
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Special Delivery
Programming with Mailbox Types∗

SIMON FOWLER, University of Glasgow, UK

DUNCAN PAUL ATTARD, University of Glasgow, UK

FRANCISZEK SOWUL, University of Glasgow, UK

SIMON J. GAY, University of Glasgow, UK

PHIL TRINDER, University of Glasgow, UK

The asynchronous and unidirectional communication model supported by mailboxes is a key reason for the

success of actor languages like Erlang and Elixir for implementing reliable and scalable distributed systems.

While many actors may send messages to some actor, only the actor may (selectively) receive from its mailbox.

Although actors eliminate many of the issues stemming from shared memory concurrency, they remain

vulnerable to communication errors such as protocol violations and deadlocks.

Mailbox types are a novel behavioural type system for mailboxes first introduced for a process calculus by

de’Liguoro and Padovani in 2018, which capture the contents of a mailbox as a commutative regular expression.

Due to aliasing and nested evaluation contexts, moving from a process calculus to a programming language is

challenging. This paper presents Pat, the first programming language design incorporating mailbox types,

and describes an algorithmic type system. We make essential use of quasi-linear typing to tame some of

the complexity introduced by aliasing. Our algorithmic type system is necessarily co-contextual, achieved

through a novel use of backwards bidirectional typing, and we prove it sound and complete with respect to our

declarative type system. We implement a prototype type checker, and use it to demonstrate the expressiveness

of Pat on a factory automation case study and a series of examples from the Savina actor benchmark suite.

1 INTRODUCTION
Software is increasingly concurrent and distributed, but coordinating concurrent computations

introduces a host of additional correctness issues like communication mismatches and deadlocks.

Communication-centric languages such as Go, Erlang, and Elixir make it possible to avoid many of

the issues stemming from shared memory concurrency by structuring applications as independent,

lightweight processes that communicate through explicit message passing. There are two main

classes of communication-centric language. In channel-based languages like Go or Rust, processes

communicate over channels, where a send in one process is paired with a receive in the recipient

process. In actor languages like Erlang or Elixir, a message is sent to the mailbox of the recipient

process, which is an incoming message queue. The communication patterns are more flexible as

the recipient process can choose which message from the mailbox to handle next.

Although communication-centric languages eliminate many coordination issues, some remain.

For example, a process may still receive a message that it is not equipped to handle, or wait for

a message that it will never receive. Such communication errors often occur sporadically and

unpredictably after deployment, making them difficult to locate and fix.

Behavioural type systems [33] encode correct communication behaviour to support correct-by-
construction concurrency. Behavioural type systems, in particular session types [27, 28, 54], have
been extensively applied to specify communication protocols in channel-based languages [3]. There

has, however, been far less application of behavioural typing to actor languages. Existing work

either imposes restrictions on the actor model to retrofit session types [25, 40, 52, 53] or relies on

dynamic typing [42]. We discuss these systems further in (§7).

Our approach is based onmailbox types, a behavioural type system for mailboxes first introduced

in the context of a process calculus [12]. We present the first programming language design

∗
Draft (2nd February 2023)

1

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

a

b

c

(a) Channels

A B

C

(b) Actors

Fig. 1. Channel- and actor-based languages [20]
incorporating mailbox types and we detail an algorithmic type system, an implementation, and

a range of benchmarks and a factory case study. Due to aliasing and nested evaluation contexts,

the move from a process calculus to a programming language is challenging. We make essential

use of quasi-linear typing [15, 37] to tame some of the complexity introduced by aliasing, and

our algorithmic type system is necessarily co-contextual [16, 38], achieved through a novel use of

backwards bidirectional typing [60].

1.1 Channel-based vs Actor Communication
Channel-based languages comprise anonymous processes that communicate over named channels,

whereas actor-based languages comprise named processes each equipped with a mailbox. Figure 1

contrasts the approaches, and is taken from a detailed comparison [20].

Actor languages have proven to be effective for implementing reliable and scalable distributed

systems [56]. A key benefit of actor languages is that communication is asynchronous and unidirec-

tional: many actors may send messages to an actor 𝐴, whereas only 𝐴 may receive from its mailbox.

Mailboxes provide data locality as each message is stored with the process that will handle it. Since

channel-based languages allow channel names to be communicated, they must either sacrifice

locality and reduce performance, or rely on complex distributed algorithms [7, 32].

Although it is straightforward to add a type system to channel-based languages, adding a type

system to actor languages is less straightforward, as process names (process IDs or PIDs) must be

parameterised by a type that supports all messages that can be received. The type is therefore less

precise, requiring subtyping [26] or synchronisation [10, 55] to avoid a total loss of modularity [20].

The situation becomes even more pronounced when considering behavioural type systems:

communication errors might be prevented by giving one end of a channel the session type

!Int.!Int.?Bool.End (send two integers, and receive a Boolean), and the other end the dual type
?Int.?Int.!Bool.End. Behavioural type systems for actor languages are much less straightforward

due to asymmetric communication. In practice, designers of session type systems for actor lan-

guages either emulate session-typed channels [40], or use multiparty session types to govern the

communication actions performed by a process, requiring a fixed communication topology [42].

1.2 Mailbox types
de’Liguoro and Padovani [12] observe that session types require a strict ordering of messages,

whereas most actor systems use selective receive to process messages out-of-order. Concentrating

on unordered interactions enables behavioural typing for mailboxes with many writers.

Mailbox typing by example: a future variable. Rather than reasoning about the behaviour of a
process, mailbox types reason about the contents of a mailbox. Consider a future variable, which
is a placeholder in a concurrent computation. A future can receive many get messages that are

only fulfilled after a put message initialises the future with a value. After the future is initialised, it

fulfils all get messages by sending its value; a second put message is explicitly disallowed. We can

implement a future straightforwardly in Erlang:

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Special Delivery , ,

1 empty_future() ->
2 receive
3 { put, X } -> full_future(X)
4 end.
5 full_future(X) ->
6 receive
7 { get, Pid } ->
8 Pid ! { reply, X },
9 full_future(X);
10 { put, _ } ->
11 erlang:error("Multiple writes")
12 end.

13 client() ->
14 Future = spawn(future, empty_future, []),
15 Future ! { put, 5 },
16 Future ! { get, self() },
17 receive
18 { reply, Result } ->
19 io:fwrite("~w~n", [Result])
20 end.

The empty_future function awaits a put message to set the value of the future (lines 2–4), and

transitions to the full_future state. A full_future receives get messages (lines 6–12) containing

a process ID used to reply with the future’s value. The client function spawns a future (line 14),

sends a put message followed by a get message (lines 15–16), and awaits the result (lines 17–20).

The program prints the number 5.

Several communication errors can arise in this example:

• Protocol violation. Sending two put messages to the future will result in a runtime error.
• Unexpected message. Sending a message other than get or put to the future will silently

succeed, but the message will never be retrieved from the mailbox, resulting in a memory leak.

• Forgotten reply. If the future fails to send a reply message after receiving a get message the

client will be left waiting forever.

• Self-deadlock. If the client attempts to receive a reply message before sending a get message it

will be left waiting forever.

All of the above issues can be solved by mailbox typing. We can write the following types:

EmptyFuture ≜ ?(Put[Int] ⊙ ★Get[ClientSend])
FullFuture ≜ ?★Get[ClientSend]

ClientSend ≜ !Reply[Int]
ClientRecv ≜ ?Reply[Int]

A mailbox type combines a capability (either ! for an output capability, analogous to a PID in

Erlang; or ? for an input capability) with a pattern. A pattern is a commutative regular expression:
in the context of a send mailbox type, the pattern will describe the messages that must be sent; in

the context of a receive mailbox type, it describes the messages that the mailbox may contain.

A mailbox name (e.g., Future) may have different types at different points in the program.

EmptyFuture types an input capability of an empty future mailbox, and denotes that the mailbox

may contain a single Putmessage with an Int payload, and potentially many (★) Getmessages each

with a ClientSend payload. FullFuture types an input capability of the future after a Put message

has been received, and requires that the mailbox only contains Get messages. ClientSend is an

output mailbox type which requires that a Reply message must be sent; ClientRecv is an input

capability for receiving the Reply. For each mailbox name, sends and receives must “balance out”:

if a message is sent, it must eventually be received.

de’Liguoro and Padovani [12] introduce a small extension of the asynchronous 𝜋-calculus [2],

which they call the mailbox calculus, and endow it with mailbox types. They express the Future

example in the mailbox calculus as follows, where the mailbox is denoted self.

emptyFuture(self) ≜ self?Put(𝑥) . fullFuture(self, x)
fullFuture(self, x) ≜ free self . done

+ self?Get(sender) . (sender ! Reply[𝑥] ∥ fullFuture(self, x))
+ self ? Put(𝑥) . fail self

(afuture) (emptyFuture(future) ∥ future ! Put[5] ∥
(aself) (future ! Get[self] ∥ (self ? Reply(𝑥) . free self . print(intToString(𝑥)))

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

A process calculus is useful for expressing the essence of concurrent computation, but there is a

large gap between a process calculus and a programming language design, the biggest being the

separation of static and dynamic terms. A programming language specifies the program that a user

writes, whereas a process calculus provides a snapshot of the system at a given time. A particular

difference comes with name generation: in a process calculus, we can write name restrictions

directly; in a programming language, we instead have a language construct (like new) which is

evaluated to create a fresh name at runtime. Further complexities come with nested evaluation

contexts, sequential evaluation, and aliasing. We explore these challenges in greater detail in §2.

We propose Pat1, a first-order programming language that supports mailbox types, in which we

express the future example as follows (self is again the mailbox).

def emptyFuture(self : EmptyFuture) : 1 {
guard self : Put ⊙ ★Get {
receive Put[𝑥] from self ↦→ fullFuture(self, x)
}
}
def fullFuture(self : FullFuture, value : Int) : 1 {

guard self :★Get {
free ↦→ ()
receive Get[user] from self ↦→
user ! Reply[value];

fullFuture(self, value)
}
}

def client() : 1 {
let future = new in
spawn emptyFuture(future) ;
let self = new in
future ! Put[5];

future ! Get[self];

guard self : Reply {
receive Reply[result] from self ↦→

free self;
print(intToString(result))

}
}

The Pat specification has a similar structure to the Erlang future with client, emptyFuture and
fullFuture functions, and the mailbox types are similar to those in the mailbox calculus specification.

There are, however, some differences compared with the Erlang future. The first is that in Pat
mailboxes are first-class: we create a new mailbox with new, and receive from it using the guard
expression. A guard acts on a mailbox and may contain several guards: free ↦→ 𝑀 frees the mailbox

if there are no other references to it and evaluates𝑀 ; and receive m[−→𝑥] from y ↦→ 𝑀 retrieves a

message with tag m from the mailbox, binding its payloads to
−→𝑥 and re-binding the mailbox variable

(with an updated type) to y in continuation𝑀 . There is also fail denoting that a mailbox is in an

invalid state, but the type system ensures that this guard is never evaluated. In the above code,

free self is syntactic sugar (see §3).
Pat has all of the characteristics of a programming language, unlike the mailbox calculus. Static

and dynamic terms are distinguished, i.e., we do not need to write name restrictions with dynamic

names known a priori. Pat provides let-bindings, which enable full sequential composition along

with nested evaluation contexts; and we have data types and return types. Crucially all of the
concurrency errors described earlier result in a type error, i.e. protocol violations, unexpectedmessages,

forgotten replies, and self-deadlocks are all detected statically.

