Speak Now
Safe Actor Programming with Multiparty Session Types

DRAFT: October 2025

SIMON FOWLER, University of Glasgow, United Kingdom
RAYMOND HU, Queen Mary University of London, UK, United Kingdom

Actor languages such as Erlang and Elixir are widely used for implementing scalable and reliable distributed
applications, but the informally-specified nature of actor communication patterns leaves systems vulnerable
to costly errors such as communication mismatches and deadlocks. Multiparty session types (MPSTs) rule out
communication errors early in the development process, but until now, the nature of actor communication
has made it difficult for actor languages to benefit from session types.

This paper introduces Maty, the first actor language design supporting both static multiparty session typing
and the full power of actors taking part in multiple sessions. Our main insight is to enforce session typing
through a flow-sensitive type-and-effect system, combined with an event-driven programming style and
first-class message handlers. Using MPSTs allows us to guarantee communication safety: a process will never
send or receive an unexpected message, nor will it ever get stuck waiting for a message that will never arrive.

We extend Maty to support Erlang-style supervision and cascading failure, and show that this preserves
Maty’s strong metatheory. We implement Maty in Scala using an API generation approach, and evaluate our
implementation on a series of microbenchmarks, a factory scenario, and a chat server.

1 INTRODUCTION

Modern infrastructure depends on distributed software. Unfortunately, writing distributed software
is difficult: developers must reason about a host of issues such as deadlocks, failures, and adherence
to complex communication protocols. Actor languages such as Erlang and Elixir, and frameworks
like Akka, are popular for writing scalable, resilient systems; Erlang in particular powers the servers
of WhatsApp, which has billions of users worldwide. Actor languages support lightweight processes
that communicate through asynchronous explicit message passing rather than shared memory,
and support robust failure recovery strategies like supervision hierarchies.

Nevertheless, actor languages are not a silver bullet: it is still possible—easy, even—to introduce
subtle bugs that can lead to errors that are difficult to detect, debug, and fix. Examples include
waiting for a message that will never arrive, sending a message that cannot be handled, or sending
an incorrect payload. Multiparty session types (MPSTs) [7, 30] are types for protocols and allow us
to reason about structured interactions between communicating participants. If each participant
typechecks against its session type, then the system is statically guaranteed to correctly implement
the associated protocol, in turn catching communication errors before a program is run.

MPSTs therefore offer a tantalising promise for actor languages: by combining the fault-tolerance
and ease-of-distribution of actor languages with the correctness guarantees given by MPSTs, users
can fearlessly write robust and scalable distributed code, confident in the absence of protocol errors.
Unfortunately, there is a spanner in the works: MPSTs have been primarily studied for channel-based
languages, which have a significantly different communication model, and current session-typing
approaches for actor languages are severely limited in expressiveness. Other behavioural type
systems for actors struggle to capture structured interactions and handle failure effectively.

In this paper we present Maty, the first actor language that supports statically-checked multiparty
session types and failure handling, combining the error prevention mechanism of session types and
the scalability and fault tolerance of actor languages. Our key insight is to adopt an event-driven
programming style and enforce session typing through a flow-sensitive effect system.

Authors’ addresses: Simon Fowler, University of Glasgow, United Kingdom; Raymond Hu, Queen Mary University of
London, UK, United Kingdom.

2 Simon Fowler and Raymond Hu

1.1 Actor Languages

Actor languages and frameworks are inspired by the actor model [2, 29], where an actor reacts to
incoming messages by spawning new actors, sending a finite number of messages to other actors,
and changing the way it reacts to future messages. Consider the following Akka implementation of
an ID server, which generates a fresh number for every client request:
def idServer(count: Int): Behavior[IDRequest] = {
Behaviors.receive { (context, message) =>

message.replyTo ! IDResponse(count)
idServer (count + 1)

}

The idserver function records the current request count as its state, and responds to an incoming
IDRequest by sending the current count before recursing with an incremented request counter.

It is straightforward to specify the client-server protocol for this example as a session type between
these two roles, but there are key problems implementing and verifying even this simple example
in standard MPST frameworks. First, actor programming is inherently reactive: computation is
driven by the reception of a new message, and actors must be able to respond to requests from
a statically-unknown number of clients. Second, each response depends on some common state.
Classical MPSTs are instead based on session 7-calculus, which is effectively a model of proactive
multithreading as opposed to reactive event handling. A standard MPST server process relies on
replication to spawn a separate (r-calculus) process to handle each client session concurrently. For
reference, common notations/patterns include:

Server = a(x).(Pthread (%) | Server) or Server =!a(x).Pthread(x)

def idServer(count: Int, locked: Boolean): This model has no direct support for COOI‘dil’latil’lg

Behavior[IDServerRequest] = { . .
Behaviors.receive { (context, message) => & dynamically variable number of such separate
message I'[')l;tch {t(IyTo) => client-handler processes/sessions, and—crucially—
case eques replylo = .
if (locked) { key safety properties of standard MPSTs such as
replyTo ! Unavailable() _
{Server (count . locked) deadlock-freedom only hold when each process
} else § ' : , engages in a single session and each session can
re To ! IDResponse(count .
idgeiver(count el " locked) be conducted fully independently from the oth-
) .) o i
case LockRequest (replyTo) => ers .(1.e., an embarrassingly parauel situation). Intro
if (locked) { ducing any method to synchronise shared state be-
replyTo ! Unavailable() . . .
idServer (count . locked) tween these processes, be it through an intricate web
> else { of additional internal sessions or some out-of-band
replyTo ! Locked(context.self) . .
idServer (count, true) (i.e., non-session-typed) method, means deadlock-
case Unlock() => freedom is no longer guaranteed.
) idserver (count, false) Besides safety concerns, the z-calculus based pro-
} gramming model makes it difficult to express im-
3 Fig. 1. ID server extended with locking portant patterns such as a single process waiting to

reactively receive from senders across multiple sessions, since inputs are normally modelled as
direct, blocking operations.

A locking ID server. Figure 1 shows a simple extension of our ID server, where a participant can
choose to lock the server to prevent it from generating fresh IDs until the lock is released.

In this example, replies depend on whether the ID server is locked. Upon receiving an 1prequest
message, if the server is locked, then it will respond with unavailable; otherwise, it will reply as
before. If an unlocked server receives a Lockrequest message, it responds with Locked and sets the
locked flag. A subsequent unlock message resets the locked flag.

Speak Now 3

2] A 2]
SR =)

X
» =4
= :
EI= (]
= =
(] (] \a /
=] = \ —
=4
=4
X
(a) Channels (b) Actors

Fig. 2. Channel- and actor-based languages [24]

This small extension to the example reveals some intricacies: once a client has received a lock, it
is in a different state of the protocol to the remaining clients. First, there is no straightforward way
of guaranteeing that the client ever sends an unlock message, nor that the unlock message was sent
by the same actor that acquired the lock. Second, the server must always be able to handle an unlock
message, even when it is already unlocked—permitting an invalid state. Both of these issues can be
straightforwardly solved using session types in Maty.

1.2 Channels vs. Actors

Session types were originally developed for channel-based languages like Go and Concurrent ML
(Figure 2a). Channel-based languages languages support anonymous processes that communicate
over channel endpoints, supporting either synchronous or asynchronous communication. In actor
languages (Figure 2b) such as Erlang or Elixir, named processes send messages directly to each
others’ mailboxes. The difference in communication models has significant consequences for
distribution and typing. We can easily give a channel endpoint precise types, e.g., Chan(Int) or
a session type such as !Int.!Int.?Bool.end to state that the channel should be used to send two
integers and receive a Boolean. However, efficiently implementing channels requires us to store
buffered data at the same location that it is processed, but difficulties arise when sending channel
endpoints as part of a message (known as distributed delegation). Furthermore, implementing even
basic channel idioms such as choosing between multiple channels requires complex distributed
algorithms [12]. In short, channel-based languages are easy to type but difficult to distribute.

In contrast, actor languages are much easier to distribute, since every message will always be
stored at the process that will handle it. But typing an actor is harder, requiring large variant types,
and behavioural typing is difficult since we can only send to process IDs and receive from mailboxes.
Thus, actors are easy to distribute but difficult to type.

1.3 Key Principles

For session types to be useful for real-world actor programs, we argue that a programming model
and session type discipline must satisfy the following key principles:

(KP1) Reactivity Following the actor model, frameworks like Akka, and Erlang behaviours like
gen_server, computation should be triggered by incoming messages.

(KP2) No Explicit Channels Channel-based languages impose a significantly different program-
ming style, so the programming model should not expose explicit channels to a developer.

(KP3) Multiple Sessions Actors must be able to simultaneously take part in an unbounded and
statically-unknown number of sessions, in order to support server applications. It must be
possible for different participants to be at different states of a protocol.

(KP4) Interaction Between Sessions Much like our ID server example, interactions in one ses-
sion should be able to affect the behaviour of an actor in other sessions.

(KP5) Failure Handling and Recovery The programming model and type discipline should
support failure recovery via supervision hierarchies.

4 Simon Fowler and Raymond Hu

No previous work that applies session types to actor languages satisfies the key principles above.
Mostrous and Vasconcelos [43] investigated session typing for Core Erlang by emulating session-
typed channels using unique references and selective receive. Their approach was unimplemented,
not reactive, exposed a channel-based discipline, and does not support failure, violating KP1, 2,
5. Francalanza and Tabone [25] implemented a binary session typing system for Elixir, but their
approach is limited to typing interactions between isolated pairs of processes and is therefore
severely limited in expressiveness, violating KP1, 3, 4, 5. Harvey et al. [28] used multiparty session
types in an actor language to support safe runtime adaptation, but each actor can only take part in
a single session at a time. It is therefore difficult to write server applications and so the language
does not support general-purpose actor programming, violating KP1, 3, 4.

Neykova and Yoshida [45] and Fowler [21] implement programming frameworks closer to
following our key principles: each actor is programmed in a reactive style and can be involved in
multiple sessions, but both works use dynamic verification of actors using session types as a notation
for generating runtime monitors. They do not consider any formalism, session type system, nor
metatheoretical guarantees, and so there is a significant gap between their conceptual framework
and a concrete static programming language design.

In contrast, Maty supports our key principles by reacting to incoming messages rather than
having an explicit receive operation (KP1); enforcing session typing through a flow-sensitive effect
system rather than explicit channel handles (KP2); using the reactive design to support interleaved
handling of messages from different sessions (KP3); supporting interaction between sessions using
state, self-messages, and an explicit session switching construct (KP4); and supporting graceful
session failure and failure recovery via supervision hierarchies (KP5).

1.4 Contributions
Concretely, we make three specific contributions:

(1) We introduce Maty, the first actor language design with full support for multiparty session
types (§3). We show that Maty enjoys a strong metatheory including type preservation,
progress, and global progress; in practice this means that Maty programs are free of com-
munication mismatches and deadlocks (§4).

(2) We show how to extend Maty with support for Erlang-style failure handling and process
supervision (§5), and prove that this maintains Maty’s strong metatheory.

(3) We detail our implementation of Maty using an API generation approach in Scala (§6), and
demonstrate our implementation on series of benchmarks, a real-world case study from the
factory domain, and a chat server application.

Section 7 discusses related work, and Section 8 concludes.

2 A TOUR OF MATY

In this section we introduce Maty by example, first by considering how to write our ID server, and
then by considering a larger online shop example.

2.1 The Basics: ID Server

Session types. Figure 3 shows the session types for the ID server example. The global type describes
the interactions between the ID server and a client. For simplicity, we assume a standard encoding
of mutually recursive types and use mutually recursive definitions in our examples. The client
starts by sending one of IDRequest, LockRequest, or Quit to the server. On receiving IDRequest,
the server replies with IDResponse if it is unlocked, or Unavailable if it is locked; in both cases,
the protocol then repeats. On receiving LockRequest, the server replies with Locked (if it locks

Speak Now 5

Global Type for ID Server Local Type for Server Role

IDServer = ServerTy =
Client — Server : { Client &{
IDRequest () . IDRequest () .

Server — Client : { Client ®{
IDResponse(Int) . IDServer, IDResponse(Int) . ServerTy,
Unavailable() . IDServer Unavailable() . ServerTy

}’ }’

LockRequest() . LockRequest() .
Server — Client : { Client &{
Locked() . AwaitUnlock, Locked() . ServerLockTy
Unavailable() . IDServer Unavailable() . ServerTy
|3 |3
Quit() .end Quit() .end
¥ }
AwaitUnlock = ServerLockTy =
Client — Server : Unlock() . IDServer Client & Unlock() . ServerTy

Fig. 3. Session types for the ID server example.

successfully), and the client must then send Unlock before repeating. If already locked, the server
responds with Unavailable. The protocol ends when the server receives a Quit message.

A global type can be projected to local types that describe the protocol from the perspective of
each participant. The local type on the right details the protocol from the server’s viewpoint: the &
operator denotes offering a choice, and the ® operator denotes making a selection. The (omitted)
ClientTy type is similar, but implements the dual actions: where the server offers a choice, the client
makes a selection, and vice-versa. We define a protocol P as a mapping from role names to local
session types. In our example we define IDServerProtocol 2 {Client : ClientTy, Server : ServerTy}.

Programming model. The Maty programming model is as follows:

e Maty is faithful to the actor model, which has a single thread of execution per actor. This
allows access to shared state without needing concurrency control mechanisms like mutexes.

e An actor registers with an access point to register to take part in a session.

e Once a session is established, the actor can send messages according to its session type. The
actor maintains some actor-level state and its active thread must either return an updated
state (if it has completed its part in the protocol), or suspend by installing a message handler
(if it is ready to receive a message). Suspension acts as a yield point to the event loop, and
occurs at precisely the same point as in mainstream actor languages.

e The event loop can then invoke other installed handlers for any messages in its mailbox—this
is the key mechanism that allows Maty to support multiple sessions.

Implementing the ID server. Figure 4 shows an implementation of the ID server in Maty; we allow
ourselves the use of mutually-recursive definitions, taking advantage of the usual encoding into
anonymous recursive functions. Although we use an effect system that annotates function arrows,
we omit effect annotations where they are not necessary.

The server maintains actor-level state of type (Int X Bool), containing the current ID and a flag
recording whether the server is locked. The idServer function takes an access point [26] and initial
state as an argument, and registers for the Server role. An access point can be thought of as a
“matchmaking service”: actors register to play a role in a session, and the access point establishes a
session once actors have registered for each role. The register construct takes three arguments: an
access point, a role, and a callback to be invoked when the session is established. Once the callback
is invoked, the actor can perform session communication actions for the given role: in this case, the

idServer : (AP(IDServerProtocol) X (Int X Bool))
— (Int X Bool)
idServer = A(ap, state). registerAgain ap; state

registerAgain : (AP (IDServerProtocol)) — Unit
registerAgain = Aap.
register ap Server
(Ast. registerAgain ap; suspend requestHandler st)

unlockHandler : Handler(ServerLockTy, (Int x Bool))
unlockHandler =
handler Client st {

Simon Fowler and Raymond Hu

requestHandler : Handler(ServerTy, (Int X Bool))
requestHandler =
handler Client st {
IDRequest() —
let (currentID, locked) = st in
if locked then
Client ! Unavailable();
suspend requestHandler st
else
Client ! IDResponse (currentID);
suspend requestHandler (currentID + 1, locked),

LockRequest() —
let (currentID, locked) = st in

Unlock() —
let (currentID, locked) = st in

suspend requestHandler (currentID, false) if locked then
} Client ! Unavailable();
. . suspend requestHandler st
main : Unit
else

main =
let idServerAP = newAP[IDServerProtocol] in
spawn (idServer (idServerAP, (0, false));
spawn (client idServerAP) }

Client ! Locked();
suspend unlockHandler (currentID, true),

Quit() > st
Fig. 4. Maty implementation of ID Server

actor can communicate according to the ServerTy type, namely receiving the initial item request
from a client. The callback first recursively registers to be involved in future sessions, and then
suspends awaiting a message from a client, by installing requestHandler.

A message handler (or simply handler) is a first-class construct that describes how an actor
handles an incoming message: each handler takes the role to receive from; a variable to which
to bind the current actor state; and a series of branches that detail how each message should be
handled. An actor installs a message handler for the current session by invoking the suspend
construct, which reverts the actor back to being idle with an updated state, and indicates that the
given handler should be invoked when a message is received from the Client.

Tying the example together. The requestHandler has type Handler(ServerTy, (Int X Bool)): han-
dlers are parameterised by an input session type and the type of the actor’s state. The handler has
three branches, one for each possible incoming message. Maty uses a flow-sensitive effect system [3,
20, 27] to enforce session typing using pre- and post-conditions on expressions. In the IDRequest
branch, the pre-condition Client @{IDResponse(Int) . ServerTy, Unavailable() . ServerTy} means
that the actor can only send IDResponse or Unavailable messages; all other communication actions
are rejected statically. After either message is sent, the session type advances to ServerTy, allowing
the handler to suspend recursively. The LockRequest branch works similarly; since suspend aborts
the current evaluation context, both branches can be given type (Int X Bool) with post-condition
end to match the Quit branch. The unlockHandler handles Unlock by updating the state, reinstalling
requestHandler, and suspending. Implementing a client is similar (details omitted). Finally, main
sets up the access point (associating Client with ClientTy and Server with ServerTy), then spawns
idServer with a pair of arguments idServerAP (to allow the server to register for sessions) and
(0, false), its initial state. The main function also spawns the client, passing the same access point.

2.2 A Larger Example: A Shop

Our ID server example demonstrated many of the important parts of Maty, but only considers
interactions between two roles. Let us now consider a larger example of an online shop, depicted

Speak Now

Scenario Description

| Requestitems() !

Items(ItemSummary)

|

|

| | |

|

loopJ | [l [l

I I I

[ee 0 I |

! GetltemInfo(ItemID) ! }

} Iteminfo(itemDetails) ! }
o ——

""""" AR e
| | |
| Checkout(ItemiDs, PaymentDetaijsh |

> 1

alt | | |
| | |
ProcessingPayment() |

} | Buy(PaymentDetails, C“i"

f

|

|

OK(DeliveryDate) |

Local Types for Shop role

ShopTy =
Customer & requestltems() .

