details of Case Study Protocols
	A.1 Robots
	A.2 Chat Server

	B Supplement to Section 4
	B.1 Omitted Definitions
	B.2 Preservation
	B.3 Progress

	C Supplement to Section 5
	C.1 Progress

	D Formal Model of Session Switching Extension
	D.1 Metatheory