Contributions. Despite being a convincing proposal for behavioural typing for actor languages,

mailbox typing has received little attention since its introduction in 2018. The overarching contri-

bution of this paper, therefore, is the first design and implementation of a concurrent programming

language with support for mailbox types. Concretely, we make four main contributions:

(1) We introduce a declarative type system for Pat (§3), a first-order programming language with

support for mailbox types, making essential and novel use of quasi-linear types. We show type

preservation, mailbox conformance, and a progress result.

1
https://en.wikipedia.org/wiki/Postman_Pat

4

https://en.wikipedia.org/wiki/Postman_Pat

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Special Delivery , ,

def useAfterFree1(𝑥 : ?★Message[1]) : 1 {
guard𝑥 :★Message {
receive Message[𝑦] from 𝑧 ↦→
𝑥 ! Message[];

useAfterFree1(𝑧)
free ↦→ 𝑥 ! Message[]
}
}

(a) Using old name

def useAfterFree2(𝑥 : ?★Message[1]) : 1 {
let 𝑎 = 𝑥 in
guard𝑎 :★Message {
receive Message[𝑦] from 𝑧 ↦→
𝑥 ! Message[];

useAfterFree2(𝑧)
free ↦→ 𝑥 ! Message[]
}
}

(b) Renaming

def useAfterFree3(𝑥 : ?★Message[1]) : 1 {
let _ =
guard𝑥 :★Message {
receive Message[𝑦] from 𝑧 ↦→
𝑥 ! Message[];

useAfterFree3(𝑧)
free ↦→ 𝑥 ! Message[]

} in 𝑥 ! Message[]
}

(c) Evaluation contexts

Fig. 3. Use-after-free via aliasing

(2) We introduce a co-contextual algorithmic type system for Pat (§4), making use of backwards

bidirectional typing. We prove that the algorithmic type system is sound and complete with

respect to the declarative type system.

(3) We extend Pat with sum and product types; interfaces; and higher-order functions (§5).

(4) We detail our implementation (§6), and demonstrate the expressivity of Pat by encoding all

of the examples from de’Liguoro and Padovani [12], and 10 of the 11 Savina benchmarks [34]

used by Neykova and Yoshida [42] in their evaluation of multiparty session types for actor

languages (§6.2).

2 MAILBOX TYPES IN A PROGRAMMING LANGUAGE: WHAT ARE THE ISSUES?
Session typing was originally studied in the context of process calculi (e.g., [28, 57]), but later

work [19, 21, 58] introduced session types for languages based on the linear _-calculus. The more

relaxed view of linearity in the mailbox calculus makes language integration far more challenging.

A mailbox name may be used several times to send messages, but only once to receive a message.

The intuition is that while sends simply add messages to a mailbox, it is a receive that determines

the future behaviour of the actor. To illustrate, Figure 2 shows a fragment of the future example

from §1 with two sends to the future mailbox (shaded red), and a single receive (shaded blue).

def client() : 1 {
let future = new in
spawn emptyFuture(future) ;
let self = new in
future ! Put[5];

future ! Get[self];

guard self {
receive Reply[result] from self ↦→
free self;
print(intToString(result))

}
}

Fig. 2. Send and receive uses of future

In the mailbox calculus, a name remains constant and can-

not be aliased; this is at odds with idiomatic programming

where expressions are aliased with let bindings or function
applications. Moreover functional languages provide nested

evaluation contexts and sequential evaluation.

2.1 Controlling Mailbox Aliasing
Ensuring appropriate use of a mailbox is challenging in the

presence of aliasing, e.g. we can write a function that attempts

to use a mailbox after it has been freed (Fig. 3a). Such a use-

after-free error can be excluded with a fully linear type system,

since we cannot use a resource after it has been consumed.

We could require that a name cannot be used after it has been guarded upon by insisting that the

subject and body of a guard expression are typable under disjoint type environments. Indeed, such

an approach correctly rules out the above issue, but the check can easily be circumvented. Figure 3b

aliases the output capability for the mailbox, and the new name prevents the typechecker from

realising that it has been used in the body of the guard. Similarly, Figure 3c uses nested evaluation

contexts, meaning that the next use of a mailbox variable is not necessarily contained within a

subexpression of the guard.

Much of the intricacy arises from being able to use a mailbox name many times as an output

capability. In a single process, we can avoid the problems above using three principles:

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

(1) No two distinct variables should represent the same underlying mailbox name.

(2) Once let-bound to a different name, a mailbox variable is considered out-of scope.

(3) A mailbox name cannot be used after it has been used in a guard expression.

These principles ensure syntactic hygiene: the first and second handle the disconnect between

static names and their dynamic counterparts, allowing us to reason that two syntactically distinct

output capabilities indeed refer to different mailboxes. The third ensures that a mailbox name is

correctly ‘consumed’ by a guard expression, allowing us to correctly update its type.

Aliasing through communication. Consider the following example, where mailbox 𝑎 receives the

message m[𝑏], where 𝑏 is already free in the continuation of the receive clause:

𝑎 ← m[𝑏] ∥

guard𝑎 : m {
receive m[𝑥] from y ↦→
𝑏 ! n[𝑥];

free 𝑦
}

−→ 𝑏 ! n[𝑏];

free 𝑎

Here, although the code suggests that 𝑥 and 𝑏 are distinct, aliasing is introduced through

communication (violating principle 1). Themailbox calculus rules out such programs by constructing

a global dependency graph. Dependency graphs are well-suited to process calculi since all names are

known a priori, but are not practical in a programming language due to renaming, nested evaluation

contexts, and the distinction between static and dynamic names.

2.2 Quasi-linear typing
The many-sender, single-receiver pattern is closely linked to quasi-linear typing [37], although

our formulation is closer to [15]. Quasi-linear types were originally designed to overcome some

limitations of full linear types in the context of memorymanagement and programming convenience

and allow a value to be used once as a first-class (returnable) value, but several times as a second-class
value [43]. A second-class value can be consumed within an expression, for example as the subject

of a send operation, but cannot escape the scope in which it is defined.

This distinction maps directly onto the many-writer, single-reader communication model used

by the mailbox calculus. We augment mailbox types with a usage: either •, a returnable reference
that allows a type to appear in the return type of an expression; or ◦, a ‘second-class’ reference.
The subject of a guard must be returnable. With usage information we can ensure that:

(1) there is only one returnable reference for each mailbox name in a process

(2) only returnable references can be renamed, avoiding problems with aliasing

(3) the returnable reference is the final lexical use of a mailbox name in a process

Quasi-linear types rule out all three of the previous examples. In useAfterFree, 𝑥 is consumed

by the guard expression and cannot be used thereafter. In useAfterFree2, since 𝑥 is the subject of

a let binding, it must be returnable and therefore cannot be used in the body of the binding. In

useAfterFree3, since 𝑥 is used as the subject of a guard expression, that use must be first-class and

therefore the last lexical occurrence of 𝑥 , ruling out the use of 𝑥 in the outer evaluation context.

Ruling out aliasing through communication. Quasi-linear types alone do not safeguard against

introducing aliasing through communication. However, treating all received names as second-class,

coupled with some simple syntactic restrictions (e.g. by ensuring that either all message payloads

or all variables free in the body of the receive clause have base types) eliminates unsafe aliasing.

Summary. Quasi-linear types and the lightweight syntactic checks outlined above ensure that

mailboxes are used safely in a concurrent language that allows aliasing, and obviate the need for

the static global dependency graph used in the mailbox calculus. We show that the checks are

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Special Delivery , ,

Mailbox types 𝐽 , 𝐾 ::= !𝐸 | ?𝐸
Mailbox patterns 𝐸, 𝐹 ::= 0 | 1 | m | 𝐸 ⊕ 𝐹

| 𝐸 ⊙ 𝐹 | ★𝐸

Base types 𝐶 ::= 1 | Int | String | · · ·
Types 𝑇,𝑈 ::= 𝐶 | 𝐽
Usage annotations [::= ◦ | •
Usage-annotated types 𝐴, 𝐵 ::= 𝐶 | 𝐽 [

Variables 𝑥, 𝑦, 𝑧

Definition names 𝑓

Definitions 𝐷 ::= def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 }
Values 𝑉 ,𝑊 ::= 𝑥 | 𝑐
Terms 𝐿,𝑀, 𝑁 ::= 𝑉 | let 𝑥 : 𝑇 = 𝑀 in 𝑁 | 𝑓 (−→𝑉)

| spawn 𝑀 | new | 𝑉 ! m[
−→
𝑊] | guard𝑉 :𝐸 {−→𝐺 }

Guards 𝐺 ::= fail | free ↦→ 𝑀 | receive m[−→𝑥] from 𝑦 ↦→ 𝑀

Type environments Γ ::= · | Γ, 𝑥 : 𝐴

Fig. 4. The syntax of Pat, a core language with mailbox types

not excessively restrictive by expressing all of the examples shown by de’Liguoro and Padovani

[12], and 10 of the 11 Savina benchmarks [34] used by Neykova and Yoshida [42] to demonstrate

expressiveness of behavioural type systems for actor languages (§6.2).

3 PAT: A CORE LANGUAGEWITH MAILBOX TYPES
This section introduces Pat, a core first-order programming language with mailbox types, along

with a declarative type system and an operational semantics.

3.1 Syntax
Figure 4 shows the syntax for Pat. We defer discussion of types to §3.2.

Programs and Definitions. A program (S,−→𝐷,𝑀) consists of a signature S which maps message

tags to payload types; a set of definitions 𝐷 ; and an initial term𝑀 . Each definition def 𝑓 (−−−→𝑥 : 𝐴):𝐵 {𝑀}
is a function with name 𝑓 , annotated arguments

−−−→
𝑥 : 𝐴, return type 𝐵, and body𝑀 . We write P(𝑓)

to retrieve the definition for function 𝑓 , and P(m) to retrieve the payload types for message m.

Values. It is convenient for typing to introduce a syntactic distinction between values and

computations, in part inspired by fine-grain call-by-value [39]. Values 𝑉 ,𝑊 include variables 𝑥 and

constants 𝑐; we assume that the set of constants includes at least the unit value () of type 1.

Terms. The functional fragment of the language is largely standard. Every value is a term. The

only evaluation context is let 𝑥 : 𝑇 = 𝑀 in 𝑁 , which evaluates term𝑀 of type 𝑇 , binding its result

to 𝑥 in continuation 𝑁 . The type annotation is a technical convenience and is not necessary in our

implementation (§3). Function application 𝑓 (−→𝑉) applies function 𝑓 to arguments

−→
𝑉 . As usual, we

use𝑀 ;𝑁 as sugar for let 𝑥 : 1 = 𝑀 in 𝑁 , where 𝑥 does not occur in 𝑁 .

In the concurrent fragment of the language, spawn 𝑀 spawns term𝑀 as a separate process, and

new creates a fresh mailbox name. Term𝑉 ! m[
−→
𝑊] sends message m with payloads

−→
𝑊 to mailbox𝑉 .