Customer @ items([(ItemID X ItemName)]) .

ReceiveCommand

PaymentResponse =
PaymentProcessor &{

ok() .
Customer @ ok(DeliveryDate) .
ReceiveCommand,

paymentDeclined() .
Customer @ paymentDeclined() .
ReceiveCommand

A Shop can serve many Customers at once.

The Customer begins by requesting a list of items from
the Shop, which sends back a list of pairs of an item’s
identifier and name.

The Customer can then repeatedly either request full
details (including description and cost) of an item,
or proceed to checkout.

To check out, the Customer sends their payment details
and a list of item IDs to the Shop.

If any items are out of stock, then the Shop notifies the
customer who can then try again. Otherwise, the
Shop notifies the Customer that it is processing
the payment, and forwards the payment details and
total cost to the Payment Processor.

The Payment Processor responds to the Shop with
whether the payment was successful.

The Shop relays the result to the Customer, with a
delivery date if the purchase was successful.

ReceiveCommand =
Customer &{
getltemInfo(ltemID) .
Customer @ itemInfo(Description) .
ReceiveCommand,
checkout(([ItemID] x PaymentDetails)) .
Customer &{
paymentProcessing() .
PaymentProcessor &
buy ((PaymentDetails x Price)) .
PaymentResponse,
outOfStock() .
Customer @ outOfStock() .
ReceiveCommand

}

}
Fig. 5. Online Shop Scenario

in Figure 5, that we will use as a running example throughout the rest of the paper. In short, the
scenario involves multiple clients interacting with a single shop, and where the shop connects
with an external payment processor. Figure 5 also shows the local types for the Shop role; we omit
the ClientTy and PPTy types for the Client and PaymentProcessor respectively, but they follow a
similar pattern. The global type closely follows the sequence diagram.

Shop message handlers. Figure 6 shows the shop’s message handlers. After spawning, the shop
suspends with itemReqHandler, awaiting a requestltems message. On receipt, it retrieves the
current stock from its state, sends a summary to the customer, and installs custReqHandler.

The custReqHandler handles the getltemInfo and checkout messages. For getltemInfo, the shop
sends item details and suspends recursively. For checkout, it checks availability: if all items are in
stock, it notifies the customer, updates the stock, sends buy to the payment processor, and installs
paymentHandler; otherwise, it sends outOfStock and reinstalls custReqHandler.

8 Simon Fowler and Raymond Hu

itemReqHandler : Handler(ShopTy, [ltem])
itemReqHandler
handler Customer stock {
requestltems() —

custReqHandler : Handler (ReceiveCommand, [ltem])
custReqHandler =
handler Customer stock {
getltemlInfo(itemID) +—
Customer ! itemInfo (lookupltem (itemlID, stock));
suspend custReqHandler stock
checkout ((itemlDs, details))
if inStock (itemlIDs, stock) then
Customer ! paymentProcessing();
let total = cost(itemlIDs, stock) in
let newStock = decreaseStock (itemlIDs, stock) in
PaymentProcessor ! buy ((details, total));
suspend (paymentHandler itemIDs) newStock
else
Customer ! outOfStock();
suspend custReqHandler stock

Customer ! itemSummary (summary (stock));
suspend custReqHandler stock

}

paymentHandler : [ItemID] —
Handler(PaymentResponse, [Item])
paymentHandler = AitemIDs.
handler PaymentProcessor stock {
ok()
Customer ! ok(deliveryDate (itemIDs));
suspend custReqHandler stock
paymentDeclined() —
Customer ! paymentDeclined();
let newStock = increaseStock(itemIDs, stock) in
suspend custReqHandler newStock

Fig. 6. Implementation of Shop message handlers in Maty

The paymentHandler waits for the processor’s reply: if it receives ok, it sends the delivery
date; if it instead receives paymentDeclined, it restores the previous stock. Both branches reinstall
custReqHandler to handle future requests.

Tying the example together. Finally, we can show how to establish a session using the Shop actors.
Let CustomerProtocol = {Shop : ShopTy, Client : ClientTy, PaymentProcessor : PPTy}.

main £ shop = A(custAP, stock). registerAgain custAP; stock

let custAP = newAP[CustomerProtocol] in

spawn (shop (custAP, initialStock)); registerAgain = AcustAP.

spawn (paymentProcessor custAP); register custAP Shop

spawn (customer custAP) (Ast. registerAgain custAP; suspend itemReqHandler st)

The shop definition takes the access point and then proceeds to register to take part in a session
to interact with customers. After each session has been established, the session type for the shop
states that it needs to receive a message from a client, so the shop suspends with itemReqHandler.

3 MATY: A CORE ACTOR LANGUAGE WITH MULTIPARTY SESSION TYPES

In this section we introduce Maty, giving its syntax, typing rules, and semantics.

3.1 Syntax

Figure 8 shows the syntax of Maty. We let p, q range over roles, and x, y, z, f range over variables.
We stratify the calculus into values V, W and computations M, N in the style of fine-grain call-by-
value [39], with different typing judgements for each.

Session types. Although global types are convenient for describing protocols, we instead fol-
low Scalas and Yoshida [52] and base our formalism around local types (projection of global types
onto roles is standard [30, 50]; the local types resulting from projecting a global type satisfy the
properties that we will see in §4 [52]). Selection session types p ®{f;(A;) . S;}ies indicate that a
process can choose to send a message with label ¢; and payload type A; to role p, and continue as
session type S; (assuming j € I). Branching session types p &{¢;(A;) . S;}ier indicate that a process

Speak Now 9

Syntax of terms

Roles p.q

Variables X,y z f

Values VW = x| Ax.M | recf(x).M | ¢ | (V,W) | handler p st {ﬁ}
Handler clauses H == ft(x)»M

Computations M,N letx=MinN | returnV | VW

| if Vthen Melse N | let (x,y) =V inM
| spawnM | p!¢(V) | suspend VW
| newAP[P] | register Vp W

Syntax of types and type environments

Output session types Stou= p ®{ti(A;).Sitier
Input session types S§? u= p&{6i(Ai).Si}ier
Session types ST == S |8 | uXS| X | end
Protocols P == {pi:Sitier
S.T
Types AB,C == D | A?B | (AxB) | AP((p;:Si)ier) | Handler(S’,C)
Base types D == Unit | Bool | Int | ---
Type environments r == - |ILx:A

Fig. 7. Syntax of terms, types, and type environments

must receive a message. We let S' range over selection (or output) session types, and let S? range
over branching (or input) session types. Session type p X.S indicates a recursive session type that
binds variable X in S; we take an equi-recursive view of session types and identify each recursive
session type with its unfolding. Finally, end denotes a session type that has finished.

Protocols. A protocol P is a collection of roles and their associated session types. Protocols are
used when defining access points, and in Section 4 when describing behavioural properties.

Types. Base types D are standard. Since our type system enforces session typing by pre- and
ST .
post-conditions, a function type A - B states that the function takes an argument of type A

where the current session type is S, and produces a result of type B with resulting session type T,
to be run on an actor with state of type C. An access point has type AP((p; : Si)ie1..n), mapping
each role to a local type. Finally, a message handler has type Handler(S’, A) where S° is an input
session type and A is the type of the actor state.

3.2 Typing Rules

Values. Fig. 8 gives the typing rules for Maty. The value typing judgement T’ + V : A states
that value V has type A under environment I'. Unlike many session type systems, we do not need
linear types since session typing is enforced by effect typing (following Harvey et al. [28]). Typing
rules for variables and constants are standard (we assume constants include the unit value () of
type Unit), and typing rules for anonymous functions and anonymous recursive functions are
adapted to include pre- and postconditions. Message handlers specify how to handle incoming
messages: TV-HANDLER states that a message handler handler p st {£;(x;) — M;}; is typable with
type Handler(p &{¢;(A;) . Si}i, C) if each continuation M; is typable with session precondition S;
where the environment is extended with x; of type A; and st of type C, and all branches have the
postcondition end.

Computations. The computation typing judgement has the formI' | C | S » M:A < T, read
as “under type environment I' and evaluating in an actor with state of type C, given session
precondition S, term M has type A and postcondition T”. A let-binding let x = M in N evaluates M
and binds its result to x in N, with the session postcondition from typing M used as the precondition

10 Simon Fowler and Raymond Hu

Value typing

TV-Rec
TV-VAr TV-ConsT TV-Lam ST
x:Ael ¢ has base type D ILx:A|C|S» M:B<T F,x:A,f:A?B|C|S>M:B<T
Frx:A [kec:D FkAx.M:A%B Fl—recf(x),M:A%)B
TV-Par TV-HANDLER
T'rV:A I'r-W:B (F,xi:Ai,st:C|C|Si>Mi:C<end),~€1
't (V,W):(AxXB) T + handler p st {£;(x;) ¥ M;}ier : Handler(p &{¢i(A;).Si}ier, C)
Computation typing T|C|S» M:A<T
T-LET
T-Arp
T|C[S1»>M:A<S, T-RETURN ST
I,x:A|C|Sy» N:B < S THV:A TrV:A—>B TrWw:A
T|C|S;>letx=MinN:B<S;3 T'|C|S>returnV:A<«S T|C|Se>VW:B<«T
T-Ir
T-LETPAIR T'+ V:Bool
rl—V:(Aleg) r|C|51>MZA<ISg T-SPAWN
Ix:AL,y:A2|C|S1 > M:B<S, T|C|Si»N:A<«S, T'|A|lend > M:A < end

T|C|Si>let(x,y)=VinM:B<«S; T |C|S > ifVthenMelseN:A<S, T |C|S»spawnM :Unit « S

T-SEND T-SUSPEND
jeEl TrV:A; T+ V:Handler(S,C) TrWw:C
r|C| pe){[i(Ai).Si}igI > p!t’j(V):Unit < Sj r|C| RS suspend V W: A <« s’
T-REGISTER
T-NEwAP Tj.end

ComP((Pi:Ti)ieI))]GI Fl—V:AP((p,-:Ti)iE]) FI—WAT)A

T|C|S»> newAP[(p;: Ti)ier] :AP((pi : Ti)ier) < S I'|A|S > register Vp; W:Unit <« S

Fig. 8. Maty Static Semantics

when typing N (T-LET); note that this is the only evaluation context in the system. The return V
expression is a trivial computation returning value V and has type A if V also has type A (T-RETURN).
A function application V' W is typable by T-Aprp provided that the precondition in the function type
matches the current precondition, and advances the postcondition to that of the function type. Rule
T-LETPAIR types a pair deconstruction by binding both pair elements in the continuation M. Rule
T-IF types a conditional if its condition is of type Bool and both continuations have the same return
type and postcondition; this design is in keeping with analogous session type systems [25, 28], but
by treating suspend as a control operator (with an arbitrary return type and postcondition) we
can maintain expressiveness by allowing each branch to finish at a different session type.

The spawn M construct spawns a new actor that evaluates term M; rule T-SPAWN states that if
the spawned actor supports state type C, then M must also have type C to return the initial state.
It must also have pre- and postconditions end because the spawned computation is not yet in a
session and so cannot communicate. Rule T-SEND types a send computation p ! £(V) if £ is contained
within the selection session precondition, and if V has the corresponding type; the postcondition is
the session continuation for the specified branch. There is no receive construct, since receiving
messages is handled by the event loop. Instead, when an actor wishes to receive a message, it
must suspend itself with updated state W and install a message handler using suspend V W. The
T-SuspPEND rule states that suspend V' W is typable if the handler is compatible with the current

Speak Now 1

Runtime syntax

Configurations C,D == (va)C | C| D
Actor names a, b
Sessi | (aT,op) | p(x) | s>
ession names s
Message queues § == €| (pgt(V))- -6
AP names P
. Stored handlers o €| os[p]—V
Init. tokens 1 R
Runti B | | | Initialisation states p = €| pi—V
untune names a w=oalsipit Thread states T a= idle(V) | (M)SlPl | M
Values Uv,w == ---|p . -
Tvpe env I o= ... Access point states x == (pi— L)
yp ’ '| T AP((p; < Si)1) Evaluation contexts E = [] | letx=&EinM
Reduction labels [== s,Il) T PrE2 Thread contexts M == 8| (S)S[p]
- Top-level contexts Q == []1] ([Ds!

Structural congruence (configurations)

clo=oD|cC Clh@lIo)=(ClD)ID (var) (vap) € = (vaz) (ven) C (vs)(s>e)lC=C

a ¢ fn(C) P1# P2V a1 # Q2
Cll (va)D = (va)(C || D) sreo1-(p1,q1,01(V1)) - (p2,q2,£2(V2)) - 02 = s> 01 (p2,q2, &2(V2)) - (p1,q1,&1(V1)) - 02

Fig. 9. Operational semantics (1)

session type precondition and state type; since the computation does not return, it can be given an
arbitrary return type and postcondition.

Sessions are initiated using access points: we create an access point for a session with roles and
types (p; : Si); using newAP[(p; : S;);], which must be annotated with the set of roles and local
types to be involved in the session (T-NEwAP). The rule ensures that the protocol supported by
the access point is compliant; will describe this further in §4, but at a high level, if a protocol is
compliant then it is free of communication mismatches and deadlocks.

An actor can register to take part in a session as role p on access point V using register V p W;
function W is a callback to be invoked once the session is established. Rule T-REGISTER ensures
that the access point must contain a session type T associated with role p, and since the initiation
callback will be evaluated when the session is established, M must be typable under session type T.
Since neither newAP nor register perform any communication, the session types are unaltered.

3.3 Operational semantics

Figure 9 introduces runtime syntax (i.e., syntax that is introduced during reduction), along with
structural congruence.

Runtime syntax. To model the concurrent behaviour of Maty processes, we require additional
runtime syntax. Runtime names are identifiers for runtime entities: actor names a identify actors;
session names s identify established sessions; access points p identify access points; and initialisation
tokens 1 associate registration entries in an access point with registered initialisation continuations.

We model communication and concurrency through a language of configurations (reminiscent of
r-calculus processes). A name restriction (va)C binds runtime name « in configuration C, and the
right-associative parallel composition C || D denotes configurations C and D running in parallel.

An actor is represented as a 4-tuple {(a, 7, 0, p), where 7 is a thread that can either be idle with
state V (idle(V)); a term M that is not involved in a session; or (M)*[P! denoting that the actor is
evaluating term M playing role p in session s. An actor is active if its thread is M or (M)S[P] (for
some s, p, and M), and idle otherwise. A handler state o maps endpoints to handlers, which are
invoked when an incoming message is received and the actor is idle. The initialisation state p maps
initialisation tokens to callbacks to be invoked whenever a session is established. Our reduction rules

12 Simon Fowler and Raymond Hu

1
Configuration reduction CcC— 9D

E-REACT .
E-SEND (¢(x) — M) € B

(a (8[q e DPLop) [s»6 - (a,idle(W),o[s[p] — handler q st {H}1,p) || s> (q p,£(V))-8 =
(a, (&[return O1)*PL o, p) || s 8-(p.q, (V) (a, (M{V /x,W/[st})*IP) 5, p) || s> &

E-SusPEND E-SpawnN E-RESET

(a, (E[suspend V wstel, o,p) = (a, M[spawn M], o, p) = (a, Q[return V], o, p) =
(a,idle(W),o[s[p] — V], p) (vb)((a, M[return ()],0,p) || (b, M, €,€)) (a,idle(V), 0, p)

E-NwAP E-REGISTER
p fresh 1 fresh

(a, M[newAP[(p; : Si)ierl], 0, p) — (@, M[register p p V1,0,p) || p(x[p+ 1']) —
(vp) ({a, M[return p, . p) | p((pi = 0)icr)) (vi)({a M[return ()]0, p[1 = V1) || p(x[p = 7 U {1}]))

E-IN1T E-PAr i
s fresh c—C

(vtp it n(P((pi = 1, U {1, Dicrn) || (s, idle (W), o3, pilty, - Vil)icr.n) — clo-c o
(vs) (p((pi = 1)ictm) Il 5w € Il @i (Vi W) IPi) oy, pidictn)

E-LIFT E-Nu . E-StrUCT .
M—u N cC— D c=C’ ' — 9D D'=D

(a, M[M],0,p) - (a, M[N], 0, p) (va)C E% (va)D cLop

where | — a = rif] = , and [otherwise
Fig. 10. Operational semantics (2)

(Figure 10) make use of indexing notation as syntactic sugar for parallel composition: for example,
(ai, Ti, 01, piYier..n is syntactic sugar for the configuration {ay, 71, o1, p1) || - - - || {@ns Tns Ons Pr)-

An access point p(y) has name p and state y, where the state maps roles to sets of initialisation
tokens for actors that have registered to take part in the session. Finally, each session s is associated
with a queue s > §, where J is a list of entries (p, q, £(V)) denoting a message £(V) sent from p to q.

Initial configurations. A program M is run by placing it in an initial configuration (va)({a, M, €, €)).

Structural congruence and term reduction. Structural congruence is the smallest congruence
relation defined by the axioms in Figure 9. As with the 7-calculus, parallel composition is associative
and commutative, and we have the usual scope extrusion rule; we write fn(C) to refer to the set
of free names in a configuration C. We also include a structural congruence rule on queues that
allows us to reorder unrelated messages; notably this rule maintains message ordering between
pairs of participants. Consequently, the session-level queue representation is isomorphic to a set of
queues between each pair of roles. Term reduction M —p N is standard S-reduction (omitted).

Communication and concurrency. It is convenient for our metatheory to annotate each commu-
nication reduction with the name of the session in which the communication occurs, although
we sometimes omit the label where it is not relevant. Rule E-SEND describes an actor playing role
p in session s sending a message £(V) to role q: the message is appended to the session queue
and the operation reduces to return (). The E-REACT rule captures the event-driven nature of
the system: if an actor is idle with state V, and has a stored handler for s[p], and there exists a
matching message in the session queue, then the message is dequeued and the message handler is

Speak Now 13

evaluated with the message payload and state. If an actor is currently evaluating a computation
in the context of a session s[p], rule E-SUSPEND evaluates suspend V W by installing handler V'
for s[p] and returning the actor to the idle(W) state. Rule E-SPAWN spawns a fresh actor with
empty handler and initialisation state, and E-RESET returns an actor to the idle(V) state once it
has finished evaluating to an updated state V.