The guard𝑉 :𝐸 {−→𝐺 } expression asserts that mailbox 𝑉 contains pattern 𝐸, and invokes a

guard in

−→
𝐺 . The fail guard is triggered when an unexpected message has arrived; free ↦→ 𝑀

is triggered when a mailbox is empty and there are no more references to it in the system; and

receive m[−→𝑥] from 𝑦 ↦→ 𝑀 is triggered when the mailbox contains a message with tag m, binding
its payloads to

−→𝑥 and continuation mailbox with updated mailbox type to 𝑦 in continuation term

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

𝑀 . We write free 𝑉 as syntactic sugar for guard 𝑉 {free ↦→ ()}, and fail 𝑉 as syntactic sugar for

guard 𝑉 {fail}. We require that each clause within a guard expression is unique.

3.2 Type system
This section describes a declarative type system for Pat. We begin by discussing mailbox types in

more depth, in particular showing how to define subtyping and equivalence.

3.2.1 Types. A mailbox type consists of a capability, either output ! or input ?, and a pattern. A
system can contain multiple references to a mailbox as an output capability, but only one as an

input capability. A pattern is a commutative regular expression, i.e., a regular expression where

composition is unordered. The 1 pattern is the unit of pattern composition ⊙, denoting the empty

mailbox. The 0 pattern denotes the unreliable mailbox, which has received an unexpected message.

It is not possible to send to, or receive from, an unreliable mailbox, but we will show that reduction

does not cause a mailbox to become unreliable. The pattern m denotes a mailbox containing a single

message m2. Pattern choice 𝐸 ⊕ 𝐹 denotes that the mailbox contains either messages conforming to

pattern 𝐸 or 𝐹 . Pattern composition 𝐸 ⊙ 𝐹 denotes that the mailbox contains messages pertaining

to 𝐸 and 𝐹 (in either order). Finally,★𝐸 denotes replication of 𝐸, so★m denotes that the mailbox can

contain zero or more instances of message m. Mailbox patterns obey the usual laws of commutative

regular expressions: 1 is the unit for ⊙, while 0 is the unit for ⊕ and is cancelling for ⊙. Composition

⊙ is associative, commutative, and distributes over ⊕; and ⊕ is associative and commutative.

Pattern semantics. It follows that different syntactic representations of patterns may have the

same meaning, e.g. patterns 1 ⊕ 0 ⊕ (m ⊙ n) and 1 ⊕ (n ⊙ m). Following [12], we define a set-of-

multisets semantics for mailbox patterns; the intuition is that each multiset defines a configuration

of messages that could be present in the mailbox. For example the semantic representation of both

of the patterns above is {⟨⟩, ⟨m, n⟩}. We let A,B range over multisets.

J0K = ∅ J1K = {⟨⟩} J𝐸 ⊕ 𝐹 K = J𝐸K ∪ J𝐹 K J𝐸 ⊙ 𝐹 K = {A ⊎ B | A ∈ J𝐸K,B ∈ J𝐹 K} JmK = {⟨m⟩}

J★𝐸K = J1K ∪ J𝐸K ∪ J𝐸 ⊙ 𝐸K ∪ · · ·

The pattern 0 is interpreted as an empty set; 1 as the empty multiset; ⊕ as set union; ⊙ as

pointwise multiset union; m as the singleton multiset; and ★𝐸 as the infinite set containing any

number of concatenations of interpretations of 𝐸.

Usage annotations. A type 𝑇 can be a base type 𝐶 , or a mailbox type 𝐽 . As discussed in §2, quasi-
linearity is used to avoid aliasing issues. Usage-annotated types 𝐴, 𝐵 annotate mailbox types with a

usage: either second class (◦), or returnable (•). There are no restrictions on the use of a base type.

Only values with a returnable type can be returned from an evaluation frame.

3.2.2 Operations on types. We say that a type is returnable, written returnable(𝐴), if 𝐴 is a base

type 𝐶 or a returnable mailbox type 𝐽 •. The ⌊−⌋ operator ensures that a type is returnable, while
the ⌈−⌉ operator ensures that a mailbox type is second-class:

⌊𝐶 ⌋ = 𝐶 ⌊𝑇 ⌋ = 𝑇 • ⌈𝐶 ⌉ = 𝐶 ⌈𝑇 ⌉ = 𝑇 ◦

We also extend the operators to usage-annotated types (e.g. ⌈𝐽 •⌉ = 𝐽 ◦) and type environments.

Subtyping. With a semantics defined, we can consider subtyping. A pattern 𝐸 is included in a

pattern 𝐹 , written 𝐸 ⊑ 𝐹 , if every multiset in the semantics of 𝐸 also occurs in the semantics of

pattern 𝐹 , i.e., 𝐸 ⊑ 𝐹 ≜ J𝐸K ⊆ J𝐹K.
2
Unlike in §1, our formal development does not pair a message tag with its payload; instead, tags are associated with

payload types via the program signature. This design choice allows us to more easily compare the declarative system with

the algorithmic system in §4, and unlike [12] means we do not need to define types and subtyping coinductively.

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Special Delivery , ,

Definition 3.1 (Subtyping). The subtyping relation is defined by the following rules:

𝐶 ≤ 𝐶
𝐸 ⊑ 𝐹 [1 ≤ [2

?𝐸[1 ≤ ?𝐹[2

𝐹 ⊑ 𝐸 [1 ≤ [2

!𝐸[1 ≤ !𝐹[2

Usage subtyping is defined as the smallest reflexive operator defined by axioms [≤ [and • ≤ ◦.
We write 𝐴 ≃ 𝐵 if both 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, i.e. either 𝐴, 𝐵 are the same base type, or are mailbox

types with the same capability and pattern semantics.

Base types are subtypes of themselves. As with previous accounts of subtyping in actor lan-

guages [26], subtyping is covariant for mailbox types with a receive capability: a mailbox can safely

be replaced with another that can receive more messages. Likewise subtyping is contravariant for
mailboxes with a send capability: a mailbox can safely be replaced with another that can send

a smaller set of messages. Intuitively, as returnable usages are more powerful than second-class

usages, returnable types can be used when only a second-class type is required.

Following [12] we introduce names for particular classes of mailbox types. Intuitively, relevant

mailbox names must be used, whereas irrelevant names need not be. Likewise reliable and usable

names can be used, whereas unreliable and unusable names cannot.

Definition 3.2 (Relevant, Reliable, Usable). A mailbox type 𝐽 is relevant if 𝐽 ̸≤ !1, and irrelevant
otherwise; reliable if 𝐽 ̸≤ ?0 and unreliable otherwise; and usable if 𝐽 ̸≤ !0 and unusable otherwise.

Definition 3.3 (Unrestricted and Linear Types). We say that a type 𝐴 is unrestricted, written un(𝐴),
if 𝐴 = 𝐶 , or 𝐴 = !1◦. Otherwise, we say that 𝑇 is linear.

Our type system ensures that variables with a linear type must be used, whereas variables with

an unrestricted type can be discarded. We can then extend subtyping to type environments, making

it possible to combine type environments, as in [9, 12].

Definition 3.4 (Environment subtyping). Environment subtyping Γ1 ≤ Γ2 is defined as follows:

· ≤ ·
un(𝐴) 𝑥 ∉ dom(Γ′) Γ ≤ Γ′

Γ, 𝑥 : 𝐴 ≤ Γ′
𝐴 ≤ 𝐵 Γ ≤ Γ′

Γ, 𝑥 : 𝐴 ≤ Γ′, 𝑥 : 𝐵

We include a notion of weakening into the subtyping relation, so an environment Γ can be a

subtype environment of Γ′ if it contains additional entries of unrestricted type.

Type combination. Mailbox types ensure that sends and receives “balance out”, meaning that

every send is matched with a receive. For example, using a mailbox at type !Put and ?(Put⊙★Get)
results in a mailbox type ?(★Get). The key technical device used to achieve this goal is type
combination: combining a mailbox type !𝐸 and a mailbox type !𝐹 results in an output mailbox type

which must send both 𝐸 and 𝐹 ; combining an input and an output capability results in an input

capability that no longer needs to receive the output pattern. We can also combine identical base

types. Note that it is not possible to combine to input capabilities as this would permit simultaneous

reads of the same mailbox.

Definition 3.5 (Type combination). Type combination 𝑇 ⊞𝑈 is the commutative partial binary

operator defined by the following axioms:

𝐶 ⊞𝐶 = 𝐶 !𝐸 ⊞ !𝐹 = !(𝐸 ⊙ 𝐹) !𝐸 ⊞ ?(𝐸 ⊙ 𝐹) = ?𝐹 ?(𝐸 ⊙ 𝐹) ⊞ !𝐸 = ?𝐹

Following [9], it is convenient to identify types up to commutativity and associativity, e.g. we
do not distinguish between ?(A ⊙ B)• and ?(B ⊙ A)•. We may however need to use subtyping to

rewrite a type into a form that allows two mailbox types to be combined (e.g. to combine !A and
?(★A), we would need to use subtyping to first rewrite the latter type to ?(A ⊙ ★A)).

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

The usage combination operator combines usages: it is not commutative as a ◦ use of a variable
can only occur before a • use (ensuring that the returnable use is the last lexical use of a variable).

Furthermore, note that • ⊲ • is undefined (ensuring that there is only one returnable instance of a

variable per thread).

Definition 3.6 (Usage combination). The usage combination operator is the partial binary operator

defined by the axioms ◦ ⊲ ◦ = ◦ and ◦ ⊲ • = •.

We can now define usage-annotated type and environment combination.

Definition 3.7 (Usage-annotated type combination). The usage-annotated type combination operator
𝐴 ⊲ 𝐵 is the binary operator defined by the axioms 𝐶 ⊲𝐶 = 𝐶 and 𝐽[1 ⊲ 𝐾[2 = (𝐽 ⊞𝐾)[1⊲[2

.

Definition 3.8 (Environment combination (Γ)). Usage-annotated environment combination Γ1 ⊲ Γ2

is the smallest partial operator on type environments closed under the following rules:

· ⊲ · = ·
𝑥 ∉ dom(Γ2) Γ1 ⊲ Γ2 = Γ

(Γ1, 𝑥 : 𝐴) ⊲ Γ2 = Γ, 𝑥 : 𝐴

Γ1 ⊲ Γ2 = Γ

(Γ1, 𝑥 : 𝐴) ⊲ (Γ2, 𝑥 : 𝐵) = Γ, 𝑥 : (𝐴 ⊲ 𝐵)

We use usage-annotated type combination when combining the types of two variables used in

subsequent evaluation frames (i.e. in the subject and body of a let expression). We also require

disjoint combination, where two environments are only able to share unrestricted variables:

Definition 3.9 (Disjoint environment combination). Disjoint environment combination Γ1 + Γ2 is

the smallest partial operator on type environments closed under the following rules:

· + · = ·
𝑥 ∉ dom(Γ2) Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐴 + Γ2 = Γ, 𝑥 : 𝐴

𝑥 ∉ dom(Γ1) Γ1 + Γ2 = Γ

Γ1 + Γ2, 𝑥 : 𝐴 = Γ, 𝑥 : 𝐴

un(𝐴) Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐴 + Γ2, 𝑥 : 𝐴 = Γ, 𝑥 : 𝐴

3.2.3 Typing rules. Fig. 5 shows the declarative typing rules for Pat. As the system is declarative it

helps to read the rules top-down.