Session initialisation. Rule E-NEWAP creates an access point with a fresh name p and empty
mappings for each role. Rule E-REGISTER evaluates register p p V by creating an initialisation
token 1, storing a mapping from : to the callback V in the requesting actor’s initialisation state,
and appending ! to the participant set for p in p. Finally, E-INIT establishes a session when idle
participants are registered for all roles: the rule discards all initialisation tokens, creates a session
name restriction and empty session queue, and invokes all initialisation callbacks.

Example 3.1. Consider a simple Ping-Pong example. We can describe the protocol as:
PingPong = { Pinger : Ponger @ Ping(Unit) . Ponger & Pong(Unit) . end, }

Ponger : Pinger & Ping(Unit) . Pinger & Pong(Unit) . end
The main function and the initialisation functions for the Pinger and Ponger are described as:

main = let ap = newAP[PingPong] in spawn pinger ap; spawn ponger ap

ponger £ Aap . register ap Ponger pongerCallback pinger £ dap. r?gister ap Pinger pingerCallback
pongerCallback = A(). pingerCallback = A().
suspend (handler Pinger st {Ping — Pinger!Pong(())}) () Ponger! Ping(());

suspend (handler Ponger st {Pong — ()}) ()
With these defined, we place the main function in an initial configuration, which creates a new

access point p (E-NEwAP) and spawns the Pinger and Ponger actors (E-SPAWN):

(a,idle(()). €, €) || {ping, pinger. €, €) || (pong, ponger, €, €)
|| p(Pinger +— 0, Ponger — 0)

(va) ({a,main,e,€)) —* (vping)(vpong)(vp)(va) (
At this point, both of the actors can register with the access point (E-REGISTER). By registering,
the access points generate initialisation tokens 11, 15, which are stored both in the access point and
also as keys in the actors’ initialisation states. The actors then revert to being idle (E-RESET).
(a,idle(()), €, €))

—* (vtl)(wz)(vping)(vpong)(vp)(va)(|| {ping,idle(()), €, 1y = pingerCallback) || (pong,idle(()), €, 1, — pongerCallback)
|| p(Pinger — {11}, Ponger — {i15})

Since the access point now has idle registered actors for each role, it establishes a session and
removes the initialisation tokens (E-INTT). Both actors evaluate their initialisation callbacks in the
context of the newly-created session:

(a,idle(()), €, €))

—s* (vs) (vping) (vpong) (vp) (va) | || {ping, (pingerCallback ())sLP"gerl ¢, €) || (pong, (pongerCallback ())sIPoreer] ¢, e)
|| p(Pinger — 0, Ponger — 0) || s> €

Following the behaviour in the callbacks, the Ponger suspends awaiting a message (E-SUSPEND),
and the Pinger sends a message to the Ponger, which is stored in the session queue (E-SEND).
(a,idle(()), €, €) || {ping, (suspend (handler Ponger st {Pong — ()}) ())sLFineer] ¢)
—* (vs) (vping) (vpong) (vp)(va)| || {pong,idle(()),s[Ponger] — handler Pinger st {Ping — Pinger!Pong(())},€)
|| p(Pinger — 0, Ponger — 0) || s> (Pinger, Ponger, Ping(()))
The Pinger can now suspend, awaiting a message from the Ponger (E-SuspEND). Since there is a
queued message for the idle Ponger, we can re-activate the suspended handler (E-ReacT):
(a,idle(()),€,€)
" . ing, idl ,s[Pi handler P t {Pon s
— (VS)(Vng)(vpong)(vp)(va)(” g;’é ! (Pielf ég:!;in'gn(g:)r})g%;ﬂ]j er Ponger s {Pong = ()} €))
|| p(Pinger - 0, Ponger — 0) || s> €
Finally, the Ponger can send a Pong back to the Pinger, which activates the stored handler:

14 Simon Fowler and Raymond Hu

Runtime types, environments, and labels

Polarised initialisation tokens ¥ == 1t | |

Queue types Q == €] (pgt(A)-Q
Runtime type environments A = - | ANa |l Ap | AE:S | As[p]l:S | As:Q
Labels y == s:pTqgut | s:plqg:f | end(s,p)
Structural congruence (queue types) o=¢0

p1#p2VqL#qz
Q1 (p1,q1, 1 (A1) - (p2, 92, &2(A2)) - Q2 = Q1 - (P2, q2, £2(A2)) - (p1,q1, f1(A1)) - Q2

Runtime type environment reduction N> N

s:pTq:t; .

LBL-SEND As[pl: q@{6i(A).Sitiens: Q ——> As[pl:Sis: Q- (patj(A;) (fjel)
s:qlp:t; .

LBL-RECV A,S[p] :q&{{’i(Ai).Si}igj,S:(q,p,fj(Aj))-Q ———]—) A,S[p] ZSj,SZQ (IfJEI)

d(s,
LeL-END As[p]:end <GP
LeL-REC Aslplinxs L A GfAs[p]:S{px.s/xy DA

Fig. 11. Labelled transition system on runtime type environments

(a,idle(()), € €) || {ping, (()°I""&"), e, €) || (pong, (())*IF), ¢ €)

¥ .
—" (vs)(vping) (vpong) (vp) (va) || p(Pinger — 0, Ponger — 0) || s> €

Both actors have now finished the session and therefore revert to being idle (E-RESET).

4 METATHEORY

In order to prove metatheoretical properties about Maty, we define an extrinsic [49] type system
for Maty configurations. Note that our configuration type system is purely metatheoretical
and used only to establish inductive invariants required for our proofs; we do not need to
implement it in a typechecker and we do not require runtime type checking.

Following Scalas and Yoshida [52] we begin by showing a type semantics for sets of local types.
Using this semantics we can ensure that collections of local types are compliant, meaning that
communicated messages are always compatible and that communication is deadlock-free, and use
this to prove type preservation, progress, and global progress for Maty configurations.

Relations. We write R?, R*, and R* for the reflexive, transitive, and reflexive-transitive closures
of a relation R respectively. We write R; R, for the composition of relations R; and R,.

Runtime types and environments. Runtime environments are used to type configurations and to
define behavioural properties on sets of local types. Unlike type environments I', runtime type
environments A are linear to ensure safe use of session endpoints, and also to ensure that there
is precisely one instance of each actor and access point. Runtime type environments can contain
actor names g; access point names p; polarised initialisation tokens i* : S (since each initialisation
token is used twice: once in the access point and one inside an actor’s initialisation state); session
endpoints s[p] : S; and finally session queue types s : Q. Queue types mirror the structure of queue
entries and consist of a series of triples (p, g, £(A)). We include structural congruence on queue
types to match structural congruence on queues, and extend this to runtime environments.

Labelled transition system on environments. Figure 11 shows the LTS on runtime type environ-
ments. The LBL-SEND reduction gives the behaviour of an output session type interacting with
a queue: supposing we send a message with some label ¢; from p to q, we advance the session
type for p to the continuation S; and add the message to the end of the queue. The LBL-RECVY
rule handles receiving and works similarly, instead consuming the message from the queue. Rule

Speak Now 15

LBL-END allows us to discard a session endpoint from the environment if it does not support any
further communication, and LBL-REc allows reduction of recursive session types by considering

their unrolling. We write A = A’ if A ='= A’ for some synchronisation label y, and conversely
write A #= if there exists no A’ such that A = A’.

Protocol Properties. In order to prove type preservation and progress properties on Maty configu-
rations, we need to ensure each protocol in the system is compliant, meaning that it is safe and
deadlock-free. Safety is the minimum we can expect from a protocol in order for us to prove type
preservation: a safe runtime type environment ensures that communication does not introduce
type errors. Intuitively, safety ensures that a message received from a queue is of the expected type,
thereby ruling out communication mismatches; safety properties must also hold under unfoldings of
recursive session types and safety must be preserved by environment reduction. Deadlock-freedom
on runtime type environments requires that every message that is sent in a protocol can eventually
be received, and that a participant will never wait for a message that will never arrive.

Definition 4.1 (Compliance). A runtime environment A is compliant, written comp(A), if it is safe
and deadlock-free:

Safe An environment A is safe, written safe(A), if:

o A=AN,s[p]:q&{ti(Ai).Sitier, s : Q with Q = (q, p, ¢;(B;)) - Q" implies j € I and B; = Aj; and
o A=A, s[p]:puX.Simplies safe(A’,s[p] : S{u X.S/X}); and

e safe(A) and A = A’ implies safe(A’).

Deadlock-free An environment A is deadlock-free, written df(A), if A=" A’#= implies A’ = s : €.
A protocol {p; : Si}ie1.n is compliant if comp(s[p1] : S1,...,s[pn] : Sn) for an arbitrary s.

Checking compliance for an asynchronous protocol is undecidable in general [52], but various
sound and tractable mechanisms can ensure it in practice. For example, syntactic projections
from global types produce safe and deadlock-free sets of local types [52]. Furthermore, multiparty
compatibility [18] allows safety to be verified by bounded model checking; this is the core approach
implemented in Scribble [34], used by our implementation.

We have therefore designed our type system to be agnostic to any specific implementation method
for validating compliance, as common in recent MPST language design papers (e.g., [28, 38]).

4.1 Configuration typing

Figure 12 shows the typing rules for Maty configurations. The configuration typing judgement
[;A + C can be read, “under type environment I' and runtime type environment A, configuration
C is well typed”. We have three rules for name restrictions: read bottom-up, T"APNAME adds p to
both the type and runtime environments, and rule T-INITNAME adds tokens of both polarities to
the runtime type environment. Rule T-SEssitoNNAME is key to the generalised multiparty session
typing approach introduced by Scalas and Yoshida [52]: to type a name restriction (vs)C, the type
environment A’ consists of a set of session endpoints {s[p;]}; with session types S,,, along with
a session queue s : Q. Environment A’ must be compliant. The condition s ¢ snames(A) ensures
that no other endpoint or queue with session name s may be present in the initial environment.
Rule T-PAR types two parallel subconfigurations under disjoint runtime environments. Rule T-AP
types an access point: it requires that the access point reference is included in T’ and through the
auxiliary judgement {(p; : S;);} A y ensures that each initialisation token in the access point has
a compatible type. We also require that the protocol supported by the access point is compliant.
Rule T-AcToR types an actor {(a, 7, 0, p) using three auxiliary judgements. The thread state typing
judgement T'; A | C + 7 ensures that an active thread either performs all pending communication
actions, or it suspends. The handler typing judgement I'; A | C + o ensures that the stored

16 Simon Fowler and Raymond Hu

Configuration typing rules

T-SESSIONNAME
A = {s[pi] : Sp; }ier.n:s: Q

T-APNAME T-INITTNAME comp(A’) s ¢ snames(A) T-ACTORNAME
T,p: AP((pi: Si)ier);Ap+ C TAT:S,1":S+C AN+ C T;Abar C
AR (vp)C AR (m)C AR (vs)C LA F (va)C
T-AP T-AcToRr
T-PAR p:AP((pi:Si)ier) €T LA JART
AFC DA D {{pi : Sitier} A+ x comp({pi:Si}tier) Ay |Avro A3 |Arp
T:ALA-C || D LA pFp(x) A1, 02, A3,a ¢ (a, T, 0,p)
I'+V:A Iis:QFsro
T-EMPTYQUEUE ———— T-CONSQUEUE
Tis:erspe Tis: ((p,q,€(A)) - Q) Fse(p,q, (V) - o

Access point typing ((pi:SD)i) AF x Thread state typing LA|ART

TA-EmpTY ————— rrv:4
Y . TT-IDLE —————
{(pi : Si)ier.n} - F T;- | Aridle(V)
TA-EN}“RY i A TT-SESs TT-NoSEtss
J € {(pi:Si)ier} A+ x T|A|S> M:A<end T |A|end> M:A <end
{(pi = Si)ier} A :Sjk xlpj 1] T:s[p]:S|Ar (M)3IP] I |Ar M

Handler state typing LA |Arvo Initialisation state typing ;A|Arp

TH-HANDLER TI-CALLBACK

- 7 .end
TH-EMPTY 1\ v Handler(s’,4) T;A|Ar+o THEMPTY TrViAZS54 TiA|Abp
T;-|Are T;A,s[p]: ST | Ar o[s[p] = V] - [Are TAC:S[Arpliro V]
Meta-level definitions
snames(A) = {s|s:Q e AV 3p.(s[p] € dom(A))}

Fig. 12. Typing of Configurations

handlers match the types in the runtime environments, and the initialisation state typing judgement
I'; A | C + p ensures that all initialisation callbacks match the session type of the initialisation token.
Finally, T-EMPTYQUEUE and T-CoNSQUEUE ensure that queued messages match the queue type.

4.2 Properties
With configuration typing defined, we can begin to describe the properties enjoyed by Maty.

4.2.1 Preservation. Typing is preserved by reduction; consequently we know that communication
actions must match those specified by the session type. Full proofs can be found in Appendix B.

THEOREM 4.2 (PRESERVATION). Typability is preserved by structural congruence and reduction.

(=) IfT;A + C and C = D then there exists some A’ = A such that T;A" + D.
(=) IfT;A + C with safe(A) and C—D, then there exists some A’ such that A =" A’ where safe(A’)
andT;N v D.

Remark 4.3 (Session Fidelity). Traditionally, session fidelity is presented as a property that all
communication in a system conforms to its associated session type, i.e., that if a process performs
a communication action then there is a corresponding (meta-theoretical) type reduction [15, 30].

Speak Now 17

Fidelity is often an implicit corollary of type preservation in works on functional session types (e.g.,
[23, 26, 28, 41]). Alternatively, session fidelity in [52] (and derived works) refer to session fidelity
as the property that at least one typing context reduction can be reflected by a process. We follow
the former definition and account for preservation through our preservation theorem.

4.2.2 Progress. In general, just because two protocols are individually deadlock-free does not mean
that the system as a whole is deadlock-free, due to the possibility of inter-session deadlocks. For
example, consider the following two trivially deadlock-free protocols:

{p: q&{ti (Unit) .end}, q:p@{t (Unit).end}} {r:s&{t(Unit) .end}, s:r@{f(Unit).end}}
Even with an asynchronous semantics, a standard multiparty process calculus would admit the
following deadlocking process, since each send is blocked by a receive:

silpllq]&t(x) . s2[r][s] @ &(y) .0 || sz[s][r]&t(a) .si[ql[p] ® &1 (D) .0

There are various approaches to ruling out inter-session deadlocks: some approaches restrict
each subprocess to only play a single role in a single session (e.g., [52]); this would rule out the
above example but is too restrictive for our setting. Other approaches (e.g., [15]) overlay additional
interaction type systems to rule out inter-process deadlocks, again at the cost of expressiveness
and type system complexity. Finally, logically-inspired approaches to multiparty session typing
(e.g., [9]) treat sessions as monolithic processes (vs)(P; || - - || P,) that mean that such cycles
cannot arise. Programming with such processes requires “multi-fork” style session initiations that
combine channel- and process creation, and therefore are inapplicable to our programming model.

Maty does not suffer from inter-process deadlocks because of our event-driven programming
style where although an actor is involved in many sessions at a time, only one is active at once, and
code within handlers does not block. Since an actor yields and installs a handler whenever it needs
to receive a message, the actor can then schedule any handler that has a waiting message.

To show this intuition formally, we start by classifying a canonical form for configurations.

Definition 4.4 (Canonical form). A configuration C is in canonical form if it can be written:

(VZ)(VPiEl..l)(Vsjel..m)(vakel..n)(Pi()(i)iel..l Il (5j>5j)je1..m Il {ax, Tk, Ok PiVker..n)

Every well typed configuration can be written in canonical form; the result follows from the
structural congruence rules and Theorem 4.2.

Compliance requires the session types in every session to satisfy progress. Due to our event-
driven design, the property transfers to configurations: a non-reducing closed configuration cannot
be blocked on any session communication and so cannot contain any sessions.

Progress states that since (by compliance) all protocols are deadlock-free, a configuration can
either reduce, or it contains no sessions and no further sessions can be established.

THEOREM 4.5 (PROGRESS). If ;- + C, then either there exists some D such that C — D, or C is
structurally congruent to the following canonical form:

(VI)(Vpiel..m)(Vajel..n)(Pl (xietm |l (aj’ id’e(Vj), €, Pj>j€l..n)

4.2.3 Global Progress. Assuming that actors only run terminating threads—a common assumption
in event-driven systems—we actually obtain the stronger property of global progress, which ensures
that communication can eventually happen in every active session.

We begin by defining configuration contexts G == [] | (va)G | G || C | C || G that allow us
to focus on a subconfiguration. We say that (a, M, o, p) is an actor subconfiguration of a configuration
Cif C = G[(a M, o, p)] for some configuration context G.

18 Simon Fowler and Raymond Hu

Definition 4.6 (Active environment / session). We say that a runtime type environment A is active,
written active(A), if it contains at least one entry of the form s[p] : S where S # end.

Given a derivation T';A + C, let us write activeSessions(C) for the set of names of sessions in
C typable under active environments. We now classify thread-terminating actors: actors that will
eventually either suspend with a handler or fully evaluate to a value. A thread reduction for an
actor a is a configuration reduction that affects the active thread of a.

Definition 4.7 (Thread Reduction). A reduction C — D where C = G;[{a, M[M], o, p)] and
D = Gy[{a, M[N],0’, p’)] is a thread reduction for a if {(a, M[M], o, p) is a subconfiguration of
the fired redex of C, and (a, M[N], ¢/, p’) is a subconfiguration of its contractum.

A maximal thread reduction C —* D for a is a sequence of thread reductions for a where there
exist no further thread reductions for a from D.

Definition 4.8 (Thread-Terminating). An actor subconfiguration {(a, 7, o, p) of a configuration
C =Gl(a,T,o0,p)] is thread-terminating if either 7 = idle(V) for some V, or 7 = M[M] such

that there exists no infinite thread reduction for a from C.

We deliberately design our metatheory to be agnostic to the precise method used to ensure
termination. Concretely, to ensure that actors are always thread-terminating, we could for example
use straightforward type system restrictions like requiring all callbacks and handlers to be total or
use primitive recursion. We could also use effect-based analyses (e.g. those used for ensuring safe
database programming [40]). We conjecture we could also adapt type systems designed to enforce
fair termination [14, 48]; we discuss this further in Section 7. The additional power of exceptions
described in Section 5 would also allow the smooth integration of run-time termination analyses.
All of the example callbacks and handlers discussed in the paper would preserve thread-termination.

Next, we show that reduction in one actor will never inhibit reduction in another. The result
follows because all communication is asynchronous and (in part due to Theorem 4.5), given a well-
typed configuration, all constructs occurring in an active thread can always reduce immediately.

LEMMA 4.9 (INDEPENDENCE OF THREAD REDUCTIONS). If ;- + C where C = G1[{a, M[M], 0, p)]
and C — Gz[{a, M[N],d’, p’)] is a thread reduction for a, then for every D and Gs such that
C — D and D = Gs[(a, M[M], g, p)] it follows that D — Gs[{a, M[N], ", p’)] for some G;.

Definition 4.10 (Idle Configuration). An actor subconfiguration (a, 7, o, p) of a configuration C is
idle if 7~ = idle(V) for some V. Configuration C is idle if all of its actor subconfigurations are idle.

It follows by typing and from Lemma 4.9 that every thread-terminating actor subconfiguration
of a configuration C eventually evaluates to either return V or suspend V W and that (via
E-SuspPEND or E-RETURN) C further evaluates to an idle configuration.

CoROLLARY 4.11. If ;- + C and C is thread-terminating, then C —* D where D is idle.

Finally, due to session typing and compliance, every active session in a well-typed idle configu-
ration can reduce. The result follows as a special case of Theorem 4.5.

LEMMA 4.12. If-;-+ C where C is idle, then for every s € activeSessions(C), C = (vs)D and D =5,

Since (by Theorem 4.2) we can always use the structural congruence rules to hoist a session
name restriction to the topmost level, global progress follows as an immediate corollary.

COROLLARY 4.13 (GLOBAL PROGRESS). If ;- + C where C is thread-terminating, then for every

s € activeSessions(C), C = (vs)D for some D, and D —T>*L>.

Speak Now 19

Syntax
Types AB = - | Pid Monitored processes o == (aV)
Values VW == .- |a Configurations C.D = - | {aT,0,pw)
Computations M,N == --- | suspend UV W | s4a | 4slpl | 4
| monitor VW | raise
Modified typing rules for computations I|C|S»M:A<T
TS T-SusPEND
-OPAWN 2)) end,end
T|Alend > M:A < end T+ U : Handler(S*,C) r-v:cC I‘I—W.CTC
I C|S»> spawn M:Pid < S F|C|S?>suspendUVW:A<T
. end,end
I'+V:Pid r'rw:C—=C
T-MONITOR € T-Ra1se
I'|C|S > monitorVW:Unit < S T|C|S»>raise:A<T
Modified configuration reduction rules C N D
E-REACT (a,idle(W),o[s[p] — (handler q st {ﬁ},U)],p,a)) || s> (q,p,€(V))-S
=5 (a, (M{V/x, W/st})*P) o pw) || s 8 if (6(V) > M) € H
E-SPAWN (a, M[spawn M],0,p,0) — (vb)({a, M[return b], o, p,w) || (b, M, €, €, 0))
E-SuspPEND (a, (E[suspend U V wstel 6, p,) = (a,idle(V),o[s[p] — (U,W)], p,w)
E-MoNITOR (a, M[monitor b V], o, p,w) = (a, M[return ()],0,p, 0 U{(b,V)})
E-INVOKEM (aidle(W),0,p,0 U{(L,V)}) | 4b - (a,(VW),a,p,0) || 4b
E-RAISE (a, E[raise], o, p, w) = sall soll 4p
E-RAISES (a (&lraise])*P o, p,0) = fal 4slplll 4ol ¢p
E-CANCELMSG se(pq t(V)) -8 4slq] - s»d 4slql
E-CANCELAP () (pGxlp > 7 U 14— plxlp =7
E-CanceLtH (a,idle(W), o[s[p] — (handler q st {ﬁ},V)],p,w) [s=d8 | 4s[q]

— (@, (VW),a,p,0) [s>8 || 4s[al || ¢slp] if messages(q, p, &) = 0
where messages(p,q,8) = {¢(V) | (r,s,£(V)) e SAp=rAq=s}

Structural congruence Syntactic sugar

(vs)(4s[piliern I spe) | C=C bo gsilpil Il -+ Il 4snlpn] (where dom(o) = {s;[pil}ic1.n)
(va)(4a) | C=C ip sull -l fin (where dom(p) = {ti}ie1.n)

Fig. 13. Maty,: Modified syntax and reduction rules

1>l

5 FAILURE HANDLING AND SUPERVISION

A major factor in the success of actor languages is their support for the let-it-crash philosophy:
actors encountering errors should crash and be restarted by a supervisor actor. So far, we have not
accounted for failure. A crashed actor cannot send messages, so we need a mechanism to prevent
sessions from getting ‘stuck’. Our solution builds on affine sessions [23, 28, 38, 44]: the core idea
is that a role can be marked as cancelled, preventing further participation. Trying to receiving
from a cancelled participant when there are no pending messages in the queue raises an exception,
triggering a crash and propagating the failure.

Figure 13 shows the additional syntax, typing rules, and reduction rules needed for supervision
and cascading failure; we call this extension Maty,. We make actors addressable, so spawn returns
a process identifier (PID) of type Pid. The monitor V' W construct installs a callback function W
to be evaluated should the actor referred to by V crash. The raise construct signifies a user-level
error has occurred, for example if fileExists(path)) then processFile(path) else raise. Raising an
exception causes an actor to crash and cancels all the sessions in which it is involved. The raise
construct, like suspend, can be given an arbitrary return type and post-condition since it does not

20 Simon Fowler and Raymond Hu

return a value to a calling context. We also modify the suspend construct to take an additional
callback to be run if the sender fails and the message is never sent; a sensible piece of syntactic
sugar would be suspend V W = suspend V W (Ast. raise) to propagate the failure.
We can make our shop actor robust by using a shopSup actor that restarts it upon failure:
shopSup = AcustAP.monitor (spawn shop (custAP, initialStock)) (shopSup custAP)

The shopSup actor spawns a shop actor and monitors the resulting PID. Any failure of the shop
actor will be detected by the shopSup which will restart the actor and monitor it again. The restarted
shop actor will re-register with the access points and can then take part in subsequent sessions.

Configurations. To capture the additional runtime behaviour we need to extend the language of
configurations. The actor configuration becomes (a, 7, 0, p, w), where w pairs monitored PIDs with
callbacks to be evaluated should the actor crash. We also introduce three kinds of “zapper thread”,
4a, 5s[p], 41 to indicate the cancellation of an actor, role, or initialisation token respectively.

Reduction rules by example. Consider the supervised Shop example after the Customer has sent

a Checkout request and is awaiting a response. Instead of suspending to handle the request, the
Shop raises an exception. This scenario can be represented by the following configuration, where
shop, cust, and pp are actors playing the Shop, Customer, and PaymentProcessor in session s, and
sup is monitoring shop:

(shop, (raise)slShOP', €, €, €)

|| (cust,idle(()),s[Customer] + (checkoutHandler, raise), €, €)

(vsup) (vshop) (veust) (vpp) (vs)| || {pp,idle(()),s[PaymentProcessor] + (buyHandler, raise), €, €)

|| s> (Customer, Shop, checkout(([123],510)))
I (sup, idle((), e, €, (shop, shopSup cAP))

For brevity we shorten Shop, Customer, and PaymentProcessor to S, C, and PP respectively. We
let configuration context G = (vsup) (vshop) (veust) (vpp) (vs)([1 || (sup, idle(()), €, €, (shop, shopSup cAP))).
Since the shop actor is playing role s[S] and raising an exception, by E-RAISES the actor is

replaced with zapper threads 4 shop and 4 s[S].
¢ shop || ¢s[S]
|| {cust,idle(()),s[C] — (checkoutHandler, raise), €, €)

|| {pp,idle(()),s[PP] — (buyHandler, raise), €, €)
|| s> (C,S, checkout(([123],510)))

(shop, (raise)s!%) ¢ €, €)

|| {cust,idle(()),s[C] + (checkoutHandler, raise), €, €)
|| {pp,idle(()),s[PP] — (buyHandler, raise), €, €)

|| s> (C,S, checkout(([123],510)))

G — G

Next, since s[S] has been cancelled, the checkout message can never be received and so is
removed from the queue (E-CANCELMsG). Similarly since both C and PP are waiting for messages
from cancelled role S, they both evaluate their failure computations, raise (E-CANceLH). In turn this
results in the cancellation of the cust and pp actors, and the s[C] and s[PP] endpoints (E-RAISES).
g shop || ¢s[S]

I (cust,idle(()), (raise)SC] e, e)
| {pp.idle(()), (raise)*[""], ¢,)

Ils>e

—" g —* G [tshop |l ¢s[S] Il seust || 4s[CT Il 4pp |l 4s[PP] [l see |

At this point the session has failed and can be garbage collected, leaving the supervisor actor
and the zapper thread for shop. Since the supervisor was monitoring shop, which has crashed, the
monitor callback is invoked (E-INvokEM) which finally re-spawns and monitors the Shop actor.

4 shop (shop’, shop (cAP, initialStock), €, €, €)

- ("Shof’)(””ﬁ)(Il (sup, shopSup cAP (), &, €, €)) " (vshop') (vsup) |17 idle(()), 6, €, (shop', shopSup cAP))

5.1 Metatheory

All metatheoretical results continue to hold. Figure 14 shows the necessary modifications to the
configuration typing rules and type LTS. We extend runtime type environments to cancellation-
aware environments @ that include an additional entry of the form s[p] : 4, denoting that endpoint
s[p] has been cancelled. We also need to extend the type LTS to account for failure propagation;

Speak Now 7

Runtime syntax

Cancellation-aware runtime envs. @

clDp | ©F:S | @,s[p]:S | O,s[pl:s | D5:0

Labels y u= -+ | 4s[pl | s:psqut | s:piq
Modified typing rules for configurations ’ riorC H ;| oF ‘
T-AcTOoRNAME
.a:Pidd.ar C T-ZarAcTOR T-ZarRoOLE T-ZarToxk
;0 + (va)C Tiat ja Tis(pl: 4+ 4s[p] TS+ 41
T-AcTtor TH-HANDLER
;o |C+T ;o |Cro I;03|CFp FI—V:Handler(S?,C)
. end,end end,end
V(b,V)ew.Fkb:PudAFkV:C———c——>C FFW:C—C——>C ;®|Cro
I[;01,00,P3,a+ (a, T, 0,p,w) T;9,s[p] ;ST Cr ols[p] — (V,W)]
e Y s(p]
Additional LTS rules D> P
: o
LBL-ZAPMSG Os[q]: bos: (g, 0(A) -0 L g G[q]: 450
sipiq .
LBL-ZAPRECV @, s[p]:q &{ti(Ai).Si}ier, s[ql:4, 0 —— @,s[pl:4,s[ql:4,5:Q (if messages(q,p,Q) =0)
slp]
LBL-ZAP @,s[pl:S > @s[p]:4

Fig. 14. Maty,: Modified configuration typing rules and type LTS

we take a similar approach to Barwell et al. [6]. Rule LBL-ZAP accounts for the possibility that in
any given reduction step, a role may be cancelled (for example, as a result of E-RAISES), but it is a
separate relation since it is unnecessary for determining behavioural properties of types.

5.1.1 Preservation. We need a slightly modified preservation theorem in order to account for
cancelled roles; specifically we write = for the relation =>’~*. The safety property is unchanged
for cancellation-aware environments.

THEOREM 5.1 (PRESERVATION (—, MATY,)). IfT;® + C with safe(®) and C — D, then there
exists some @’ such that ® = @ and safe(®’) and T;®’ + D.

5.1.2 Progress. Maty, enjoys progress since E-CANCELMsG discards messages that cannot be
received, and E-CANCELMsG invokes the failure continuation whenever a message will never be
sent due to a failure. Monitoring is orthogonal. The one change is that zapper threads for actors
may remain if the actor name is free in an existing monitoring or initialisation callback. We require
a slightly-adjusted deadlock-freedom property and canonical form to account for session failure.

Definition 5.2 (Deadlock-freedom and compliance (Maty,)). A runtime environment & is deadlock-
free, written df; (®), if &= * @’ = implies that either &’ =s: € or & = (s[p;] : £)ier. s : €.

A runtime environment ® is compliant, written comp,, (®), if safe(®) and df; (®).

Definition 5.3. A Maty, configuration C is in canonical form if it can be written:

(vD) (vpier.1) (vsjet.m) (Vager) (pi (xidier.a | (575 87)jetm |l {ak Tes O, pios 0k ket -1 I G @)

with (4 ax)ken .n contained in [{dx.
THEOREM 5.4 (PROGRESS (MATY,)). If ;- + C, then either there exists some D such that C — D,
or C is structurally congruent to the following canonical form:
(VT)(Vpiel..m)(Vajel..n)(Pl(Xl)ieli.m Il <aj, id’e(Uj)s € Pjs wj>jeli.n/—1 Il (4 aj)jen'.in)

5.1.3 Global Progress. A modified version of global progress holds: in every active session, after a
number of reductions each session will either be cancelled or perform a communication action.

22 Simon Fowler and Raymond Hu

THEOREM 5.5 (GLOBAL PROGRESS (MATY,)). If ;- + C where C is thread-terminating, then for every

s € activeSessions(C), then there exist D and D such that C = (vs)D where D 0 D: and either
Ds i>, or D1 = D, for some D, where s ¢ activeSessions(D).

5.2 Discussion

The semantics of raise follows the Erlang “let it crash” methodology that favours crashing upon
errors over defensive programming. However, cancellation is flexible enough to support other
failure-handling strategies: we can for example implement a leave V construct, that allows an actor
to exit a session and update its state to V without terminating, using the following reduction rule:
(a, (E[leave V])*IP] &, p,w)y — (a,idle(V), 0, p,w) || 4s[p]
Maty’s combination of event-driven concurrency and cancellation also makes handling timeouts
straightforward. We could for example extend the suspend U V W construct to suspend U V t W,
where t is some deadline and invoke the failure-handling computation if the deadline is missed. The
failure-handling callback could then e.g. either retry or raise an exception. Indeed, Hou et al. [31]
show how session cancellation can be used to enable flexible timed session types and we expect
that their results could be incorporated into our design.

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation

Based on our formal design, we have implemented a toolchain for Maty-style event-driven actor
programming in Scala. It adopts the state machine based API generation approach of Scribble [33]:

(1) The user specifies global types in the Scribble protocol description language [56].

(2) Our toolchain internally uses Scribble to validate global types according to the MPST-based
safety conditions, project them to local types for each role, and construct a representation of
each local type based on communicating finite state machines (CFSM) [8].

(3) From each CFSM, the toolchain generates a typed, protocol-and-role-specific API for the user to
implement that role as an event-driven Maty actor in native Scala.

Typed APIs for Maty actor programming. Consider the Shop role in our running example (Fig. 5).
Fig. 15 shows the CFSM for Shop (with abbreviated message labels) and a summary of the main
generated types and operations (omitting the type annotations for the sid and pay parameters).
The toolchain generates Scala types for each CFSM state: non-blocking states (sends or suspends)
are coloured blue, whereas blocking states (inputs) are red.

Non-blocking state types provide methods for outputs and suspend actions, with types specific
to each state. The return type corresponds to the successor state type, enabling chaining of session
actions: e.g., state type S2 has method Customer_sendItems for the transition C!Is. The successor
state type S3Suspend includes a suspend method to install a handler for the input event of state 3,
and to yield control back to the event loop. The Done. type type ensures that each handler must
either complete the protocol or perform a suspend. Input state types are traits implemented by
case classes generated for each input message. The event loop calls the user-specified handler with
the corresponding case class upon each input event, with each case class carrying an instance of
the successor state type. For example, S3 (state 3) is implemented by case classes GetItemInfo and
Checkout for its input transitions, which respectively carry instances of successor states S4 and S5.

The API guides the user through the protocol to construct a Maty actor with compatible handlers
for every possible input event. For example, Fig. 16 handles state S1 and could be safely supplied to
the suspend method of S1Suspend immediately following a new session initiation. It further handles
S3 (so could also be supplied to S3Suspend), where the shop receives either GetItemInfo or Checkout.

Speak Now 23

State | State types | Methods (send, suspend) or Input cases (extends state type trait)
— = 1 S1Suspend suspend[D](d: D, f: (D, S1) => Done.type): Done.type
g') S1 case class RequestItems(sid, pay, succ: S2) extends S1
S2 Customer_sendItems(pay: ItemList): S3Suspend
3 S3Suspend suspend[D](d: D, f: (D, S3) => Done.type): Done.type
S S3 case class GetItemInfo(sid, pay, succ: S4) extends S3
S case class Checkout(sid, pay, succ: S5) extends S3
4 S4 Customer_sendItemInfo(pay): S3Suspend
5 S5 Customer_sendProcessingPayment(): S6
Customer_sendOutOfStock(): S3Suspend
S6 PaymentProcessor_sendBuy(pay): S7Suspend
7 S7Suspend suspend[D](d: D, f: (D, S7) => Done.type): Done.type
> S7 case class OK(sid, pay, succ: S8) extends S7
E 53 case class InsufficientFunds(sid, pay, succ: S9) extends S7
© o S8 Customer_sendOK(pay): S3Suspend
9 S9 Customer_sendInsufficientFunds(pay): S3Suspend

Fig. 15. (left) CFSM for the Shop role in the Customer-Shop-PaymentProcessor protocol, and (right) summary
of state types and methods in the toolchain-generated Scala API for this role.