Programs and definitions. A program is typable if all of its definitions are typable, and its body

has unit type. A definition def 𝑓 (−−−→𝑥 : 𝐴): 𝐵 {𝑀} is typable if𝑀 has type 𝐵 under environment

−−−→
𝑥 : 𝐴.

Terms. Term typing has the judgement Γ ⊢P 𝑀 :𝐴, which states that when defined in the context

of program P, under environment Γ, term 𝑀 has type 𝐴. We omit the P parameter in the rules

for readability. Rule T-Var types a variable in a singleton environment; we account for weakening

in T-Subs. Rule T-Const types a constant under an empty environment; we assume an implicit

schema mapping constants to types, and assume at least the unit value () of type 1. Rule T-App
types function application according to the definition in P. Each argument must be typable under

a disjoint type environment to avoid aliasing mailbox names in the body of the function.

Rule T-Let types sequential composition. The subject of the let expression must be returnable;

since Γ1 ⊲ Γ2 is defined, we know that if the subject (typable using Γ1) contains a returnable variable,

then it cannot appear in Γ2. This avoids aliasing and use-after-free errors.

Rule T-Spawn types spawning a term𝑀 of unit type as a new process. The type environment

used to type𝑀 can contain any number of returnable, but the conclusion of the rule ‘masks’ any

returnable types as second-class. Intuitively, this is because there is no need to impose an ordering

on how a variable is used in a separate process. So while within a single process a guard on

some name 𝑥 should not precede a send on 𝑥 , there is no such restriction if the two expressions

are executing in concurrent processes. Rule T-New creates a fresh mailbox with type ?1•, since
subsequent sends and receives must “balance out” to an empty mailbox.

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Special Delivery , ,

Typing rules for programs and definitions ⊢ P ⊢ 𝐷

P = (S, −→𝐷,𝑀) (⊢P 𝐷𝑖)𝑖 · ⊢P 𝑀 : 1

⊢ P

−−−→
𝑥 : 𝐴 ⊢P 𝑀 :𝐵

⊢P def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 }

Typing rules for terms Γ ⊢P 𝑀 :𝐴

T-Var

𝑥 :𝐴 ⊢ 𝑥 :𝐴

T-Const

𝑐 has base type𝐶

· ⊢ 𝑐 :𝐶

T-App

P(𝑓) = def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 } (Γ𝑖 ⊢ 𝑉𝑖 :𝐴𝑖)𝑖∈1..𝑛

Γ1 + · · · + Γ𝑛 ⊢ 𝑓 (𝑉1, . . . ,𝑉𝑛) :𝐵

T-Let

Γ1 ⊢ 𝑀 : ⌊𝑇 ⌋ Γ2, 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :𝐵

Γ1 ⊲ Γ2 ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :𝐵

T-Spawn

Γ ⊢ 𝑀 : 1

⌈Γ⌉ ⊢ spawn 𝑀 : 1

T-New

· ⊢ new : ?1•

T-Send

P(m) = −→𝑇 Γ ⊢ 𝑉 : !m◦

(Γ′𝑖 ⊢𝑊𝑖 : ⌈𝑇𝑖 ⌉)𝑖∈1..𝑛

Γ + Γ′
1
+ . . . + Γ′𝑛 ⊢ 𝑉 ! m[

−→
𝑊] : 1

T-Guard

Γ1 ⊢ 𝑉 : ?𝐹 • Γ2 ⊢
−→
𝐺 :𝐴 :: 𝐹 𝐸 ⊑ 𝐹 ⊨ 𝐹

Γ1 + Γ2 ⊢ guard𝑉 :𝐸 {−→𝐺 } :𝐴

T-Subs

Γ ≤ Γ′ 𝐴 ≤ 𝐵 Γ′ ⊢ 𝑀 :𝐴

Γ ⊢ 𝑀 :𝐵

Typing rules for guards Γ ⊢P
−→
𝐺 :𝐴 :: 𝐸 Γ ⊢P 𝐺 :𝐴 :: 𝐸

TG-GuardSeq

(Γ ⊢ 𝐺𝑖 :𝐴 :: 𝐸𝑖)𝑖
Γ ⊢ −→𝐺 :𝐴 :: 𝐸1 ⊕ . . . ⊕ 𝐸𝑛

TG-Fail

Γ ⊢ fail :𝐴 :: 0

TG-Free

Γ ⊢ 𝑀 :𝐴

Γ ⊢ free ↦→ 𝑀 :𝐴 :: 1

TG-Recv

P(m) = −→𝑇 base(−→𝑇) ∨ base(Γ)
Γ, 𝑦 : ?𝐸•, −→𝑥 :

−−→
⌈𝑇 ⌉ ⊢ 𝑀 :𝐵

Γ ⊢ receive m[−→𝑥] from𝑦 ↦→ 𝑀 :𝐵 :: m⊙𝐸

Pattern residual 𝐸 / m

0 / m ≜ 0 1 / m ≜ 0 m / m ≜ 1
m ≠ n

m / n ≜ 0
(𝐸 ⊕ 𝐹) / m ≜ (𝐸 / m) ⊕ (𝐹 / m)

(𝐸 ⊙ 𝐹) / m ≜ ((𝐸 / m) ⊙ 𝐹) ⊕ (𝐸 ⊙ (𝐹 / m))

Pattern normal form (PNF) 𝐸 ⊨ 𝐹

𝐸 ⊨lit 0 𝐸 ⊨lit 1
𝐹 ≃ 𝐸 / m
𝐸 ⊨lit m ⊙ 𝐹

𝐸 ⊨lit 𝐹1 𝐸 ⊨lit 𝐹2

𝐸 ⊨ 𝐹1 ⊕ 𝐹2

𝐸 ⊨lit 𝐹

𝐸 ⊨ 𝐹

Fig. 5. Pat declarative term typing

Rule T-Send types a send expression 𝑉 ! m[
−→
𝑊], where a message m with payloads

−→
𝑊 is sent to a

mailbox𝑉 . Value𝑉 must be a reference with type !m◦, meaning that it can be used to send message

m. The mailbox only needs to be second-class, but subtyping means that we can also send to a

first-class name. All payloads

−→
𝑉 must be subtypes of the types defined by the signature for message

m, and payloads must be typable under separate environments to avoid aliasing when receiving a

message. Unlike in session-typed functional programming languages, sending is a side-effecting

operation of type 1, and the behavioural typing is accounted for in environment composition.

Rule T-Guard types the expression guard𝑉 :𝐸 {−→𝐺 }, that retrieves from mailbox 𝑉 with some

pattern 𝐸 using guards

−→
𝐺 . The first premise ensures that under a type environment Γ1, mailbox 𝑉

has type ?𝐹 •: the mailbox should have a receive capability with pattern 𝐹 , and must be returnable.

Demanding that the mailbox is returnable rules out use-after-free errors since we cannot use the

mailbox name in the continuation. The second premise states that under type environment Γ2,

guards

−→
𝐺 all return a value of type 𝐴 and correspond to pattern 𝐹 . The third premise requires that

the pattern assertion 𝐸 is contained within 𝐹 . The final premise, ⊨ 𝐹 , ensures that 𝐹 is in pattern

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

normal form: the pattern should be a disjunction of pattern literals. That is 0, 1, or m ⊙ 𝐹 , where 𝐹
is equivalent to 𝐸 without message m.

Finally, rule T-Subs allows the use of subtyping. Subtyping on type environments is crucial when

constructing derivations, e.g. two patterns may have the same semantics but differ syntactically.

Applying T-Subs makes it possible to rewrite mailbox types so that they can be combined by the

type combination operators. We also allow the usual use of subsumption on return types, e.g.
allowing a value with a subtype of a function argument to be used.

Guards. Rule TG-GuardSeq types a sequence of guards, ensuring that each guard is typable

under the same type environment and with the same return type. Rule TG-Fail types a failure

guard: since the type system will ensure that such a guard is never evaluated, it can have any type

environment and any type, and is typable under pattern literal 0. Rule TG-Free types a guard

of the form free ↦→ 𝑀 , where 𝑀 has type 𝐴. Finally, rule TG-Recv types a guard of the form

receive m[−→𝑥] from 𝑦 ↦→ 𝑀 , that retrieves a message with tag m from the mailbox, binding its

payloads (whose types are retrieved from the signature for message m) to −→𝑥 , and re-binding the

mailbox to 𝑦 with an updated type in continuation𝑀 . The payloads are made usable rather than
returnable, as otherwise the payloads could interfere with the names in the enclosing context.

Pattern residual. The pattern residual 𝐸 / m calculates the pattern 𝐸 after m is consumed, and

corresponds to the Brzozowski derivative [6] over a commutative regular expression. The residual

of 0, 1, or n (where n ≠ m) with respect to a message tag m is the unreliable type 0. The derivative of m
with respect to m is 1. The derivative operator distributes over ⊕, and the derivative of concatenation
is the disjunction of the derivative of each subpattern.

Example. We end this section by showing the derivation for part of the future example from §1,

specifically, the body of the client definition which creates a future and self mailbox, initialises

the future with a number, and then requests and prints the result. In the following, we abbreviate

future to f, self to 𝑠 , and result to 𝑟 . We assume that the program includes a signature S = [Put ↦→
Int, Get ↦→ !Reply, Reply ↦→ Int], and the emptyFuture and fullFuture definitions from §1.

We split the derivation into three subderivations. Since it is easier to read derivations top-down,

we start by typing the guard expression. In the following, we refer to the receive guard as 𝐺 , and

name the first derivation D1:

s : ?(Reply ⊙ 1)• ⊢ s : ?(Reply ⊙ 1)•

s : ?1• ⊢ free s : 1
r : Int ⊢ print(intToString(r)) : 1

s : ?1•, r : Int ⊢ free s; print(intToString(r)) : 1

· ⊢ receive Reply[r] from s ↦→
free s; print(intToString(r)) : 1 :: Reply ⊙ 1

Reply ⊑ Reply ⊙ 1
⊨ Reply ⊙ 1

s : ?(Reply ⊙ 1)• ⊢ guard s : Reply {𝐺 } : 1

The type of the s mailbox in the subject of the guard expression is ?(Reply ⊙ 1)• denoting that

the mailbox can contain a Reply message and will then be empty. The receive guard binds 𝑠 at

type ?1• and 𝑟 at Int, freeing 𝑠 and using 𝑟 in the print expression. The Reply annotation on the

guard is a subpattern of the pattern of 𝑠 . The above derivation is used within derivation D2:

f : !Put◦ ⊢ f : !Put◦ · ⊢ 5 : Int

f : !Put◦ ⊢ f ! Put[5] : 1

f : !Get◦ ⊢ f : !Get◦

f : !Get• ⊢ f : !Get◦ s : !Reply◦ ⊢ s : !Reply◦

f : !Get•, s : !Reply◦ ⊢ f ! Get[s] : 1
D1

f : !Get•, s : ?1• ⊢ f ! Get[s];

guard s : Reply {𝐺 } : 1

f : !(Put ⊙ Get)•, s : ?1• ⊢ f ! Put[5]; f ! Get[s];

guard s : Reply { · · ·} : 1

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Special Delivery , ,

Runtime syntax

Runtime names 𝑎

Names 𝑢, 𝑣, 𝑤 ::= 𝑥 | 𝑎
Frames 𝜎 ::= ⟨𝑥,𝑀 ⟩
Frame stacks Σ ::= 𝜖 | 𝜎 · Σ

Guard contexts G ::=
−→
𝐺1 · [] ·

−→
𝐺2

Configurations C,D ::= L𝑀, Σ M | 𝑎 ← m[
−→
𝑉]

| C ∥ D | (a𝑎) C
Runtime type environments Δ ::= · | Δ,𝑢 : 𝑇

Reduction rules C −→P D

E-Let L let 𝑥 : 𝑇 = 𝑀 in 𝑁, Σ M −→ L𝑀, ⟨𝑥, 𝑁 ⟩ · Σ M
E-Return L𝑉 , ⟨𝑥,𝑀 ⟩ · Σ M −→ L𝑀 {𝑉 /𝑥 }, Σ M
E-App L 𝑓 (−→𝑉), Σ M −→ L𝑀 {−→𝑉 /−→𝑥 }, Σ M