// d can be used for internal, _session-specific_ actor data
def custRegHandler[T: SlorS3](d: DataS, s: T): Done.type = { // ...continuing on from the left column
s match { } else {
case c: S1 => c match { val sus = succ.Customer_sendOutOfStock()
// pay is message payload; succ is successor state // d.staff: LOption[R1] -- this is a..
case RequestItems(sid, pay, succ) => // .."frozen" instance of state type R1
succ.Customer_sendItems(d.summary()) d.staff match {
.suspend(d, custRegHandler[S31) } // R1 is the Restock protocol state type
case c: S3 => c match { case x: LSome[R1] =>
case GetItemInfo(sid, pay, succ) => ibecome(d, x, restockHndlr)
succ.Customer_sendItemInfo(d.lookupItem(pay)) case _: LNone =>
.suspend(d, custRegHandler[S3]) // Error handling
case Checkout(sid, pay, succ) => throw new RuntimeException
if (d.inStock(pay)) {
succ.Customer_sendProcessingPayment () sus.suspend(d, custRegHandler[S3])
.PaymentProcessor_sendBuy(d.total(pay))
.suspend(d, paymentResponseHandler) 13

Fig. 16. Example handler code from a Maty actor implemented in Scala using the toolchain-generated API

The runtime for our APIs executes sessions over TCP and uses the Java NIO library to run the
actor event loops. It supports fully distributed sessions between remote Maty actors.

Switching between sessions. As well as supporting the core features and failure handling capabili-
ties of Maty, our implementation also includes the ability to proactively switch between sessions.
Figure 16 shows how this functionality can be used to switch into a long-running restock session
when more stock is needed. For this purpose, the API allows the user to “freeze” unused state type
instances as a type LOption[S] and resume them later by an inline ibecome. It allows the callback
for a session switching behaviour to be performed inline with the currently active handler.

Discussion. Following our formal model, our generated APIs support a conventional style of
actor programming where non-blocking operations are programmed in direct-style, in contrast to
approaches that invert both input and output actions [54, 57] through the event loop.

Static Scala typing ensures that handlers safely handle all possible input events at every stage
(by exhaustive matching of case classes), and that state types offer only the permitted operations at
each state (by method typing). Our API design requires linear usage of state type objects (e.g., s and
succ) and frozen session instances. Following other works [11, 33, 47, 51, 55], we check linearity in
a hybrid fashion: the Done return types in Fig. 15 statically require suspend to be invoked at least

24 Simon Fowler and Raymond Hu

Table 1. Selected case studies, examples from Savina, and key features of their Maty programs.

MPST(s) Maty actor programs
®/& p C/P | mSA mRA PP dSp dTo mAP dAP be self
Shop (Fig. 6) v v v v v v
ShopRestock (Fig. 16) v v v v v v v
Robot [22] v v v v)
Chat [21] v v v v v v v v v v v
Ping-self [36] v v v v v v v v
Ping [36] v v
Fib [35] v v v v v v v v
Dining-self [36] v v v v v v v) v v v
Dining [36] v v v v v v) v
Sieve [36] v v v v v v v v v v
@®/& = Branch type(s) 4 = Recursive type(s) C/P = Concurrent/Parallel types mSA = Multiple sessions/actor
mRA = Multiple roles/actor PP = Parameterised number of actors dSp = Dynamic actor spawning
dTo = Dynamic topology =~ mAP = Multiple APs dAP = Dynamic AP creation be = ibecome self = Self communication

once, but our APIs rule out multiple uses dynamically. We exploit our formal support for failure
handling (Sec. 5) to treat dynamic linearity errors as failures and retain safety and progress.

In summary, our toolchain enables Scala programming of Maty actors that support concurrent
handling of multiple heterogeneously-typed sessions, and ensures their safe execution. A statically
well-typed actor will never select an unavailable branch or send/receive an incompatible payload
type, and an actor system will never become stuck due to mismatching I/O actions. As in the theory,
the system without ibecome will enjoy global progress provided every handler is terminating (e.g.,
by avoiding general recursion/infinite iteration). Although we make no formal claims about the
system with ibecome, we conjecture that it will also enjoy progress up-to re-invocation of frozen
sessions stored in the actor’s state.

6.2 Evaluation

Table 1 summarises selected examples from the Savina [36] benchmark suite (lower) and larger case
studies (upper); Appendix A contains sequence diagrams for the larger examples. Notably, key design
features of Maty, e.g. support for handling multiple sessions per actor (mSA) and implementing
multiple protocols/roles within actors (mRA), are crucial to expressing many concurrency patterns.
For example, the Shop actor in both Shop examples plays the distinct Shop roles in the main Shop
protocol and Shop-Staff protocol simultaneously, and handles these sessions concurrently.

The “-self” versions of Ping and Dining are versions faithful to the original Akka programs that
involve internal coordination using self ! msg operations, but our APIs can express equivalent
behaviour more simply without needing self-communication.

The (v') distinguishes simpler forms of dynamic topologies (dTo) due to a parameterised number
of clients dynamically connecting to a central server, from richer structures such as the parent-
children tree topology dynamically created in Fib and the user-driven dynamic connections between
clients and chat rooms in Chat; note both the latter involve dynamic access point creation (dAP).

Robot coordination. In this scenario, a real-world factory use case from Actyx AG [1] that was
originally described by Fowler et al. [22], multiple Robots access a Warehouse with a single door.
Only one Robot is allowed in the warehouse at a time. Concretely, each Robot actor establishes a
separate session with the Door and Warehouse actors. Maty’s event-driven model allows the Door
and Warehouse to each be implemented as a single actor that can safely handle the concurrent
interleavings of events across any number (PP, dSP) of separate Robot sessions (mSA).

Chat server. This use case [21] involves an arbitrary number of Clients (PP) using a Registry
to create new chat Rooms, and to dynamically join and leave any existing Room. We model each
Client, the Registry and each Room as separate actors. Rooms are created by spawning new Room
actors (dSp) with fresh access points (AP, mAP), and we allow any Client to establish sessions

Speak Now 25

with the Registry or any Room asynchronously (dTo). We decompose the Client-Registry and the
Client-Room interactions into separate protocols (C/P, mAP), and use ibecome (be) in the Room
actor to broadcast chat messages to all Clients currently in that Room.

7 RELATED WORK

Several works have investigated event-driven session typing. Zhou et al. [57] introduce a multiparty
session type discipline that supports statically-checked refinement types, implemented in Fx; to
avoid needing to reason about linearity, users implement callbacks for each send and receive action.
This approach is used by Miu et al. [42] for session-typed web applications, and by Thiemann [54]
in Agda [46]. In contrast, our approach only yields control to the event loop on actor receives, as in
idiomatic actor programming. Hu et al. [32] and Kouzapas et al. [37] introduced a binary session
n-calculus with primitives used to implement an event loop; our work instead encodes an event
loop directly in the semantics. Viering et al. [55] use event-driven programming in a framework for
fault-tolerant session-typed distributed programming. Their model involves inversion of control
on output as well as input events. They establish a version of global progress for a system of
subsessions spawned in a tree hierarchy. By contrast, we establish our global progress property for
every session in the system. These works all focus on process calculi rather than language design.

Ciccone et al. [14] developed fair termination for synchronous multiparty sessions, a strong
property that subsumes our global progress: it implies every role fairly terminates, whereas our
coarser-grained property is per session. Padovani and Zavattaro [48] developed fair termination for
asynchronous binary sessions and show that fair termination implies orphan message freedom [13].
Our system ensures orphan message freedom for terminated multiparty sessions (as in [17, 19]), but
we do not aim to restrict Maty to terminating sessions. We may be able to strengthen our formal
results by adapting the fairness conditions discussed in [14, 48] (developed for session 7z-calculi) to
our event-driven actor setting; however, features such as combining session creation and parallel
composition into one term (based on linear logic) are more restrictive than in our model.

Mostrous and Vasconcelos [43] were first to investigate session typing for actors, using Erlang’s
unique reference generation and selective receive to impose a channel-based communication model.
Their approach remains unimplemented and only supports binary session types. Francalanza and
Tabone [25] implement binary session typing in Elixir using pre- and post-conditions on module-
level functions, but their approach can only reason about interactions between pairs of participants.
Our approach is inspired by the model introduced by Neykova and Yoshida [45] (later implemented
in Erlang [21]), but our language design supports static checking and is formalised. EnsembleS [28]
enforces session typing using a flow-sensitive effect system, focusing on supporting safe adaptive
systems. However, each EnsembleS actor can only take part in a single session at a time.

Mailbox types [16, 22] capture the expected contents of a mailbox as a commutative regular ex-
pression, and ensure that processes do not receive unexpected messages. Mailbox and session types
both aim to ensure safe communication but address different problems: session types suit structured
interactions among known participants, whereas mailbox types are better when participants are
unknown and message ordering is unimportant. Mailbox types cannot yet handle failure.

Castellani et al. [10] developed internal delegation where channels can be migrated within a
multiparty session. Our actor model hides channels; however, internal delegation may provide
a way to formally relate our model to session 7-calculi via encodings (cf. [37]). Barbanera et al.
[4, 5] emphasize simplified, compositional models of multiparty sessions. It would be interesting
to formally compare their approach, based on parallel composition and forwarding, against our
model, where a single-threaded actor can embed handlers for any number of concurrent sessions.

Scalas et al. [53] introduce a behavioural type system with dependent function types, allowing
functions to be checked against interaction patterns written in a type-level DSL, enabling verification

26 Simon Fowler and Raymond Hu

of properties such as liveness and termination. Their behavioural type discipline is different to
session typing (e.g., supporting parameterised server interactions but not branching). Our session-
based approach is designed for structured interactions among known participants, and it is unclear
how their actor API would scale to processes handling multiple session-style interactions.

8 CONCLUSION AND FUTURE WORK

This paper introduces Maty, an actor language that rules out communication mismatches and
deadlocks using multiparty session types. Key to our approach is a novel combination of a flow-
sensitive effect system and first-class message handlers. We have extended Maty with the ability to
switch between sessions and recover from failures. In future it would be interesting to investigate
path-dependent types in our implementation.

Speak Now 27

DATA AVAILABILITY STATEMENT

We will submit our implementation and examples as an artifact, and will upload the extended
version of the paper with full proofs to arXiv upon acceptance.

REFERENCES

(1]
(2]
(3]
(4]

(5]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]
[20]

[21]
[22]

2023. Actyx AG. https://actyx.io

Gul A. Agha. 1990. ACTORS - a model of concurrent computation in distributed systems. MIT Press.

Robert Atkey. 2009. Parameterised notions of computation. . Funct. Program. 19, 3-4 (2009), 335-376.

Franco Barbanera, Viviana Bono, and Mariangiola Dezani-Ciancaglini. 2025. Open compliance in multiparty sessions
with partial typing. J. Log. Algebraic Methods Program. 144 (2025), 101046. https://doi.org/10.1016/].JLAMP.2025.101046
Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida. 2023. Multicompatibility for
Multiparty-Session Composition. In International Symposium on Principles and Practice of Declarative Programming,
PPDP 2023, Lisboa, Portugal, October 22-23, 2023, Santiago Escobar and Vasco T. Vasconcelos (Eds.). ACM, 2:1-2:15.
https://doi.org/10.1145/3610612.3610614

Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. 2022. Generalised Multiparty Session Types with
Crash-Stop Failures. In CONCUR (LIPIcs, Vol. 243). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 35:1-35:25.
Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti Venneri. 2008. Session and
Union Types for Object Oriented Programming. In Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday (Lecture Notes in Computer Science, Vol. 5065), Pierpaolo Degano, Rocco De Nicola,
and José Meseguer (Eds.). Springer, 659-680. https://doi.org/10.1007/978-3-540-68679-8_41

Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. 7. ACM 30, 2 (apr 1983), 323?342.
https://doi.org/10.1145/322374.322380

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schiirmann, and Philip Wadler. 2016. Coherence Generalises
Duality: A Logical Explanation of Multiparty Session Types. In CONCUR (LIPIcs, Vol. 59). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 33:1-33:15.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. 2020. Global types with internal
delegation. Theor. Comput. Sci. 807 (2020), 128-153. https://doi.org/10.1016/].TCS.2019.09.027

David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed
programming using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated
communication structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1-29:30. https://doi.org/10.1145/3290342
Avik Chaudhuri. 2009. A Concurrent ML Library in Concurrent Haskell. In ICFP. ACM.

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of
Subtyping in Session Types. Log. Methods Comput. Sci. 13, 2 (2017). https://doi.org/10.23638/LMCS-13(2:12)2017
Luca Ciccone, Francesco Dagnino, and Luca Padovani. 2024. Fair termination of multiparty sessions. }. Log. Algebraic
Methods Program. 139 (2024), 100964. https://doi.org/10.1016/J.JLAMP.2024.100964

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26, 2 (2016), 238-302.

Ugo de’Liguoro and Luca Padovani. 2018. Mailbox Types for Unordered Interactions. In ECOOP (LIPIcs, Vol. 109).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 15:1-15:28.

Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet Communicating Automata. In
Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 194-213. https://doi.org/10.
1007/978-3-642-28869-2_10

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characteri-
sation and Synthesis of Global Session Types. In ICALP (2) (Lecture Notes in Computer Science, Vol. 7966). Springer,
174-186.

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Char-
acterisation and Synthesis of Global Session Types. In Automata, Languages, and Programming - 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 7966), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg (Eds.). Springer, 174-186.
https://doi.org/10.1007/978-3-642-39212-2_18

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive Type Qualifiers. In PLDI. ACM, 1-12.

Simon Fowler. 2016. An Erlang Implementation of Multiparty Session Actors. In ICE (EPTCS, Vol. 223). 36-50.
Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder. 2023. Special Delivery:
Programming with Mailbox Types. Proc. ACM Program. Lang. 7, ICFP (2023), 78-107.

https://actyx.io
https://doi.org/10.1016/J.JLAMP.2025.101046
https://doi.org/10.1145/3610612.3610614
https://doi.org/10.1007/978-3-540-68679-8_41
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/J.TCS.2019.09.027
https://doi.org/10.1145/3290342
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/J.JLAMP.2024.100964
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18

28

[23]
[24]
[25]
[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]
[34]

[35
[36]

[

[37]

[38]

[39]

[40
[41

—

[42]
[43]
[44

[45]
[46

—

[47]

[48]

[49]

Simon Fowler and Raymond Hu

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sara Decova. 2019. Exceptional asynchronous session types: session
types without tiers. Proc. ACM Program. Lang. 3, POPL (2019), 28:1-28:29.

Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing Metaphors: Actors as Channels and Channels as Actors.
In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 11:1-11:28.

Adrian Francalanza and Gerard Tabone. 2023. ElixirST: A session-based type system for Elixir modules. ¥ Log.
Algebraic Methods Program. 135 (2023), 100891.

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types. J. Funct.
Program. 20, 1 (2010), 19-50.

Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic Effects. In ECOOP (LIPIcs, Vol. 74). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 13:1-13:31.

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021. Multiparty Session Types for Safe Runtime
Adaptation in an Actor Language. In ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
10:1-10:30.

Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Artificial
Intelligence. In I[JCAL William Kaufmann, 235-245.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. ACM,
273-284.

Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida. 2024. Fearless Asynchronous Communications with Timed
Multiparty Session Protocols. In ECOOP (LIPIcs, Vol. 313). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 19:1-
19:30.

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. 2010. Type-Safe Eventful
Sessions in Java. In ECOOP 2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June
21-25, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 329-353. https:
//doi.org/10.1007/978-3-642-14107-2_16

Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification Through Endpoint API Generation. In FASE
(Lecture Notes in Computer Science, Vol. 9633). Springer, 401-418.

Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In FASE (Lecture
Notes in Computer Science, Vol. 10202). Springer, 116-133.

Shams Imam. [n.d.]. Savina Actor Benchmark Suite. https://github.com/shamsimam/savina. Accessed: 2024-11-13.
Shams Mahmood Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation
of Actor Libraries. In AGERE!@SPLASH. ACM, 67-80.

Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. 2016. On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26, 2 (2016), 303-364.

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2022. Stay Safe Under Panic: Affine Rust Programming
with Multiparty Session Types. In ECOOP (LIPIcs, Vol. 222). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
4:1-4:29.

Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming
languages. Information and Computation 185, 2 (2003), 182-210.

Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In TLDI. ACM, 91-102.

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP (Lecture Notes in Computer
Science, Vol. 9032). Springer, 560-584.

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. 2021. Communication-safe web programming in
TypeScript with routed multiparty session types. In CC. ACM, 94-106.

Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2011. Session Typing for a Featherweight Erlang. In COORDI-
NATION (Lecture Notes in Computer Science, Vol. 6721). Springer, 95-109.

Dimitris Mostrous and Vasco T. Vasconcelos. 2018. Affine Sessions. Log. Methods Comput. Sci. 14, 4 (2018).
Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017).
Ulf Norell. 2008. Dependently Typed Programming in Agda. In Advanced Functional Programming (Lecture Notes in
Computer Science, Vol. 5832). Springer, 230-266.

Luca Padovani. 2017. A simple library implementation of binary sessions. J. Funct. Program. 27 (2017), e4. https:
//doi.org/10.1017/S0956796816000289

Luca Padovani and Gianluigi Zavattaro. 2025. Fair Termination of Asynchronous Binary Sessions. In 39th European
Conference on Object-Oriented Programming, ECOOP 2025, June 30 to July 2, 2025, Bergen, Norway (LIPIcs, Vol. 333),
Jonathan Aldrich and Alexandra Silva (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 24:1-24:29. https:
//doi.org/10.4230/LIPICS.ECOOP.2025.24

John C. Reynolds. 2000. The Meaning of Types—From Intrinsic to Extrinsic Semantics. Technical Report RS-00-32.
BRICS.

https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-642-14107-2_16
https://github.com/shamsimam/savina
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.4230/LIPICS.ECOOP.2025.24
https://doi.org/10.4230/LIPICS.ECOOP.2025.24

Speak Now 29

[50]

[51]

[52]
[53]
[54]
[55]
[56]

[57]

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty
Sessions for Safe Distributed Programming. In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 24:1-24:31.

Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and
Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 21:1-21:28. https://doi.org/10.4230/
LIPICS.ECOOP.2016.21

Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang.
3, POPL (2019), 30:1-30:29.

Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying message-passing programs with dependent
behavioural types. In PLDI. ACM, 502-516.

Peter Thiemann. 2023. Intrinsically Typed Sessions with Callbacks (Functional Pearl). Proc. ACM Program. Lang. 7,
ICFP (2023), 711-739.

Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. 2021. A multiparty session typing discipline for
fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-30.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The Scribble Protocol Language. In TGC
(Lecture Notes in Computer Science, Vol. 8358). Springer, 22-41.

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically verified
refinements for multiparty protocols. Proc. ACM Program. Lang. 4, OOPSLA (2020), 148:1-148:30.

https://doi.org/10.4230/LIPICS.ECOOP.2016.21
https://doi.org/10.4230/LIPICS.ECOOP.2016.21

30 Simon Fowler and Raymond Hu

Appendices

APPENDIX CONTENTS
A Details of Case Study Protocols 31
Al Robots 31
A2 Chat Server 32
B Supplement to Section 4 33
B.1 Omitted Definitions 33
B.2 Preservation 33
B.3 Progress 42
C Supplement to Section 5 44
Ci1 Progress 47
D Formal Model of Session Switching Extension 49

D.1 Metatheory 51

[B N T

Speak Now 31

A DETAILS OF CASE STUDY PROTOCOLS

In this section we detail the protocols and sequence diagrams for the two case studies.

A.1 Robots

The robots protocol can be found below, both as a Scribble global type and a sequence diagram.
Role r stands for Robot, b stands for Door, and w stands for Warehouse.

| Robot | Door | Warehouse

T T T
| |
| Want(PartNum) |

|
| |
| Busy()

L
alt [Door is already in l{se]

[
[Door is not in use]*
[
global protocol Robot(role R, role D, role W) { —
Want (PartNum) from R to D;
| Goln() |

choice at D { —
Busy () from D to R;

[
Cancel from D to W; |
0 ‘

\
}oor { S |
GoIn() from D to R; o Inside) !

\

\

\

Prepare (PartNum) from D to W;

Inside() from R to D; ‘ prepared()
Prepared() from W to D; ! Delver) !
Deliver () from D to W;

Delivered() from W to R; !

|
|
|
|
|
|
|
1
PartTaken() from R to W; 3 Delivered()

WantLeave () from R to D; — I
GoOut () from D to R; !
Qutside() from R to D; 1 PartTaken()
TableIdle() from W to D;

3 \ —-O N
| pen dool

} | ‘

GoOut() |
—
|

‘
|
|

I outside()
il

Close duor

|
|
|
| | Tableldle()
|
|
|

WantLeave() |

|
|
|
|
|
|
>
»
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Below is the straightforward user code for a Door actor to repeatedly register ‘for an unbo‘unded
number of Robot sessions. The Door actor will safely handle all Robot sessions concurrently,
coordinated by its encapsulated state (e.g., isBusy). The generated ActorDoor API provides a register
method for the formal register operation, and d1Suspend is a user-defined handler that registers
once more after every session initiation.

class Door(pid: Pid, port: Int, apHost: Host, apPort: Int) extends ActorDoor(pid) {
private var isBusy = false // Shared state -- n.b. every actor is a single-threaded event loop
def spawn(): Unit = { super.spawn(this.port); regForInit(new DataD(...)) }
def regForInit(d: DataD) = register(this.port, apHost, apPort, d, d1Suspend)
def d1Suspend(d: DataD, s: D1Suspend): Done.type = { regForInit(new DataD(...)); s.suspend(d, d1) }
// def d1(d: DataD, s: D1): Done.type ... etc.

32

A.2 Chat Server

global protocol ChatServer(role C,
choice at C {
LookupRoom (RoomName) from C to S;
choice at S {
RoomPort (RoomName ,
} oor {

RoomNotFound (RoomName) from S to C;

role S) {

Port) from S to C;

}
do ChatServer(C, S);
yor {
CreateRoom(RoomName) from C to S;
choice at S {
CreateRoomSuccess (RoomName) from S to C;
yoor {
RoomExists (RoomName) from S to C;
3
do ChatServer(C, S);
> or {
ListRooms () from C to S;
RoomList (StringlList) from S to C;
do ChatServer(C, S);
> oor {
Bye(String) from C to S;
3
}
global protocol ChatSessionCtoR(role C, role R)
choice at C {
OutgoingChatMessage(String) from C to R;
do ChatSessionCtoR(C, R);
} oor {
LeaveRoom() from C to R;
3
3

global protocol ChatSessionRtoC(role R, role
choice at R {
IncomingChatMessage(String) from R to C;
do ChatSessionRtoC(R, C);
> or {
Bye() from R to C;
¥
3

Of{

{

Simon Fowler and Raymond Hu

u
|
alt I
|
|
[

|
ListRooms() |
1
|

RoomList(StringList)

loop J: [until LeaveRoom message] :

alt) |

| |

OutgcingChatMessage(Strin@
.o AP

|

LeaveRoom() ‘:

»

T

|

|

|

R N O SR U

Speak Now 33

B SUPPLEMENT TO SECTION 4
B.1 Omitted Definitions
Term reduction M —y N is standard f-reduction:
Term reduction rules M—mu N

letx=returnVinM —y M{V/x}

Ax. M)V —m M{V/x}
(rec f(x). M)V —pm M{rec f(x).M/f,V/x}
if truethen MelseN —\y M

if false then Melse N —y N
E[M] —m E[N] (fM —pm N)

B.2 Preservation

We begin with some unsurprising auxiliary lemmas.

LemMma B.1 (SussTiTUTION). IfT,x : B| C | S» M:A <TandT + V : B, thenT | S |
Coe M{V/x}:A<T.

Proor. By induction on the derivation of T,x : A|C|S»> M:B « T. O

LEMMA B.2 (SUBTERM TYPABILITY). Suppose D is a derivation ofT | C | S > E[M]:A <« T. Then
there exists some subderivation D’ of D concludingT | C | S » M:B < S’ for some type B and session
type S’, where the position of D’ in D corresponds to that of the hole in &.

Proor. By induction on the structure of &. O

LEmMMA B.3 (REPLACEMENT). If:
(1) D is a derivation of T |C | S » E[M]:A<T
(2) D’ is a subderivation of D concludingT | C | S » M:B < T’ where the position of D’ in D
corresponds to that of the hole in &
3 T|C|S>N:BaT
thenT |C| S » E[N]:A «T.

Proor. By induction on the structure of &. O
Since type environments are unrestricted, we also obtain a weakening result.

LEMMA B.4 (WEAKENING). (1) IfT + V :Bandx ¢ dom(T), thenT,x : A+ V : B.
2) IfT|C|S> M:B <« T andx ¢ dom(T), thenT,x :A|C|S»> M:B «T.
(3) IfT;A | C o andx ¢ dom(T), thenT,x : A;A | CF o.
(4) IfT;A | C+ p andx ¢ dom(T), thenT,x : A;A | C+ p.
(5) IfT;A + C and x ¢ dom(T), thenT,x : A; A+ C.

Proor. By mutual induction on all premises. O

LEMMA B.5 (PRESERVATION (TERMS)). IfT | S| C> M:A < T and M —p N, thenT | S |
C»> N:A<T.

Proor. A standard induction on the derivation of M —p N, noting that functional reduction
does not modify the session type. O

Next, we introduce some MPST-related lemmas that are helpful for proving preservation of
configuration reduction. We often make use of these lemmas implicitly.

34 Simon Fowler and Raymond Hu

LemMa B.6. Ifsafe(A,A’), then safe(N).

Proor skeTCH. Splitting a context only removes potential reductions. Only by adding reductions
could we violate safety. O

LEmMA B.7. Ifsafe(Aq, Az) and Ay = A7, then safe(A7, Ay).

Proor. By induction on the derivation of A; == Al

It suffices to consider the cases where reduction could potentially make the combined environ-
ments unsafe.

In the case of LBL-SYNC-SEND, the resulting reduction adds a message (p, g, £;(A;)) to a queue Q.

The only way this could violate safety is if there were some entry s[q] : p &{¢(A;) . S;}ier, and
0= (p.q,65(A))) - Q' where j € I, but (Q- (p,q, £(Ax) = (p,q, f(A¢) - Q” with k & I. However,
this is impossible since it is not possible to permute this message ahead of the existing message
because of the side-conditions on queue equivalence.

A similar argument applies for LBL-SYNC-RECV. O

LEmMAa B.8. IfT5A,s : QF s>oandT + Vi A, thenT;A, s : (Q - (p, g, £(A))) F s> o - (p,q,£(V))
ProorF. A straightforward induction on the derivation of I;A,s : Q F s> 0. O

LEMMA B.9. Ifsafe(A1) and safe(A;) for environments Ay, Ay such that snames(A1)Nsnames(A;) =
0 and where A1, A, is defined, then safe(Aq, Az).

Proor. By inspection of the definition of safe(—) and the environment reduction rules, noting
that each are only defined on a single session. O

LEmMA B.10. Given environments Ay, A, such that safe(Aq, Ay) and snames(A1) Nsnames(Az) = 0
and Ay, Ay =" N’ such that safe(A"), either:
(1) N =A;or
(2) A = A%, Ay such that Ay = A and safe(A]); or
(3) A’ = Ay, A} such that Ay = A, and safe(A}).

Proor. By inspection of the reduction rules for =, noting that reduction only affects a single
session and that the session names in A;, A; are disjoint.]

LEmMMA B.11 (PRESERVATION (EQUIVALENCE)). IfT;A + C and C = D then there exists some ' = A
such thatT;A’ + D.

Proor. By induction on the derivation of C = D. The only case that causes the type environment
to change is queue message reordering, which can be made typable by mirroring the change in the
queue type. O

LEMMA B.12 (PRESERVATION (CONFIGURATION REDUCTION)). IfT;A + C with safe(A) and C —
D, then there exists some A’ such that A =" N such that safe(A") andT;A" + D.

Proor. By induction on the derivation of C — D. In each case where A = A’ for some A’,
by the definition of safety it follows that safe(A’).
Case E-Send.

(a, (Elq! e 0, p) Il s> 8 — (a (Elreturn O])*P 0, p) || s> 8- (p, g, £(V))

Speak Now 35

Assumption:
T|C|S»> &E[q!e(V)]:C <end
T;s[p] : S| Cr (E[qle(v)])ste] T;A; |[Cro Ti;A3|Crp
Tis[p] : S, Az, As,a + (a, (E[q! £(V)])°IP) 6, p) Tis:QFsed
Tislpl : S, Az, As,5: Q,a v (a,(E[q1e(V)])*IPLo p) || 556

By Lemma B.2 we have that T' | C | q®{#;(A;) : Ti}ier » q!¢;(V):Unit < T; and therefore that
§=q&{ti(A) : Ti}ier.

SinceT' | C | Tj » return ():Unit < T;, we can show by Lemma B.3 we have that T | C |
Tj » &[return ()] :C < end.

By Lemma B.8,I';s : Q- (p, q, £ (A;)) F s> 8- (p,q,£(V)).

Therefore, recomposing:

I'[C|Tj»> &E[return ()]:C < end

. T slpl F;Azlcl-o'
T;s[p]l:Tj | C+ (E[return ()]) LA | Crp
Tis[pl : Tj, Ao, A3, a + (a, (E[return ()])S[P],O',p> Tis:Q-(p,q,¢i(Aj)) Fsed-(p,qt;(V))

Tispl: T, Az As,s: Q- (p,q,£5(B))),a v (a (E[return O)*PL o, p) || s> 8- (p.q, (V)

Finally,

s[pl : q@®{i(A) : Ti}ier, Ao, As, s : Q,a = s[p] : Tj, Az, As,s : Q- (p, q,¢;(B;)), a by LBL-SEND
as required.
Case E-React.

£(x) > MeH

(a idle(U), o[s[p] > handler q st {H}], p) || s> (q p, £(V)) - § —> {a, (M{V/x,U/st})’'P) o, p) || s &

For simplicity (and equivalently) let us refer to ¢ as ¢;.
Let D be the following derivation:

(T,x; :Bj,st:C | C|S; > M;:C < end)jer
T+ handler q st {(£i(x;) = M;)ier} : Handler(S’, C) [;A; |Cro TrU:C

T; Az, s[p] . §7 | C+ o[s[p] — handler q st {ﬁ}] T;C|-+idle(U) ;A3 | Crp
T;A2, A3, s[p] : s'ar (a idle(U), o[s[p] — handler q st {ﬁ}],p)

Assumption:

rrv:A Iis:QFse»d
D Tislpl:8s: ((q.p6(A) - Q) Fse(q,p.6(V)) -6
T;A2, As, s[p] : S?,s 1 ((q,p, £j(A) - Q),a + (a,idle(U), o[s[p] — handler q st {ﬁ}],p) II's>(q,p,£(V)) -6

where S7 = p &{€;(B;).S;}icr.

Since safe(Az, As,s[p] : S5 : ((q, p. £(A)) - Q)), a we have that j € and A = B;.
Similarly since ¢;(x;) — M Eﬁ we have that I',x; : Bj,st: C|C|S; » M:C < end.
By LemmaB.1,T | C | S; » M{V/x;,U/st}:C < end.

Let D’ be the following derivation:

36 Simon Fowler and Raymond Hu

I'|iS;|Cv» M{V/x;U/st}:C < end
T;s[p] : S; | C+ (M{V/x;,U/st})*IP) ;A |[Cro T;As|Crp
T30, As,s[p] : Sjpa+ (a, (M{V/x;,U/st})*IP, o, p)

Recomposing;:
D’ Iis:QFsed
T30, As,s[p] : Sjos: Q,ar (a, (M{V/x;,U/st})*!P) o, p) || s> 8

Finally, we note that Az, As,s[p] : S%,s : ((q,p,j(A)) - Q),a => Ay, As,s[p] : Sjs = Q,aby
LBL-RECV as required.
Case E-Suspend.

(a, (E[suspend V W])*IP] &, p) — (a,idle(W), a[s[p] — V], p)

Assumption:

IF'|C|S»> E[suspend V W]:C <« end
T;s[p]: S| Cr (E[suspend V W])*lPl
T;s[p] : S, Az, As,a v {a, (E[suspend V w1)slel g, D)

F;A2|Ckcr F;A3|C|—p

By Lemma B.2 we have that:

T + V : Handler(S%,C) TFwW:C
ric|s’» suspend V W:A <« T

for any arbitrary A, T, and showing that S = S°.
Recomposing;:

TFW:C T+ V:Handler(S’,C) T;A;|Cro
T;- | CFidle(W) ;A s[p] :S° | Cro[s[p] — V] T;A3 |[CHp
Tis[p] : S°, Az, As,a + (a idle(W), o[s[p] — V], p)

as required.
Case E-Spawn.

(a, M[spawn M], g, p) —> (vb)({a, M[return ()], 0, p) || (b, M, €,€))

(with b fresh)

There are two subcases based on whether M = &[—] or M = (&[-])*IP]. Both are similar so
we will prove the latter case.

Assumption:

Speak Now 37

IF'|C|S»> &[spawn M]:C < end
T;s[p] : S| C+ (E[spawn M])s[p]

T;A, |Cro
T;As [CFp

T;A, Az, s[p] : S, at+ (a (E[spawn M)l g, o))

By Lemma B.2:

I'lAlend > M:A < end
I'|C|S»> spawn M:Unit <« S

By Lemma B3,T | C| S » &[return ()]:C < end.
Thus, recomposing:

IF'|C|S»> &[return ()]:C < end I'|A|lend> M:A < end

; - slp] F;A2|Cl—0' -~ T;~|A|-e

I;s[p]: S| Cr (E[return ()]) LAy | Crp T;-|AFM T |Are
T;Az Az, s[p] : S,ar (a, (E[return)])°P), 5, p) b+ (b, M, €, €)

T:Ag, As,s[p] : S, a, b+ {(a, (E[return)])°IP. 5, p) || (b. M, €, €)
TiAz As,s[p]: S, at (vb)((a, (E[return)]SI o, p) || (b, M, €, €))

as required.
Case E-Reset.

(a,Q[return V], 0, p) — (a,idle(V), o, p)

There are two subcases based on whether Q = [~] or Q = ([-])*[P]. We prove the latter case;
the former is similar but does not require a context reduction.
Assumption:

reVv:C
I'|C|end > return V:C < end
I;s[p] :end | C + (return v)stel

r;A2|C|-O'
F;A3|C|-p

T;A2, As,s[p] : end,a + (a, (return v)stel g, P

d(s,
We can show that Az, As, s[p] : end, a % Ay, A3, a, so we can reconstruct:
T'rV:C
T;- | Cridle(V) IA)|Cro ;A3 |Crp
T;Ag, As,a + (a,idle(V), o, p)

as required.
Case E-NewAP.
p fresh

(a, M[newAP[(p; : Sp)ierll, o, p) — (vp)({a, M[return p], o, p) || p((pi = €)icr))
As usual we prove the case where M = (&[—])°[P]; the case where M = (&[-]) is similar.

38 Simon Fowler and Raymond Hu

Assumption:
T|C|T» E[newAP[(p; : Si)ier]]:C < end
T:s[p] : T | C k (E[newAP[(p; : Si)ier]])*1P!

T;A, |Cro
T;A3 | Crp

T30z, As,a b (a, (E[newAP[(p; : S)ier]])*IP), o, p)

By Lemma B.2:

comp((p; : Si)ier)
T'|CI|T > newAP[(p;: Si)icr] : AP((p; : Si)ier) < T
By Lemma B.3, T, p : AP((p; : Si)ier) | C| T » E[return p]:C < end.
Let[/ = F,p : AP((p, : Si)ieI)-
By Lemma B.4, since p is fresh we have that I'; Ay | CF cand ;A3 | C + p.
Recomposing:

I'|C|Tv E[return p]:C < end

’
’. K s[p] F;A2|C|-a
r)S[P]~T|C"(8[|’etU|’"P]) FI;A3 |Cl—p p:AP((Pi:Si)iEI) er’ ('I-G:Si)ig[

comp((p; : Si)ier)
I'sp F p((pi > €)icr)
I':Ag, As,s[p] : T, a,p v (a, (E[return p])*P) o, p) || p((pi - €)icr)
Az, As,s[pl : T+ (vp) ({a, (Ereturn p])*IPL o, p) || p((pi = €)icr))

I’;Az, A3, s[p] : T,at+ {a, (E[return p])s[p], o, p)

as required.
Case E-Register.