(if P(𝑓) = def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 })
E-New Lnew, Σ M −→ (a𝑎) (L𝑎, Σ M) (𝑎 is fresh)
E-Send L𝑎 ! m[

−→
𝑉], Σ M −→ L (), Σ M ∥ 𝑎 ← m[

−→
𝑉]

E-Spawn L spawn 𝑀, Σ M −→ L (), Σ M ∥ L𝑀,𝜖 M
E-Free (a𝑎) (Lguard𝑎 :𝐸 {G[free ↦→ 𝑀] }, Σ M) −→ L𝑀, Σ M

E-Recv Lguard𝑎 :𝐸 {G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀] }, Σ M ∥ 𝑎 ← m[
−→
𝑉] −→ L𝑀 {−→𝑉 /−→𝑥 , 𝑎/𝑦}, Σ M

E-Nu

C −→ D
(a𝑎) C −→ (a𝑎)D E-Par

C −→ C′

C ∥ D −→ C′ ∥ D E-Struct

C ≡ C′ C′ −→ D′ D′ ≡ D
C −→ D

Fig. 6. Pat operational semantics

Here f is used to send a Put and then a Get with s of type !Reply◦ as payload. As the two

sends to the f message are sequentially composed, the type of f at the root of the subderivation is

!(Put ⊙ Get)•. Since s is used at type ?(Reply ⊙ 1)• in D1, the send and receive patterns balance

out to the empty mailbox type ?1•. Finally, we can construct the derivation for the entire term:

· ⊢ new : ?1•

f : ?(Put ⊙ ★Get)• ⊢ emptyFuture(f) : 1
f : ?(Put ⊙ ★Get)◦ ⊢ spawn emptyFuture(f) : 1

f : ?((Put ⊙ Get) ⊙ 1)◦ ⊢ spawn emptyFuture(f) : 1

· ⊢ new : ?1• D2

f : !(Put ⊙ Get)• ⊢ let s = new in
f ! Put[5]; · · · : 1

f : ?1• ⊢
spawn emptyFuture(f) ;
let s = new in
f ! Put[5]; · · ·

: 1

· ⊢

let f = new in
spawn emptyFuture(f) ;
let s = new in
f ! Put[5]; f ! Get[s];

guard s : Reply {
receive Reply[r] from s ↦→
free s;
print(intToString(r))

}

: 1

Since we let-bind f to new, f must have type ?1•. Definition emptyFuture requires an argument

of type ?(Put ⊙ ★Get)•; since the function application appears in the body of the spawn we

can mask the usage annotation to ◦, and use environment subtyping to rewrite the type of f to

?((Put ⊙ Get) ⊙ 1)•. This then balances out with the use of f in D2, completing the derivation.

3.3 Operational Semantics
Figure 6 shows the runtime syntax and reduction rules for Pat. We extend values 𝑉 with runtime

names 𝑎. The concurrent semantics of the language is described as a nondeterministic reduction

relation on a language of configurations, which resemble terms in the 𝜋-calculus. Configuration

L𝑀, Σ M is a thread evaluating term𝑀 , with frame stack Σ; we will discuss frame stacks in the next

section. Configuration 𝑎 ← m[
−→
𝑉] denotes a message m[

−→
𝑉] in mailbox 𝑎; name restriction (a𝑎)C

binds name 𝑎 in C; and C ∥ D denotes the parallel composition of C and D.

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Configuration Typing Δ ⊢ C

TC-Nu

Δ, 𝑎 : ?1 ⊢ C
Δ ⊢ (a𝑎) C

TC-Par

Δ1 ⊢ C Δ2 ⊢ D
Δ1 ⊲⊳ Δ2 ⊢ C ∥ D

TC-Message

(⌈Δ𝑖 ⌉ ⊢ 𝑉𝑖 :𝐴𝑖)𝑖∈1..𝑛
−→
𝐴 ≤ ⌈P (m) ⌉

Δ1 + . . . + Δ𝑛, 𝑎 : !m ⊢ 𝑎 ← m[
−→
𝑉]

TC-Thread

⌊Δ⌋ = Γ1 ⊲ Γ2 Γ1 ⊢ 𝑀 :𝐴 Γ2 ⊢ 𝐴 ▶ Σ

Δ ⊢ L𝑀, Σ M

TC-Subs

Δ ≤ Δ′ Δ′ ⊢ C
Δ ⊢ C

Frame Stack Typing Γ ⊢ 𝑀 ▶ Σ

· ⊢ 𝐴 ▶ 𝜖
Γ1, 𝑥 : 𝐴 ⊢ 𝑀 :𝐵 returnable(𝐵) Γ2 ⊢ 𝐵 ▶ Σ

Γ1 ⊲ Γ2 ⊢ 𝐴 ▶ ⟨𝑥,𝑀 ⟩ · Σ

Fig. 7. Pat runtime typing

Frame stacks. We use explicit frame stacks [15, 49] rather than evaluation contexts for technical

convenience. A frame ⟨𝑥,𝑀⟩ is a pair of a variable 𝑥 and a continuation𝑀 , where 𝑥 is free in𝑀 . A

frame stack is an ordered sequence of frames, where 𝜖 denotes the empty stack.

Reduction rules. Frame stacks are best demonstrated by the E-Let and E-Return rules: intuitively,

let 𝑥 : 𝑇 = 𝑀 in 𝑁 evaluates𝑀 , binding the result to 𝑥 in 𝑁 . The rule adds a fresh frame ⟨𝑥, 𝑁 ⟩ to
the top of a frame stack, and evaluates𝑀 . Conversely, E-Return returns 𝑉 into the parent frame;

if the top frame is ⟨𝑥,𝑀⟩, then we can evaluate the continuation𝑀 with 𝑉 substituted for 𝑥 . Rule

E-App evaluates the body of function 𝑓 with arguments

−→
𝑉 substituted for the parameters

−→𝑥 .
Rule E-New creates a fresh mailbox name restriction and returns it into the calling context. Rule

E-Send sends a message with tag m and payloads

−→
𝑉 to a mailbox 𝑎, returning () to the calling

context and creating a sent message configuration 𝑎 ← m[
−→
𝑉]. Rule E-Spawn spawns a computation

as a fresh process, with an empty frame stack. Rule E-Free allows a name 𝑎 to be garbage collected

if it is not contained in any other thread, evaluating the continuation𝑀 of the free guard. Finally,

rule E-Recv handles receiving a message from a mailbox, binding the payload values to
−→𝑥 and

updated mailbox name to 𝑦 in continuation𝑀 . The remaining rules are administrative.

3.4 Metatheory
3.4.1 Runtime typing. To prove metatheoretical properties about Pat we introduce a type system
on configurations; this type system is used only for reasoning and is not required for typechecking.

Runtime type environments. The runtime typing rules make use of a type environment Δ that

maps variables to types that do not contain usage information. Usage information is inherently only

useful in constraining sequential uses of a mailbox variable, where guards are blocking, whereas

it makes little sense to constrain concurrent usages of a variable. Runtime type environment

combination on Δ1 ⊲⊳ Δ2 is similar to usage-annotated type environment combination but with

two differences: it is commutative to account for the unordered nature of parallel threads, and type

combination does not include usage information.

Definition 3.10 (Environment combination (Δ)). Environment combination Δ1 ⊲⊳ Δ2 is the smallest

partial commutative binary operator on type environments closed under the following rules:

𝑥 ∉ dom(Δ2) Δ1 ⊲⊳ Δ2 = Δ

(Δ1, 𝑥 : 𝑇) ⊲⊳ Δ2 = Δ, 𝑥 : 𝑇

𝑥 ∉ dom(Δ1) Δ1 ⊲⊳ Δ2 = Δ

Δ1 ⊲⊳ (Δ2, 𝑥 : 𝑇) = Δ, 𝑥 : 𝑇

Δ1 ⊲⊳ Δ2 = Δ

(Δ1, 𝑥 : 𝑇) ⊲⊳ (Δ2, 𝑥 : 𝑈) = Δ, 𝑥 : (𝑇 ⊞𝑈)

Disjoint combination on runtime type environments Δ1 + Δ2 (omitted) is defined analogously to

disjoint combination on Γ.

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Special Delivery , ,

Runtime typing rules. Figure 7 shows the runtime typing rules. Rule TC-Nu types a name restric-

tion if the name is of type ?1; in turn this ensures that sends and receives on the mailbox “balance

out” across threads. Rule TC-Par allows configurations C and D to be composed in parallel if

they are typable under combinable runtime type environments. Rule TC-Message types a message

configuration 𝑎 ← m[
−→
𝑉]. Name 𝑎 of type !m cannot appear in any of the values sent as a payload.

Each payload value 𝑉 must be a subtype of the type defined by the message signature, under the

second-class lifting of a disjoint runtime type environment. Rule TC-Subs allows subtyping on

runtime type environments; the subtyping relation Δ ≤ Δ′ is analogous to subtyping on Γ.

Thread and frame stack typing. Rule TC-Thread types a thread, which is a pair of a currently-

evaluating term, typable under an environment Γ1, and a stack frame, typable under an environment

Γ2. The combination Γ1 ⊲ Γ2 should result in the returnable lifting of Δ: intuitively, we should be able
to use every mailbox variable in Δ as returnable in the thread. TC-Thread makes use of the frame

stack typing judgement Γ ⊢ 𝐴 ▶ Σ (inspired by [15]), which can be read “under type environment

Γ, given a value of type 𝐴, frame stack Σ is well-typed”. The empty frame stack is typable under

the empty environment given any type. A non-empty frame stack ⟨𝑥,𝑀⟩ · Σ is well-typed if 𝑀

has some returnable type 𝐵, given a variable 𝑥 of type 𝐴. The remainder of the stack must then be

well-typed given 𝐵. We combine the environments used for typing the head term and the remainder

of the stack using ⊲ as we wish to account for sequential uses of a mailbox; for example, in the term

𝑥 ! m[𝑉];𝑥 ! n[𝑊], 𝑥 would have type !(m ⊙ n)◦.

3.4.2 Properties. We can now state some metatheoretical results. We relegate proofs to Appendix E.

Typability is preserved by reduction; the proof is nontrivial since we must do extensive reasoning

about environment combination.

Theorem 3.11 (Preservation). If ⊢ P, and Γ ⊢P C with Γ reliable, and C −→P D, then Γ ⊢P D.

Preservation implies mailbox conformance: the property that a configuration will never evaluate

to a singleton failure guard. To state mailbox conformance, it is useful to define the notion of a

configuration context H ::= (a𝑎)H | H ∥ C | L [], Σ M, that allows us to focus on a single thread.

Corollary 3.12 (MailboxConformance). If ⊢ P and Γ ⊢P C with Γ reliable, thenC ̸−→∗H[fail 𝑉].
Progress. To prove a progress result for Pat, we begin with some auxiliary definitions.

Definition 3.13 (Message set). Amessage setM is a configuration of the form: 𝑎1 ← m1[
−→
𝑉1] ∥ · · · ∥

𝑎𝑛 ← m𝑛[
−→
𝑉𝑛]. We say that a message setM contains a message m for 𝑎 ifM ≡ 𝑎 ← m[

−→
𝑉] ∥ M′.

Next, we classify canonical forms, which give us a global view of a configuration. Every well

typed process is structurally congruent to a canonical form.

Definition 3.14 (Canonical form). A configuration C is in canonical form if it is of the form:

(a𝑎1) · · · (a𝑎𝑙) (L𝑀1, Σ1 M ∥ · · · L𝑀𝑚, Σ𝑚 M ∥ M)
Definition 3.15 (Waiting). We say that a term𝑀 is waiting on mailbox 𝑎 for a message with tag m,

written waiting(𝑀,𝑎, m), if𝑀 can be written guard𝑎 :𝐸 {G[receive m[𝑥] from 𝑦 ↦→ 𝑁]}.
Let fv(−) denote the set of free variables in a term𝑀 or frame stack Σ. We can then use canonical

forms to characterise a progress result: either each thread can reduce, has reduced to a value, or is

waiting for a message which has not yet been sent by a different thread.

Theorem 3.16 (Partial Progress). Suppose ⊢ P and · ⊢P C where C is in canonical form:

C = (a𝑎1) · · · (a𝑎𝑙) (L𝑀1, Σ1 M ∥ · · · L𝑀𝑚, Σ𝑚 M ∥ M)
Then for each𝑀𝑖 , either:

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Pattern variables 𝛼, 𝛽

Mailbox Patterns 𝛾, 𝛿 ::= 0 | 1 | m | 𝛾 ⊕ 𝛿
| 𝛾 ⊙ 𝛿 | ★𝛾 | 𝛼

Mailbox Types 𝜍 ::= !𝛾 | ?𝛾
Types 𝜋, 𝜌 ::= 𝐶 | 𝜍
Usage-Ann. Types 𝜏, 𝜎 ::= 𝐶 | 𝜍[

Augmented Type Envs. Θ ::= · | Θ, 𝑥 : 𝜏

Nullable Type Envs. Ψ ::= Θ | ⊤
Augmented Definitions 𝐷 ::= def 𝑓 (−−→𝑥 : 𝜏) : 𝜎 {𝑀 }
Constraints 𝜙 ::= 𝛾 <:𝛿

Constraint sets Φ

Fig. 8. Pat syntax extended for algorithmic typing
• there exist𝑀 ′𝑖 , Σ

′
𝑖 such that L𝑀𝑖 , Σ𝑖 M −→ L𝑀 ′𝑖 , Σ

′
𝑖 M; or

• 𝑀𝑖 is a value and Σ𝑖 = 𝜖 ; or
• waiting(𝑀𝑖 , 𝑎 𝑗 , m𝑗) whereM does not contain a message m𝑗 for 𝑎 𝑗 and 𝑎 𝑗 ∉ fv(−→𝐺𝑖) ∪ fv(Σ𝑖), where−→
𝐺𝑖 are the guard clauses of𝑀𝑖 .

The key consequence of Theorem 3.16 is the absence of self-deadlocks: since we can only guard

on a returnable mailbox, and a returnable name must be the last occurrence in the thread, it cannot

be that the guard expression is blocking a send to the same mailbox in the same thread.

Remark. The original formulation of mailbox typing in a process calculus [12] provides a global
progress result by exploiting a dependency graph to eliminate cyclic dependencies and hence deadlocks.
A language implementation cannot use this approach as it relies on knowing runtime names directly.
However quasi-linear typing still allows us to rule out self-deadlocking interactions.

4 ALGORITHMIC TYPING
Writing a typechecker based on Pat’s declarative typing rules is challenging due to nondeterministic

context splits, environment subtyping, and pattern inclusion. MC2
[45] is a typechecker for the

mailbox calculus, based on a typechecker for concurrent object usage protocols [46]. The type

system used in MC2
has, however, not been formalised. We use several ideas from MC2

, including

algorithmic type combination operations, and adapt the approach for a programming language.

This section describes a co-contextual [16] algorithmic type system based on backwards bidirec-
tional typing [60]. The key idea is to construct a type environment based on how mailbox variables

are used, along with a set of pattern inclusion constraints.

4.1 Algorithmic Type System
Extended syntax and annotation. A key difference to the declarative type system is the addition

of pattern variables 𝛼 , that act as a placeholder for part of a pattern and are generated during

typechecking. We can then generate and solve inclusion constraints 𝜙 on patterns. Figure 8 shows

the extended syntax used in algorithm.

Constraints. A key challenge for the algorithmic type system is determining whether one pattern

is included within another: e.g. m ⊑ ★m. Given that patterns may contain pattern variables, we may

need to defer inclusion checking until more pattern variables are known, so we introduce inclusion

constraints 𝛾 <:𝛿 which require that pattern 𝛾 is included in pattern 𝛿 . We write the equivalence

constraint 𝛾 ∼𝛿 as syntactic sugar for the constraint set {𝛾 <:𝛿, 𝛿 <:𝛾} and abuse notation to treat

𝛾 ∼𝛿 as a single constraint.

4.1.1 Algorithmic type operations. Fig. 9 shows the algorithmic type combination operators.

Unrestrictedness and subtyping. The algorithmic unrestrictedness operation unr(𝜏) ▶ Φ states

that 𝜏 is unrestricted subject to constraints Φ, and the definition reflects the fact that a type is

unrestricted in the declarative system if it is a base type or a subtype of !1◦. Algorithmic subtyping

is similar: a base type is a subtype of itself, and we check that two mailbox types with the same

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Special Delivery , ,

Unrestrictedness unr(𝜏) ▶ Φ

unr(𝐶) ▶ ∅ unr(!𝛾◦) ▶ {1<:𝛾 }

Subtyping and equivalence [1 ≤ [2 𝜏 ≤ 𝜎 ▶ Φ 𝜏 ∼ 𝜎 ▶ Φ

[≤ [• ≤ ◦ 𝐶 ≤ 𝐶 ▶ ∅
[1 ≤ [2

!𝛾[1 ≤ !𝛿[2 ▶ 𝛿 <:𝛾

[1 ≤ [2

?𝛾[1 ≤ ?𝛿[2 ▶ 𝛾 <:𝛿

𝜏 ≤ 𝜎 ▶ Φ1

𝜎 ≤ 𝜏 ▶ Φ2

𝜏 ∼ 𝜎 ▶ Φ1 ∪ Φ2

Type join 𝜍1 # 𝜍2 ▶ 𝜍 ;Φ 𝜏1 # 𝜏2 ▶ 𝜎 ;Φ

!𝛾 # !𝛿 ▶ !(𝛾 ⊙ 𝛿) ; ∅
𝛼 fresh

!𝛾 # ?𝛿 ▶ ?𝛼 ; { (𝛾 ⊙ 𝛼) <:𝛿 }
𝛼 fresh

?𝛾 # !𝛿 ▶ ?𝛼 ; { (𝛿 ⊙ 𝛼) <:𝛾 }

𝜍1 # 𝜍2 ▶ 𝜍 ;Φ

𝜍
[1

1
𝜍[2

2
▶ 𝜍[1⊲[2

;Φ 𝐶 #𝐶 ▶ 𝐶 ; ∅

Type merge 𝜍1 ⊓ 𝜍2 ▶ 𝜍 ;Φ 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ

!𝛾 ⊓ !𝛿 ▶ !(𝛾 ⊕ 𝛿) ; ∅
𝛼 fresh

?𝛾 ⊓ ?𝛿 ▶ ?𝛼 ; {𝛼 <:𝛾, 𝛼 <:𝛿 }
𝜍1 ⊓ 𝜍2 ▶ 𝜍 ;Φ

𝜍
[1

1
⊓ 𝜍[2

2
▶ 𝜍max([1,[2)

;Φ 𝐶 ⊓𝐶 ▶ 𝐶 ; ∅

Fig. 9. Pat algorithmic type operations

capability are subtypes of each other by generating a contravariant constraint for a send type, and

a covariant constraint for a receive type.

Algorithmic type join. Declarative mailbox typing relies on the subtyping rule to manipulate types

into a form where they can be combined with the type combination operators, e.g., !𝐸 ⊞ ?(𝐸 ⊙ 𝐹) =
?𝐹 . The algorithmic type system cannot apply the same technique as it does not know, a priori,
the form of each pattern. Instead, the algorithmic type join operation allows the combination of

two mailbox types irrespective of their syntactic form. Combining two send types is the same

as in the declarative system, but combining a send type with a receive type (and vice versa) is

more interesting: say we wish to combine !𝛾 and ?𝛿 . In this case, we generate a fresh pattern

variable 𝛼 ; the result is ?𝛼 along with the constraint that (𝛾 ⊙ 𝛼) <:𝛿 : namely, that the send pattern

concatenated with the fresh pattern variable is included in the pattern 𝛿 .

For example, joining !m and ?(n ⊙ m) produces a receive mailbox type ?𝛼 and a constraint

(m ⊙ 𝛼) <:(n ⊙ m), for which a valid solution is 𝛼 ↦→ n, and hence the expected combined type ?n.

Algorithmic type merge. In the declarative type system branching control flow requires that

each branch is typable under the same type environment (using the T-Subs rule). The algorithmic

type system instead generates constraints that ensure that each type is used consistently across

branches using the algorithmic type merge operation 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ. Two base types are merged if

they are identical. In the case of mailbox types, the function takes the maximum usage annotation,

so max(•, ◦) = •. It ensures that when merging two output capabilities the patterns are combined

using pattern disjunction. Conversely merging two input capabilities generates a new pattern

variable that must be included in both merged patterns.

Algorithmic environment combination. We can extend the algorithmic type operations to type

environments; the (omitted, see Appendix A) rules are adaptations of the corresponding declarative

combinations. Notably, when combining two environments where an output mailbox !𝛾 is used in

one environment but not another, the resulting type is !(𝛾 ⊕ 1) to signify the choice of not sending
on the mailbox name.