1 fresh

(a, M{[register p p V1,0, p) || p(x[p — ']) — (v1)({a, M[return ()], 0, p[t = V1) || p(x[p — 7/ U {1}]))
Again, we prove the case where M = (&[-])*l9 and let p = p; for some j.

Let A = Ag, A3, A4, l; : Sj,s[p] : T, a,p.
Let D be the following derivation:

I'|C|T» &Elregister pp; V]:C <« end

. A, |Cro
. .) s[ql » 52
I;s[q] : T | Cr (E[register p p; V]) TiAy | CHp

T30z, As,s[q] : T, a r (a, (E[register p p; vl g, p)
Assumption:

{(pi : Si)ier.n} Dok x
.5, =g, T P AP((pi : Sidie1.n) €T
{(pi : Sidier.n} A4t j SjF X[Pj =] comp((p: : Si)ict.n)
T —
D TiAg, 5 Sjpr p(xlpj = ')
A (a, (E[register p p; VI)*19, 0, p) Il p(xlps = 71)

By Lemma B.2:

Sj.end
kaAP((plS,),) FI—VC—C——)C

I'|C|T v register pp; V:Unit « T

Speak Now 39

By Lemma B3,T | C | T » &E[return ()] :C < end.
Now, let D’ be the following derivation:

Sj,end
T'|C|Tv E[return ()]:C < end FFV:CT’C LAs [Crp
T;s[q]: T | Cr (E[return ()])3[0 T304 :S; | Cr p[it > V] LA |Cro

TiA2, As,s[q] : S, 1 : Sj,atr (a, (E[return ()])S[q],o,p)

Finally, we can recompose:

{(pi:Sidier.n} Da+ x

e _ —_
{(pi : Si)ie1.n} A4,l'j 285,07 Sk xlpi = Y U{i}]

p :AP((pi : Si)ie1.n) €T
comp((p; : Si)ie1.n)

D F;A4,l,;-:5j,l_:Sj,pl—p()([pjl—)?U{l}])
DA Sj07 :SjF (a, (E[return oDl g, py | p(xlpj = 7 U{}])
LA+ (n) ((a, (E[return O)*9, 0, p) 1| p(xlps = 7 U {1}]))

as required.
Case E-Init.

s fresh

(vipier.a(p((pi = 1, U {tp, Nict.n) || {as idle(Uy), o3, pilty, — (Asti. Mi)]Dier.n) —
(vs)(p((pi = 1),)ic1.n) |l s> €l €as (Mi{U;/st:1)°1P) 64, piYier.n)

For each actor composed in parallel we have:

S;j.end
l"l—/lst,-.Mi:CiC—i>Ci F;Ai3 |Ci|-p TrU;: G
T;C; | Ai3,l; :Sik Pi[lpi — Ast;. M;] T;-| C;+idle(U;) F;Aiz | Ci + oy

F§Ai2,Ai3s l;— :Si,a; b (ai, idle(Ui),O'i,pi[lpi = (Asti.Mi)]>

Let:

® Aokt =17 :S1,..., 15 : S

® Ak =17 : 51,51, Sy

d Aa = A125A13" . ~,An2»An3,a1>~ -, an

o Ap=NAg Atokr
Then by repeated use of TC-PaR we have that I';A,, Ajors + ({a, idle(U;), 0, piltp, > Asti. Mi]))ic1.n
Assumption (given some A):

p:AP((p;:Si)i) €T
{pi = Si} A Aok + (pi = 1p; U {p; }ietn
comp((p; : Si)iet..n)

DA, Aor— + p((pi = ;{; U {1p; Piet.n) TiAg, Apoks + ((a, idle(U;), 0y, pi[1p; = Asti. M;]))ic1.n

A, Ag, Dok Drok— + p((pi = 1), U {tp; Dier.n) || (a idle(U;), 03, piltp; — Asti- Mi]))ier.n
LA Ag b (vig) -+ (vin) (p((pi = IZZ U {tp; Dier.n) | (a idle(U;), o1, piltp; = Asti. M;]))ie1.n)

By Lemma B.1 we can show that for each callback function Ast;. M;, it is the case that T | C; |
Si > M,'{Ui/st,'} ZCi < end.

40 Simon Fowler and Raymond Hu

Through the access point typing rules we can show that we can remove each 1,, from the access

point: ;A F p((p; — t;)iel_.n).
Similarly, for each actor composed in parallel we can construct:

r | Ci | Si > Mi{Ui/Sti}:Ci < end
F;S[pi] 2 S; | Ci+ (Mi{Ui/Sti})s[pi] F;Aiz | Cit+ o F;Ai3 | Cit pi
Tiliy, Mgy, spil : Si F (a, (Mi{Us/st:})°1P), o3, i)

Let As = s[p1] : S1,.- .. s[pn] : Sn
Then by repeated use of TC-PAR we have that T;A,, A F {a, (M;{U;/st;})*Pi), oy, p;)
Recomposing;:

i€l.n*

Tiscebsee DiAg Agk ((a (M{Ui/st:1)SP1) 05, pi))iern
TiAg Ass et see |l ((a (Mi{Ui/st;)P, 03, pi))ierm

comp(Ay) .

A p((pi = 17, iet.n)
A Mg Ass : e - p((pi = 1 dicrn) [l s € Il (@ (M {Ui/st:})*P1) 1, pi)dic1m
A Aa b (v5) (((pi = 1 Dicrn) || s € Il ((a, (Mi{Us/st:})*!P), 03, pi) icr.m)

as required.
Case E-Lift.

Immediate by Lemma B.5.
Case E-Nu.

There are different subcases based on whether « is an access point name, initialisation token name,
actor name, or session name. All except session names follow from a straightforward application of
the induction hypothesis so we prove the case where o = s for some session name s.

Assumption:

Ag = {s[pi] : Sp, tict.ns: Q comp(As) s & snames(A)
A A - C

T:A F (vs)C

withC — C".
Since comp(As) we have that safe(A;) and df(Aj).
Since s ¢ A and therefore snames(A) Nsnames(A;) = 0, by Lemma B.9 we have that safe(A, Ay).
By the IH we have that there exists some A’ such that A, A =" A’, where safe(A’) and
;A - C.
By Lemma B.10, there are three subcases:
e A’ = A, which follows trivially.
e N =AM, As where A = A" with safe(A””) and we can therefore show:

As = {s[pi] : Sp, }ier.n,s: Q comp(As) s ¢ snames(A”)
A, Ag - C’

A + (vs)C'

as required.
o A=A, A} where A; = A and safe(Ay). It follows from the definition of progress that
df(AY) and thus comp(A}). We can therefore show:

Speak Now M

Ay ={slpil = S}, }ier.mss : Q' comp(Ay) s ¢ snames(A)
TA A+ C

A F (vs)C!

as required.
Case E-Par.
Immediate by the IH and Lemma B.7.
Case E-Struct.
Immediate by the IH and Lemma B.11.
O

THEOREM 4.2 (PRESERVATION). Typability is preserved by structural congruence and reduction.
(=) IfT;A + C and C = D then there exists some A’ = A such that T;A" + D.
(=) IfT;A + C with safe(A) and C—D, then there exists some A’ such that A =" A’ where safe(A’)
andT;N + D.

Proor. Immediate from Lemmas B.11 and B.12. O

42 Simon Fowler and Raymond Hu

B.3 Progress

Let ¥ be a type environment containing only references to access points:
Y= | lP,p : AP((pl : Si)i)
Functional reduction satisfies progress.

LEMMA B.13 (TERM PROGRESS). If¥ | Sy > M: A < S, then either:

e M = return V for some value V; or
e there exists some N such that M —p; N; or
e M can be written &|M’] where M’ is a communication or concurrency construct, i.e.
— M = spawn N for some N; or
— M =p! (V) for some role p and message {(V); or
— M =suspend V W or some V,W; or
- M = newAP[(p; : T;)] for some collection of participants (p; : T;)
- M =register V p W for some values V, W and role p

Proor. A standard induction on the derivation of ¥ | S; > M : A < S,; there are f-reduction rules
for all STLC terms, leaving only values and communication / concurrency terms. O

The key thread progress lemma shows that each actor is either idle, or can reduce; the proof is
by inspection of 7, noting there are reduction rules for each construct; the runtime typing rules
ensure the presence of any necessary queues or access points.

LeEMMA B.14 (THREAD PROGRESS). Let C = G[(a, T, 0, p)]. If ;- + C then either T = idle(V) for
some value V, or there exist G', T, o', p’, V' such that C — G'[{a, T, 0’, p’)] is a thread reduction

fora.

Proor. If 7 = idle(V) then the theorem is satisfied, so consider the cases where 7 = M or
7 = (M)*!Pl. By Lemma B.13, either M can reduce (and the configuration can reduce via E-LIFT),
M is a value (and the thread can reduce by E-RESET), or M is a state, communication or concurrency
construct. Of these:

get and set can reduce by E-GET and E-SET respectively
spawn N can reduce by E-SpAwN

suspend V can reduce by E-SUSPEND

newAP[(p; : S;);] can reduce by E-NEwAP

Next, consider register p p M. Since we begin with a closed environment, it must be the case that
p is v-bound so by T-APNaME and T-AP there must exist some subconfiguration p(y) of G; the
configuration can therefore reduce by E-REGISTER.

Finally, consider M = q! £(V). It cannot be the case that 7 = q! (V) since by T-SEND the term
must have an output session type as a precondition, whereas TT-NoSEss assigns a precondition
of end. Therefore, it must be the case that 7~ = (q! £(V))*[P! for some s, p. Again since the initial
runtime typing environment is empty, it must be the case that s is v-bound and so by T-SESSTONNAME
and T-EMPTYQUEUE/T-CoNSQUEUE there must be some session queue s>§. The thread must therefore
be able to reduce by E-SEND. O

ProposiTION B.15. IfT;A F C then there exists a D = C where D is in canonical form.

THEOREM 4.5 (PROGRESS). If ;- + C, then either there exists some D such that C — D, or C is
structurally congruent to the following canonical form:

(vD) (vpier.m) (Vajer.n) (Pr(X1)ierm |l (aj,idle(V)), €, pj)je1.n)

Speak Now 43

Proor. By Proposition B.15 C can be written in canonical form:

(VD) (vpier.) (Vsjer..m) (Vaker.n) (Pi(Xi)ier.1 || (sj > 6j)jer.m || {ak, Tk, Ok, PkVker..n)

By repeated applications of Lemma B.14, either the configuration can reduce or all threads are idle:

(Vi)(Vpiel..l)(Vsjel..m)(Vakelun)(pi()(i)iel..l Il (Sj'>5j)jel..m || {ax, idle(Uy), ok, pi)ket..n)

By the linearity of runtime type environments A, each role endpoint s[p] must be contained in
precisely one actor. There are two ways an endpoint can be used: either by TT-SEss in order to run
a term in the context of a session, or by TH-HANDLER to record a receive session type as a handler.
Since all threads are idle, it must be the case the only applicable rule is TH-HANDLER and therefore
each role must have an associated stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.
Since all session endpoints must have a receive session type, the only type reductions possible are
through LBL-SyNc-REcv. Since all threads are idle we can pick the top message from any session
queue and reduce the actor with the associated stored handler by E-ReacT.

The only way we could not do such a reduction is if there were to be no sessions, leaving us with
a configuration of the form:

(VZ)(Vpiel..m)(vajelun)(pi(Xi)iel..m ” <aj, idle(Uj)s 0j, pj>j€14.n)

44 Simon Fowler and Raymond Hu

C SUPPLEMENT TO SECTION 5

This appendix details the full formal development and proofs for Maty, (Section 5).

First, it is useful to show that safety is preserved even if several roles are cancelled; we use this
lemma implicitly throughout the preservation proof.

Let us write roles(A) = {p | s[p] : S € ®} to retrieve the roles from an environment. Let us
also define the operation zap(®, p) that cancels any role in the given set, i.e., zap(s[p1] : S1,s[p2] :

Sz,a,{p1}) =slp1l : £,s[p2] : Sz, a.
LemMA C.1. Ifsafe(®) then safe(zap(®,p)) for anyp C roles(P).

Proor. Zapping a role does not affect safety; the only way to violate safety is by adding further
unsafe communication reductions.]

THEOREM 5.1 (PRESERVATION (—, MATY,)). IfT;® + C with safe(®) and C — D, then there
exists some &’ such that ® = @ and safe(®’) and T;®’ + D.

Proor. Preservation of typability by structural congruence is straightforward, so we concentrate
on preservation of typability by reduction. We proceed by induction on the derivation of C — D,
concentrating on the new rules rather than the adapted rules (which are straightforward changes
to the existing proof).

Case E-Monitor.

(a, M[monitor b V], 0, p, 0) = (a, M[return ()], 0,p,0 U {(b,V)})

We consider the case where M = E[—] for some &; the case in the context of a session is similar.
Assumption:

I'|S|Cv> E[monitorbV]:C < end
T;- | C+ E&[monitor b V]
@1, Az, a + {(a,E[monitor b V], 0, p, 0)

r;(D]lCl—O' F;@g|C|—p

end,end

whereV(b,W)ea).I‘l—b:Pid/\I“!—W:CT>C.

By Lemma B.2, we know:

end,end

T'+b:Pid FI—V:C—C—)C

I'|C|S»> monitorbV:Unit <« S

By Lemma B.3 weknow I' | C | S » &E[return ()] :C < end.
Recomposing;:

F'|C|S»> E[return ()]:C < end
T;-| Cr E[return ()]
I[;®@1,Az,at {(a,E[return ()],0,p, 0 U (b,V))

I;d, |[Cro T;0|Crp

end,end

noting that w U (b, V) is well-typed since ' + b : Pidand '+ V : C — C, as required.
Case E-InvokeM.

(a,idle(U), 0, p,0 U {(b,V)}) || éb—T> (a,VU,0,p,0) | 4b

Assumption:

Speak Now 45

rru:C
T;- | Cridle(U) ;o |Cro I;0,|CFrp
I;01,P2,at (aidle(U),0,p,0U{(b,V)}) Tibr 4b
I;01,92,a,b F (a,idle(U),0,p,0U {(b,V)}) || 4b
d,end
where V(a/,W) € o U{(b,V)}.TFb:Pid AT W:C% C.
Recomposing:
end,end
FI—V:C—————>C C TrU:C
I'|Clend> VU:C «end
I;-|CrVU o, |Uto ;& |Urp
[;01,®,at+ {a,V U,0,p,0) b+ 4b

r;q)la CDZs a’b F <G,V U, O.5paw> ” éb

as required.
Case E-Raise.
Similar to E-RAISES.
Case E-RaiseS.

(a, (E[raise])*PL o, p, 0y — sa |l 4s[p] | 4o |l 4p

I'|C|S»> Eraise]:Unit < end
T;s[p] : S| CF (E[raise])*!P] I;0,|[Cro T;®,|Crp TrU:C
[;01, @y, s[p] : S, at (a, (S[raise])s[p], o, p, W)
Let us write 4@ = {s[p] : 4 | s[p] : S € ®}. It follows that for a given environment, ® ~»>* 5 ®.

The result follows by noting that due to TH-HANDLER and TI-CALLBACK we have that fn(®;) =
fn(o) and fn(®,) = fn(p). Thus:
e I}i®i ko,
o ;0D + 4p,
o [0 ®u, s Qo s[pl: gar gall sslpl I foll &p
with the environment reduction:

q)l’d>25s[p] :S’a"'\"b*— é¢lséq)2’s[p] : é’a

as required.
Case E-CancelMsg.

so(p,q, e(V)) -8 || 4s[ql = s> 8 || 4s[q]
Assumption:

T'rV:A Iis:QFs»d
[is:(p,q, £(A) - QF s> (p,q,£(V)) -6 Tis[ql : 4+ 4s[q]
Tis[ql : 4,5 : (p,q, £(V)) - Q ks> (p, g, €(V)) -8 || 4s[ql

46 Simon Fowler and Raymond Hu

Recomposing, we have:

Iis:QFs»8 Tis[ql:4F 4slql
Tis[q]: 4,s:QF s> 8 4s[q]

with
slql s 25 (g £V)) - Q 2% [q) : 4,52 Q

as required.
Case E-Cancel AP.

() (p(xlp =7 U{D) Il 40— p(x[p = 7]
Assumption:
{(pi:Si)i} P+ yx
PiAP(pi S {(pi:Si)i} @S0 1 SjF xlpy o 7 U {1}]
F;‘D,l/"":?j,l_:SjFP(X[Pj'—’T'U{l}]) Tt i S+ 4
T, =S, S Sppk plxlpy o 7 U] | b

T, '~ : Sjp k- (v) (p(xlpj = VU] Il 40)

Recomposing;:

{(pi:Si)i} Pryx

P AP(p; : Si)i {(pi:Si)i} @0 :S;+ xlpj = V]

@, /= = Sip b p(xlp; = V1)

as required.
Case E-CancelH.

(a,idle(U), als[p] = (V. W), p,0) || s> 8 || 4s[q] —
(aWU,0,p,0) || s>68 | s[ql || 2s[p] if messages(q,p,5) =0

Let D be the following derivation:
T =q&{ti(xi) = Si}i T+ V : Handler(T,)

end,end

TrU:C FI-WZCTC F;CDllCI-O'

I;-| Cridle(U) [;91,s[p]: T | Cro[s[p] — (V,W)] [0, |CFp Tv+U:C
[;01,9,,s[p] : T,at (aidle(U),o[s[p] — (V,W)], p,w)

Assumption:

Iis:QFsed Iis[p]: 4 + 4s[p]
D Iis: Q,slpl: 4 ks> 6| 4slp]
I®1, @2, s[p] : T,s: Q,s[q] : £, ar (a idle(U),o[s[p] = (V.W)],p,w) [l s> 6 || £s[p]

We can recompose as follows. Let D’ be the following derivation:

Speak Now 47

end,end

FFW:CTC r-v:cC

IF'|Clend> WU:C < end
I;-|CrWU I;0,|Cro I;d, [CFp
[0, 9z,atF (a, W U,o,p,w)

Then we can construct the remaining derivation:

Tislpl: 4+ &slp] Iis[ql: 4 + 4slq]
[is:QFsed Dislpl = ¢,slal = & + ¢slpl |l ¢s[ql
D’ Tis: Q,slpl:4.slql: £ Fs=d |l £slp] Il 4slql
01, 2,5 : Q,s[pl : £,s[ql s d,ar (a W U,0,p,0) | s> |l ¢slp] |l £slq]
Finally, we need to show environment reduction:

sipiq
Dy, Dy, s[p] : T,s: Q,s[q] : 4,a —— D1, Dy,5: O, s[p] : 4,s[q] : 4,a
as required. O

C.1 Progress

Thread progress needs to change to take into account the possibility of an exception due to E-RAISE
or E-RAISEEXN:

LEmMA C.2 (THREAD PROGRESS). Let C = G[(a, T, 0, p)]. If ;- + C then either:
T =idle(V), or

there exist G', 7', 0’, p’ such thatC — G'[{a, T, 0’,p’)], or
C—G'lsall toll Lplif T =Elraise], or

C— G'l4all 4slpl Il 4o |l 4p] if T = (E[raise])sIP].