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Constraint generation for programs and definitions ⊢ P ⊲ Φ ⊢P def 𝑓 (−−→𝑥 : 𝜏) : 𝜎 {𝑀 } ⊲ Φ

P = (S, −→𝐷,𝑀) (⊢P 𝐷𝑖 ⊲ Φ𝑖)𝑖 𝑀 ⇐ 1 ▶ ·; Φ
⊢ P ⊲ Φ ∪ Φ1 ∪ · · · ∪ Φ𝑛

𝑀 ⇐ 𝜎 ▶ Θ; Φ1 check(−→𝑥 , −→𝜏 ,Θ) = Φ2 Θ − −→𝑥 = ·
⊢P def 𝑓 (−−→𝑥 : 𝜏) : 𝜎 {𝑀 } ⊲ Φ1 ∪ Φ2

Constraint generation (synthesis) 𝑀 ⇒ 𝜏 ▶ Θ; Φ

TS-Const

𝑐 has base type𝐶

𝑐 ⇒P 𝐶 ▶ ·; ∅

TS-New

new⇒ ?1• ▶ ·; ∅

TS-Spawn

𝑀 ⇐ 1 ▶ Θ; Φ

spawn 𝑀 ⇒ 1 ▶ ⌈Θ⌉; Φ

TS-Send

P(m) = −→𝜋 𝑉 ⇐ !m◦ ▶ Θ′; Φ
(𝑊𝑖 ⇐ ⌈𝜋𝑖 ⌉ ▶ Θ′𝑖 ; Φ

′
𝑖)𝑖∈1..𝑛 Θ′ + Θ′

1
+ . . . + Θ′𝑛 ▶ Θ;Φ′′

𝑉 ! m[
−→
𝑊]⇒ 1 ▶ Θ; Φ ∪ Φ′

1
∪ . . . ∪ Φ′𝑛 ∪ Φ′′

TS-App

P(𝑓) = −→𝜏 −→ 𝜎

(𝑉𝑖 ⇐ 𝜏𝑖 ▶ Θ𝑖 ; Φ𝑖)𝑖∈1..𝑛 Θ1 + . . . + Θ𝑛 ▶ Θ;Φ

𝑓 (𝑉1, . . . ,𝑉𝑛) ⇒ 𝜎 ▶ Θ; Φ ∪ Φ1 ∪ . . . ∪ Φ𝑛

Constraint generation (checking) 𝑀 ⇐P 𝜏 ▶ Θ; Φ

TC-Var

𝑥 ⇐ 𝜏 ▶ 𝑥 : 𝜏 ; ∅

TC-Let

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝜏 ▶ Θ2; Φ2 check(Θ2, 𝑥, ⌊𝑇 ⌋) = Φ3 Θ1 − 𝑥 # Θ2 ▶ Θ;Φ4

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝜏 ▶ Θ; Φ1 ∪ · · · ∪ Φ4

TC-Guard

{𝐸} −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ1; 𝐹 𝑉 ⇐ ?𝐹 • ▶ Θ′; Φ2 Ψ + Θ′ ▶ Θ;Φ3

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3 ∪ {𝐸 <: 𝐹 }

TC-Sub

𝑀 ⇒ 𝜏 ▶ Θ; Φ1 𝜏 ≤ 𝜎 ▶ Φ2

𝑀 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2

Environment lookup check(Θ, 𝑥, 𝜏) = Φ check(Θ, −→𝑥 , −→𝜏) = Φ

𝑥 ∉ dom(Θ) unr(𝜏) ▶ Φ

check(Θ, 𝑥, 𝜏) = Φ

𝜎 ≤ 𝜏 ▶ Φ

check((Θ, 𝑥 : 𝜏), 𝑥, 𝜎) = Φ

(check(Θ, 𝑥𝑖 , 𝜏𝑖) = Φ𝑖)𝑖
check(Θ, −→𝑥 , −→𝜏) = Φ1 ∪ · · · ∪ Φ𝑛

Fig. 10. Pat algorithmic typing (programs, definitions, and terms)
Nullable type environments. Checking a fail guard produces a null environment ⊤ which can be

composed with any other type environment, as shown by the following definition:

Definition 4.1 (Nullable environment combination). For each combination operator ★ ∈ {#,⊓, +}
we extend environment combination to nullable type environments, Ψ1 ★Ψ2 ▶ Ψ;Φ by extending

each environment combination operation with the following rules:

⊤★⊤ ▶ ⊤; ∅ ⊤★Θ ▶ Θ; ∅ Θ★⊤ ▶ Θ; ∅

Nullable type environments are a supertype of every defined type environment: Θ ≤ ⊤.

Type system overview. Our algorithmic type system takes a co-contextual [16] approach: rather
than taking a type environment as an input to the type-checking algorithm, we produce a type

environment as an output. The intuition is that (read bottom-up), splitting an environment into two

sub-environments is more difficult than merging two environments inferred from subexpressions.

We also generate inclusion constraints on patterns to be solved later.

Bidirectional type systems [14, 48] split typing rules into two classes: those that synthesise a
type 𝐴 for a term 𝑀 (Γ ⊢ 𝑀⇒𝐴), and those that check that a term 𝑀 has type 𝐴 (Γ ⊢ 𝑀⇐𝐴).

Bidirectional type systems are syntax-directed and amenable to implementation.

We use a co-contextual variant of bidirectional typing first introduced by Zeilberger [60]. The

key twist is the variable rule, which becomes a checking rule and records the given variable-type

mapping in the inferred environment. Our synthesis judgement has the form 𝑀 ⇒P 𝜏 ▶ Θ; Φ,

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Special Delivery , ,

which can be read “synthesise type 𝜏 for term𝑀 under program P, inferring type environment Θ
and producing constraints Φ”. The checking judgement 𝑀 ⇐P 𝜏 ▶ Θ; Φ is defined analogously.

As in the declarative system we omit the P annotation for readability.

Figure 10 shows the Pat algorithmic typing of programs, definitions and terms. The key idea is

to remain in checking mode for as long as possible, in order to propagate type information to the

variable rule and construct a type environment.

Synthesis. Rule TS-Const assigns a known base type to a constant, and rule TS-New synthesises

a type ?1• (analogous to T-New); both rules produce an empty environment and constraint set.

Rule TS-Spawn checks that the given computation𝑀 has the unit type, synthesises type 1, and
infers a type environment Θ and constraint set Φ. Like T-Spawn in the declarative system, the

usability annotations are masked as usable since usability restrictions are process-local.

Message sending 𝑉 ! m[
−→
𝑊] is a side-effecting operation, and so we synthesise type 1. Rule TS-

Send first looks up the payload types
−→𝜋 in the signature, and checks that message target 𝑉 has

mailbox type !m◦. In performing this check, the type system will produce environment Θ′ that
contains an entry mapping the variable in 𝑉 to the desired mailbox type !m◦. Next, the algorithm
checks each payload value against the payload type described by the signature. The resulting

environment is the algorithmic disjoint combination of the environments produced by checking

each payload, and the resulting constraint set is the union of all generated constraints.

Function application is similar: rule TS-App looks up the type signature for function 𝑓 and

checks that all arguments have the expected types. The resulting environment is again the disjoint

combination of the environments, and the constraint set is the union of all generated constraints.

Checking. Rule TC-Var checks that a variable 𝑥 has type 𝜏 , producing a type environment 𝑥 : 𝜏 .

The TC-Let rule checks that a let-binding let 𝑥 : 𝑇 = 𝑀 in 𝑁 has type 𝜏 : first, we check that𝑀 has

type ⌊𝑇 ⌋ noting that only values of returnable type may be returned, producing environment Θ1

and constraints Φ1. Next we check that the body 𝑁 has type 𝜏 , producing environment Θ2 and Φ2.

The next step is to check whether the types of the variable inferred in Θ2 corresponds with the

annotation. The check meta-function ensures that if 𝑥 is not contained within Θ2, then the type of

𝑥 is unrestricted; and conversely if 𝑥 is contained within Θ2, then the annotation is a subtype of

the inferred type as the annotation is a lower bound on what the body can expect of 𝑥 .

Remark. Although our core calculus assumes an annotation on let expressions, this is unnecessary
if the let-bound variable is used in the continuation 𝑁 , or 𝑀 has a synthesisable type. Specifically, TC-
LetNoAnn1 allows us to check the type of the continuation and inspect the produced environment for
the type of 𝑥 , which can be used to check𝑀 . Similarly, TC-LetNoAnn2 allows us to type a let-binding
where 𝑥 is not used in the continuation, as long as the type of𝑀 is synthesisable and unrestricted.

TC-LetNoAnn1
𝑁 ⇐ 𝜎 ▶ Θ1, 𝑥 : 𝜏 ; Φ1 returnable(𝜏)
𝑀 ⇐ 𝜏 ▶ Θ2; Φ2 Θ2 # Θ1 ▶ Θ;Φ3

let 𝑥 = 𝑀 in 𝑁 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

TC-LetNoAnn2
𝑁 ⇐ 𝜎 ▶ Θ1; Φ1 𝑥 ∉ dom(Θ1)

𝑀 ⇒ 𝜏 ▶ Θ2; Φ2 returnable(𝜏) Θ2 # Θ1 ▶ Θ;Φ3

let 𝑥 = 𝑀 in 𝑁 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

We use the explicitly-typed representation in the core calculus for simplicity and uniformity, however
the implementation follows the above approach to avoid needless annotations.

Rule TC-Guard checks that a guard expression guard𝑉 :𝐸 {−→𝐺 } has return type 𝜏 . First, the

rule checks that the guard sequence

−→
𝐺 has type 𝜏 , producing nullable environment Ψ, constraint

set Φ1, and pattern 𝐹 in pattern normal form. Next, the rule checks that the mailbox name 𝑉 has

type ?𝐹 •, producing environment Θ′ and constraint set Φ2. Finally, the rule calculates the disjoint

combination of Ψ and Θ′, producing final environment Θ and constraints Φ3.

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Constraint generation for guards {𝐸} −→𝐺 ⇐P 𝜏 ▶ Ψ; Φ; 𝐹 {𝐸} 𝐺⇐P 𝜏 ▶ Ψ; Φ; 𝐹

TCG-Guards

({𝐸} 𝐺𝑖⇐ 𝜏 ▶ Ψ𝑖 ; Φ𝑖 ; 𝐹𝑖)𝑖∈1..𝑛

𝐹 = 𝐹1 ⊕ · · · ⊕ 𝐹𝑛 Ψ1 ⊓ . . . ⊓ Ψ𝑛 ▶ Ψ;Φ

{𝐸} −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ ∪ Φ1 ∪ · · · ∪ Φ𝑛 ; 𝐹

TCG-Fail

{𝐸} fail⇐ 𝜏 ▶ ⊤; ∅; 0

TCG-Free

𝑀 ⇐ 𝜏 ▶ Θ; Φ

{𝐸} free ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ; 1

TCG-Recv

𝑀 ⇐ 𝜏 ▶ Θ′, 𝑦 : ?𝛾•; Φ1 P(m) = −→𝜋 Θ = Θ′ − −→𝑥 base(−→𝜋) ∨ base(Θ) check(Θ′, −→𝑥 ,
−−→
⌈𝜋 ⌉) = Φ2

{𝐸} receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾 }; m ⊙ (𝐸 / m)

Θ − −→𝑥 ≜ {𝑦 : 𝜏 ∈ Θ | 𝑦 ∉
−→
𝑥 }

Fig. 11. Pat algorithmic typing (guards)
Finally, rule TC-Sub states that if a term𝑀 is synthesisable with type 𝜏 , where 𝜏 is a subtype of

𝜎 , then𝑀 is checkable with type 𝜎 . The resulting environment is that produced by synthesising the

type for𝑀 , and the resulting constraint set is the union of the synthesis and subtyping constraints.

Guards. Figure 11 shows the typing rules for guards; the judgement {𝐸} 𝐺⇐ 𝜏 ▶ Ψ; Φ; 𝐹 can

be read “Check that guard 𝐺 has type 𝜏 , producing environment Ψ, constraints Φ, and closed

pattern literal 𝐹 in pattern normal form with respect to 𝐸”. Rule TCG-Guards types a guard

sequence, producing the algorithmic merge of all environments and the sum of all produced

patterns. Rule TCG-Fail types the fail guard with any type and produces a null type environment,

empty constraint set, and pattern 0. Rule TCG-Free checks that guard free ↦→ 𝑀 has type 𝜏 by

checking that𝑀 has type 𝜏 ; the guard produces pattern 1.
Finally, rule TCG-Recv checks that a receive guard receive m[−→𝑥] from 𝑦 ↦→ 𝑀 has type 𝜏 .