Proor. As with Lemma B.14 but taking into account that:

e monitor b V can always reduce by E-MONITOR;
e raise can always reduce by either E-RAISE or E-RAISES.

]

As before, all well-typed configurations can be written in canonical form; as usual the proof
relies on the fact that structural congruence is type-preserving.

LeEmma C3. IfT;® + C then there exists a D = C where D is in canonical form.

It is also useful to see that the progress property on environments is preserved even if some
roles become cancelled.

Lemma C4. If df, (D) then df, (zap(®,p)) for anyp C roles(®).

ProoF. Zapping a role may prevent LBL-REcV from firing, but in this case would enable either a
LBL-ZAPRECV or LBL-ZAPMSG reduction. o

THEOREM 5.4 (PROGRESS (MATY,)). If ;- + C, then either there exists some D such that C — D,
or C is structurally congruent to the following canonical form:

(VD) (vpic1.m) (Vajer.n) (P1(x1ict.m || (aj,idle(U;), €, pj, ;) jer.w—1 | (£G))jen.n)

48 Simon Fowler and Raymond Hu

Proor. The reasoning is similar to that of Theorem 4.5. By Lemma C.3, C can be written in
canonical form:

(VZ)(Vpiel..l)(VSjel..m)(Vakel..n)(Pi()(i)ieu I (Sj '>5j)jel..m Il <ax, Tk, Ok, P> @i Yker..n'—1 |l Z&)

with (4 ax)ken.n contained in z&.
By repeated applications of Lemma C.2, either the configuration can reduce or all threads are
idle:

(VZ)(Vpiel.‘l)(Vsjel..m)(Vakel..n)(pi()(i)iel..l I (SjWSj)jel..m I {ax, idle(Uy), ok, pi> Wi ker.m-1 | 4 @)

By the linearity of runtime type environments A, each role endpoint s[p] must either be contained
in an actor, or exist as a zapper thread 4s[p] € 4a. Let us first consider the case that the endpoint
is contained in an actor; we know by previous reasoning that each role must have an associated
stored handler.

Since the types for each session must satisfy progress, the collection of local types must reduce.
There are two potential reductions: either LBL-SYNc-REcV in the case that the queue has a message,
or LBL-ZAPRECYV if the sender is cancelled and the queue does not have a message. In the case
of LBL-SyYNC-RECV, since all actors are idle we can reduce using E-REACT as usual. In the case of
LBL-ZAPRECV typing dictates that we have a zapper thread for the sender and so can reduce by
E-CaNceLH.

It now suffices to reason about the case where all endpoints are zapper threads (and thus by
linearity, where all handler environments are empty). In this case we can repeatedly reduce with
E-CANCELMsG until all queues are cleared, at which point we have a configuration of the form:

(D) (vpier.1) (vsjer.m) (Vaker) (i xidiers | (sj>€)jer.m || {ax, idle(Uk), € pk oxdker w1 I @)

We must now account for the remaining zapper threads. If there exists a zapper thread 4 a where
a is contained within some monitoring environment w then we can reduce with E-INvokeM. If a
does not occur free in any initialisation callback or monitoring callback then we can eliminate it
using the garbage collection congruence (va)(4a) || C = C.

Next, we eliminate all zapper threads for initialisation tokens using E-CANCELAP.

Finally, we can eliminate all failed sessions (vs)(4s[p1] || - || Zs[pn] || s> €), and we are left
with a configuration of the form:

(vD) (vpier.m) (Vajer.n) (P1(X1)ier.m |l {aj, idle(Uk), €, pj, @j)jer.n-1 || (£a))jen..n)

as required. O

C.1.1 Global Progress. A modified version of global progress holds: for every active session, in a
finite number of reductions, either the session can make a communication action, or all endpoints
become cancelled and can be garbage collected.

THEOREM 5.5 (GLOBAL PROGRESS (MATY,)). If ;- + C where C is thread-terminating, then for every

s € activeSessions(C), then there exist D and D such that C = (vs)D where D o D and either
D, ;, or Dy = D, for some D, where s ¢ activeSessions(Dy).

Proor. Follows the same structure as the proof of Corollary 4.13, the main difference being that
instead of E-ReAcT firing, it may be the case that E-CANCELH fires to propagate a failure. In this
case, if all session endpoints for an active session s are cancelled, then it would be possible to use
the garbage collection congruence to eliminate the failed session. O

Speak Now 49

Modified syntax

Session names s, t
Values V,W = - | (V,W)
Computations M,N == .- | let(x,y)=MinN
| suspend,s VW | suspend, VW | becomesV
Send-suspended sessions D == (s[pl.V)
Handler state o == €| os[pl—V | c7,§|—>B
Switch request queue 6 == €| 6:-(sV)
Configurations C,D | (a, T,o,p, V)0
Modified typing rules ‘I“b—V:AHF|C\S>M:A<T
T-SusPeEnD,
TFV:A TrW:B TFV:(AiXA) T|C|S»M:B<«T T+ V:Handler(s’,C) T+rW:C
T+ (V,W):(AXB) T|C|S»let(x,y)=VinM:B<T F|C|S7>suspend7VW:A<T
T-SusPEND,
2(s) = (5',4)
S'.end T-BECOME
FI—V(AXC)—C——)C Z(§)=(T,A) TFV:A
F|C|S!>suspend,§V:B<T I'|C|S»> becomesV:Unit «S
Modified configuration typing rules ‘ TAFC H T;A|Cro ‘ r'v0
TH-SENDHANDLER
T-AcTOoR ;A|Cro
;A |URT A |Uro , S'end
T:As | Uk p I 3(s) = (S, A) TrV;: (AXC) — C); TR-EmpTY
T:AL Az As,a vk {a, T, 0, p, 0) LA, (si[pil : SY: | Croys e (silpil, V)i Tre
TR-REQUEST
Trl S(s)=(S5A) TrV:A
T'r0-(sV)

Modified reduction rules

E-SUSPEND)-1 (a, (E[suspend, s V W])5Pl 5, p.6) -5 (aidle(W),o[s — (s[p],V)].p,0) (s¢ dom(c))
E-Suspenp;-2 (a, (E[suspend,s V W])sIPl o[s > D1,p,0) —— (aidle(W),c[s— D - (s[p].V)],p.0)

E-BECOME (a, M[becomes V], ao,p,0) = (a, M[return ()],0,p,0 - (s,V))

E-Actvate (aidle(U), o[s— (s[p],V) - Dl.p (s W) -0) —— (a (V(W,U))*!P) o[s+ D], p,0)

Fig. 17. Matyo: Modified syntax, typing, and reduction rules

D FORMAL MODEL OF SESSION SWITCHING EXTENSION

In Section 6 we described the implementation of Maty to support proactive switching between
sessions. In this appendix we introduce a formal model of a similar feature that switches between
sessions by queueing requests to invoke a send-suspended session, and activates send-suspended
sessions when the event loop reverts to being idle.

Suppose that we want to adapt our Shop example to maintain a long-running session with a
supplier and request a delivery whenever an item runs out of stock. The key difference to our
original example is that we need to switch to the Restock session as a consequence of receiving a
buy message in a customer session.

We can describe a Restock session with the following simple local types:

50 Simon Fowler and Raymond Hu

ShopRestock = SupplierRestock =
4 loop. 4 loop.
Supplier @ order(([lItemID] X Quantity)) . Shop & order(([ItemID] X Quantity)) .
Supplier & ordered (Quantity) . loop Shop @ ordered (Quantity) . loop

Whereas before we only needed to suspend an actor in a receiving state, this workflow requires
us to also suspend an actor in a sending state, and switch into the session at a later stage. We call
this extension Maty_,. Below, we can see the extension of the shop example with the ability to
switch into the restocking session; the new constructs are shaded.

ShopRestock =
1 loop.
Supplier @ order(([ItemID] X Quantity)) .
Supplier & ordered(Quantity) . loop

custReqHandler =
handler Customer st {
getltemlInfo(itemID) > [...]
checkout((itemlIDs, details)) +—
let items = get in
if inStock(itemlIDs, items) then [...]
else
Customer ! outOfStock();
become Restock itemIDs;
suspend, custReqHandler st

}

shop = A(custAP, restockAP).
register custAP Shop
(Ast.shop (custAP, Shop) Ast. suspend, itemReqHandler st);
register restockAP Shop (Ast. suspend, Restock restockHandler st);
initialStock

restockHandler = A(itemIDs, st) .
Supplier ! order((itemIDs, 10));
suspend, (
handler Supplier st {
ordered(quantity) —
increaseStock(itemIDs, quantity);
suspend, Restock restockHandler st})

The program is implicitly parameterised by a mapping from static names like Restock to pairs
of session types and payload types (in our scenario, Restock maps to (ShopRestock, [ItemID]) to
show that an actor can suspend when its session type is ShopRestock, and must provide a list of
ItemIDs when switching back into the session). We split the suspend construct into suspend, V
(to suspend awaiting an incoming message, as previously), and suspend, s V' (to suspend session
with name s given a function V, until switched into), and introduce the become s V construct to
switch into a suspended session. Specifically, become s V queues s to run when the actor is next
idle. We modify the shop definition to also register with the restockAP access point, suspending
the session (in a state that is ready to send) with the restockHandler. The restockHandler takes an
item ID, sends an order message to the supplier, and suspends again.

Speak Now 51

Metatheory. Maty_, satisfies preservation. Since (by design) become operations are dynamic
and not encoded in the protocol (for example, we might wish to queue two invocations of a
send-suspended session to be executed in turn), there is no type-level mechanism of guaranteeing
that a send-suspended session is invoked, so Maty_, instead enjoys progress up-to invocation of
send-suspended sessions (see Appendix C).

Our extension to allow session switching is shown in Figure 17. We introduce a set of distinguished
session identifiers s; each session identifier is associated with a local type and a payload in an
environment ¥, i.e., for each s we have %(s) = (S', A) for some S', A. We then split the suspend
construct into two: suspend, V W (which, as before, installs a message handler V and suspends
an actor with updated state W) and suspend, s V' W, which suspends a session in a send state,
installing a function V taking a payload of the given type. Finally we introduce a become s V'
construct that queues a request for the event loop to invoke s next time the actor is idle and a
send-suspended session is available.

D.1 Metatheory

D.1.1 Preservation. As would be expected, Matyo satisfies preservation.
THEOREM D.1 (PRESERVATION). Preservation (as defined in Theorem 4.2) continues to hold in Maty .

Proor. Preservation of typing under structural congruence follows straightforwardly.

For preservation of typing under reduction, we proceed by induction on the derivation of
Cc—D.

Case E-SuspeEnD;-1.
Similar to E-SUSPEND)-2.

Case E-SUSPEND;-2.

(a, (E[suspend, s V W])*IP] 5[5 T)’],p, 0) — (a, idle(W), o[s — D- (s[pl. V)] p, 0)

Assumption:

LA [Cra 2(s) = (SLA)

S!,end .
I'[C|S»> E[suspend, sV W]:C < end T+ Wi : (AXC) c Unit); I;A; |Crp
T;s[p]: S| Cr (E[suspend, s V W])sP] ;A1 (silqi] = SY)i | CF ols = (silqil, Wil reo

T3A1, Ag,s[p] S, (silqi] : S a+ (a, E[suspend, s V W], a[s = (si[q:], Wi)il, p, 0)

Consider the subderivationI' | S » E[suspend, s V W] : Unit < end. By Lemma B.2 there exists
a subderivation:

3(s) = (S, A) FFV:(AXC)%EiC THW:C

I'|S'> suspend,s V W:B <end

Therefore we have that S = §'.

Recomposing;:
DA [Cro 3(s) = (S, A)
S!,end S!,end
TEW:C (F»—Wi:(AxC)TC)i FI—V.(AXC)TC LAy | CHp
Lo | Cridle(W) TiAy, (si[qi] = $)islpl : 8" | Crols (silail, Wi)i - (s[pl, V)] T'rd

LAy, Ag,s[pl : S, (silail = S)ia k (a,idle(W), ols = (si[a:], Wi)i - (s[pl, V)], p,6)

52 Simon Fowler and Raymond Hu

as required.
Case E-BECOME.

(a, M[become s V], 0, p, 0) = (a, M[return ()], 0,p,0 - (s,V))
Assumption (considering the case that M = &[] for some &; the case in the context of a session
is identical):

r|S|Cv» &E[becomesV]:C <« end A [Cro
[;-|C+r E[becomesV] A | Crp
r+o

;AL A, a v {a, T, 0,p,0)

By Lemma B.2 we have:

3(s) = (T,A) TrV:A
I'|S|C» becomesV:Unit «S
By Lemma B.3 we can show thatT | S | C » E[return ()] :C < end.

Recomposing;:
T|C|S»> E[return ()]:Unit < end T'+6 S(s) = (S, A) THV:A
T | Cr &lreturn ()] LA Cro Tro-(sV)
’ T; Ay |C|—p =

T;A1,Az,a v (a, E[return ()], 0,p,0- (s, V))

as required.
Case E-ACTIVATE.

(@ idle(U), o[s — (s[p], V) - B, p, (5 W) - 0) = (a, (V (W, U))*IP), o[s — D], p, 0)
Let D be the subderivation:

F;A1|C|—O'

5(s) = (5, A) FFV:(AXC)Lij)C (I‘l—Vi:(AxC)%C)i

T As[p] = 8 (silpil = i | €k ays > (s[pL V) - (silpil, Vi)

Assumption:
T-U:C T+0 3(s)=(S5A) TrW:A
I;- | Cridle(U) D TiA|Crp Tr(sW)-0
Tidr, Ag,s[p] : S (silpi] - SHiar (aidle(U), os — (s[pl.V) - (si[p:i]. Vi)il. p. (s, W) - 0)
Let D’ be the subderivation:

TFrW:A T'+U:C
S'end
FI—V:A—F—%C ' (W,U):(AxC)

T|C|S'»>V (W,U):C«end
T;s[p] : S| Cr (V (W, U))slP]

Recomposing:

Speak Now 53

F;A1|CI—U
S'end
()= (5h4) (TrVi:(AxC) =25 0);

D ;A (silpi] : SYi | CFoys o (silpil, Vi) T;A [Crp T
Tid, Ag,s[p] =S (silpil - SHuar (a (V. (WU os o (silpil. Vi)il. p. 0)

as required. O

D.1.2 Progress. Since (by design) become operations are dynamic and not encoded in the protocol
(for example, we might wish to queue two invocations of a send-suspended session to be executed
in turn), there is no type-level mechanism of guaranteeing that a send-suspended session is ever
invoked. Although all threads can reduce as before, Maty satisfies a weaker version of progress
where non-reducing configurations can contain send-suspended sessions.

THEOREM D.2 (PROGRESS (MATY)). If;+ kqr C, then either there exists some D such that C — D,
or C is structurally congruent to the following canonical form:

(vD) (vpier.)) (VSjer.m) (Vaker.n) (Pi(Xi)icr.t | (sj > 8))jer.m || (ak. idle(Uy), ok, pi. Ok)ke1..n)

where for each session s; there exists some mapping s;[p] — (s, V) (for some role p, static session
name s, and callback V') contained in some oy where 0y does not contain any requests for s.

Proor. The proof follows that of Theorem 4.5. Thread progress (Lemma B.14) holds as before,
since we can always evaluate become by E-BECOME, and we can always evaluate suspend, by
E-Suspend-!; or E-Suspend-!,.

Following the same reasoning as Theorem 4.5 we can write C in canonical form, where all
threads are idle:

(vD) (vpier.)) (Vsjer.m) (Vaker.n) (Pi(Xi)ier.t | (sj > 8))jerm || (ar. idle(Vi), ok, pi. Ok)ker..n)

However, there are now three places each role endpoint s[p] can be used: either by TT-SEss to
run a term in the context of a session or by TH-HANDLER to record a receive-suspended session
type as before, but now also by TH-SENDHANDLER to record a send-suspended session type. As
before, the former is impossible as all threads are idle, so now we must consider the cases for
TH-HANDLER.

Following the same reasoning as Theorem 4.5, we can reduce any handlers that have waiting
messages. Thus we are finally left with the scenario where the session type LTS can reduce, but
not the configuration: this can only happen when the sending reduction is send-suspended, as
required. O

	Abstract
	1 Introduction
	1.1 Actor Languages
	1.2 Channels vs. Actors
	1.3 Key Principles
	1.4 Contributions

	2 A Tour of Maty
	2.1 The Basics: ID Server
	2.2 A Larger Example: A Shop

	3 Maty: A Core Actor Language with Multiparty Session Types
	3.1 Syntax
	3.2 Typing Rules
	3.3 Operational semantics

	4 Metatheory
	4.1 Configuration typing
	4.2 Properties

	5 Failure Handling and Supervision
	5.1 Metatheory
	5.2 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References
	A Details of Case Study Protocols
	A.1 Robots
	A.2 Chat Server

	B Supplement to Section 4
	B.1 Omitted Definitions
	B.2 Preservation
	B.3 Progress

	C Supplement to Section 5
	C.1 Progress

	D Formal Model of Session Switching Extension
	D.1 Metatheory