First, the rule checks that𝑀 has type 𝜏 , producing environment Θ′, 𝑦 : ?𝛾• and constraint set Φ1;

since a mailbox type with input capability is linear, it must be present in the inferred environment.

Next, the rule checks that the inferred types for
−→𝑥 in Θ′ are compatible with the payloads for m

declared in the signature, producing constraint set Φ2. As with the declarative rule, to rule out

unsafe aliasing either the payloads or inferred environment must consist only of base types. The

resulting environment is Θ (i.e., the inferred environment without the mailbox variable or any

payloads). The resulting constraint set is the union of Φ1 and Φ2 along with an additional constraint

which ensures that 𝐸 / m is included in 𝛾 , allowing us to produce the closed PNF literal m ⊙ (𝐸 / m).

4.2 Metatheory
We can now establish that the algorithmic type system is sound and complete with respect to the

declarative type system. We begin by introducing the notion of pattern substitutions and solutions.

A pattern substitution Ξ is a mapping from type variables 𝛼 to (fully-defined) patterns 𝐸; applying

Ξ to a pattern 𝛾 substitutes all occurrences of a type variable 𝛼 for Ξ(𝛼). We extend application of

pattern substitutions to types and environments. We write pv(𝐸) for the set of pattern variables in

a pattern and extend it to types and environments.

Definition 4.2 (Pattern solution). A pattern substitution Ξ is a pattern solution for a constraint set

Φ (or solves Φ) if pv(Φ) ⊆ dom(Ξ) and for each 𝛾 <:𝛿 ∈ Ξ, we have that Ξ(𝛾) ⊑ Ξ(𝛿). A solution Ξ
is a usable solution if its range does not contain any pattern equivalent to 0.

4.2.1 Algorithmic soundness.

Definition 4.3 (Covering solution). We say that a pattern substitution Ξ is a covering solution for a

derivation 𝑀 ⇒P 𝜏 ▶ Θ; Φ or 𝑀 ⇐P 𝜏 ▶ Θ; Φ if given ⊢ P ⊲ Φ′, it is the case that Ξ is a usable

solution for Φ ∪ Φ′ such that pv(𝜏) ∪ pv(P) ⊆ dom(Ξ).

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Special Delivery , ,

If a term is well typed in the algorithmic system then, given a covering solution, the term is also

well typed in the declarative system.

Theorem 4.4 (Algorithmic Soundness).

• If Ξ is a covering solution for𝑀 ⇒P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
• If Ξ is a covering solution for𝑀 ⇐P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
4.2.2 Algorithmic completeness. We also obtain a completeness result, but only for the checking

direction. This is because the type system requires type information to construct a type environment.

In practice the lack of a completeness result for synthesis is unproblematic since all functions

have return type annotations, and therefore the only terms typable in the declarative system but

unsynthesisable are top-level terms containing free variables. In the following we assume that

program P is closed, i.e. no definitions or message payloads contain type variables.

Theorem 4.5 (Algorithmic Completeness). If ⊢ P where P is closed, and Γ ⊢P 𝑀 :𝐴, then there
exist some Θ,Φ and usable solution Ξ of Φ such that𝑀 ⇐P 𝐴 ▶ Θ; Φ where Γ ≤ Ξ(Θ).
An unannotated let binding let 𝑥 = 𝑀 in 𝑁 is also typable by the algorithmic type system if

either 𝑥 occurs free in 𝑁 , or the type of𝑀 is synthesisable; in practice this encompasses both base

types and linear usages of mailbox types, i.e. the vast majority of use cases.

Constraint solving. Padovani [46] shows how to solve a constraint set, relying on a closed-form

solution [30]. Since the procedure is not novel, we simply provide an overview in Appendix B.

5 EXTENSIONS
It is straightforward to extend Pat with product and sum types, and by using contextual typing

information prior to constraint generation, we can add higher-order functions and interfaces that
allow finer-grained alias analysis. The formalisation can be found in Appendix C.

5.1 Product and Sum Types
Product and sum constructors are checking cases, and must contain only returnable components

since we must be able to safely substitute their contents in any context. As with let expressions we
can omit annotations on elimination forms, i.e. let (𝑥,𝑦) = 𝑀 in𝑁 or case 𝑉 of {𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 },
provided that 𝑥 and 𝑦 are used in their continuations, or the sum or product consists of base types.

An advantage of adding product types is that we can avoid nested guard clauses, as we can

return both a received value and an updated mailbox name. Consider the following examples of a

process that receives two integers and returns their sum. The example on the left requires nested

guard expressions, whereas the example on the right does not.

guardmb : Arg ⊙ Arg {
receive Arg[𝑥] from mb′ ↦→

guardmb′ : Arg {
receive Arg[𝑦] from mb′′ ↦→
free mb′′; 𝑥+𝑦

}
}

let (𝑥,mb′) =
guardmb : Arg ⊙ Arg {

receive Arg[𝑥] from mb′ ↦→ (𝑥,mb′)
} in

guardmb′ : Arg {
receive Arg[𝑦] from mb′′ ↦→

free𝑚𝑏′′; 𝑥+𝑦
}

Since product types can only contain returnable components, they cannot be used to replace

𝑛-ary argument sequences in function definitions and receive clauses.

5.2 Using Contextual Type Information
A co-contextual approach is required to generate the pattern inclusion constraints. Sometimes,

however, it is useful to have contextual type information before the constraint generation pass.

21

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Consider applying a first-class function: (_(𝑥 : Int): Int . 𝑥) (5). Although the annotated _ expression
allows us to synthesise a type and use a rule similar to TS-App, the lack of contextual type

information means that the approach founders as soon as we stray from applying function literals

as in let 𝑓 = (_(𝑥 : Int): Int . 𝑥) in 𝑓 (5)). A typical backwards bidirectional typing approach requires

synthesising the argument to a function, but this is too inflexible in our setting as each mailbox

argument would need a type annotation at the application site.

guard self : Ready1 ⊙ Ready2 {
receive Ready1[reply1] from mb′ ↦→

guardmb′ : Ready2 {
receive Ready2[reply2] from mb′′ ↦→

reply1 ! Go[]; reply2 ! Go[];

free mb′′

}
}

Fig. 12. Term requiring interfaces

In the base system a global signature maps message

tags to payload types. While technically convenient, this

is inflexible. First, distinct entities may wish to use the

same mailbox tags with different payload types. For ex-

ample, a client may send a Login message containing

credentials to a server, which may then send a Login
message containing the credentials and a timestamp to a

session management server. Second, we need a syntactic

check on a receive guard to avoid aliasing, as outlined in §2: either the received payloads or free

variables in the guard body must be base types. This conservative check rules out innocuous cases

such as in Figure 12, which waits for two actors to both be ready before signalling them to continue.

With contextual information we can associate each mailbox name with an interface 𝐼 , which
maps tags to payload types, and allows us to syntactically distinguish different kinds of mailboxes

(e.g. a future and its client). Since a name cannot have two interfaces at once, we can loosen our

syntactic check on receive guards to require only that the interfaces of mailbox names in the

payloads and free variables differ, as typing guarantees that they will refer to different mailboxes.

We implement the above extensions via a contextual type-directed translation: we annotate

function applications with the type of the function (i.e. 𝑉
−→𝜏 −→𝜎 (−→𝑊)) which allows us to synthesise

the function type. Users specify an interface when creating a mailbox (new[𝐼]); our pass then
annotates sends and guards with interface information (i.e. 𝑉 !

𝐼 m[
−→
𝑊] and guard𝐼 𝑉 :𝐸 {−→𝐺 }) for

use in constraint generation.

6 IMPLEMENTATION AND EXPRESSIVENESS
We outline the implementation of a prototype type checker written in OCaml [59], and evidence

the expressiveness of Pat via a selection of example programs taken from the literature. We first

show that using quasi-linear typing in place of dependency graphs (cf. §2.2) does not prevent Pat
from expressing all of the examples in [12]. The Savina benchmarks [34] capture typical concurrent

communication patterns and are used both to compare actor languages and to demonstrate the

expressiveness of programming models, e.g. Neykova and Yoshida [42]. We show that Pat can
express 10 of the 11 Savina expressiveness benchmarks used in [42]. Finally, we encode a case study

provided by an industrial partner that develops highly concurrent control software for factories.

6.1 Implementation Overview
Pat programs are type checked in a six-phase pipeline:

(1) Parsing. Standard lexing and parsing using the OCaml Menhir library, producing the AST;

(2) Desugaring. Traverses the AST to expand the sugared form of guards (i.e. rewrites free 𝑉 as

guard𝑉 : 1 {free ↦→ ()} and fail 𝑉 as guard𝑉 : 0 {fail}) and adds omitted pattern variables;

(3) IR conversion. Transforms the surface language (supporting nested expressions) to our

explicitly-sequenced intermediate representation;

(4) Contextual type-checking. Performs a (standard) typing pass to propagate contextual type

information (refer to §5.2 for details);

22

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Special Delivery , ,

Name Description Strict Time (ms)

Original mailbox calculus models taken from de’Liguoro and Padovani [12]

1 Lock Concurrent lock modelling mutual exclusion • 28.5

2 Future Future variable that is written to once and read multiple times • 22.5

3 Account Concurrent accounts exchanging debit and credit instructions • 19.5

4 AccountF Concurrent accounts where debit instructions are effected via futures • 33.5

5 Master-Worker Master-worker parallel network • 29.0

6 Session Types Session-typed communicating actors using one arbiter ◦ 75.5

Selected micro-benchmarks adapted from Imam and Sarkar [34], based on Neykova and Yoshida [42]

7 Ping Pong Process pair exchanging 𝑘 ping and pong messages • 24.6

8 Thread Ring Ring network where actors cyclically relay one token with counter 𝑘 ◦ 37.2

9 Counter One actor sending messages to a second that sums the count, 𝑘 ◦ 29.8

10 K-Fork Fork-join pattern where a central actor delegates 𝑘 requests to workers • 7.1

11 Fibonacci Fibonacci server delegating terms (𝑘 − 1) and (𝑘 − 2) to parallel actors • 27.1

12 Big Peer-to-peer network where actors exchange 𝑘 messages randomly ◦ 62.8

13 Philosopher Dining philosophers problem ◦ 57.1

14 Smokers Centralised network where one arbiter allocates 𝑘 messages to actors ◦ 31.3

15 Log Map Computes the term 𝑥𝑘+1 = 𝑟 ·𝑥𝑘 (1 − 𝑥𝑘) by delegating to parallel actors ◦ 57.9

16 Transaction Request-reply actor communication initiated by a central teller actor ◦ 46.7

Tbl. 1. Typechecking concurrent actor examples in Pat

(5) Constraint generation. Implements the algorithmic type system from §4 and generates a set

of pattern inclusion constraints;

(6) Constraint solving. Applies the constraint-solving approach given in Appendix B, and invokes

the Z3 SMT solver [11] to determine whether the constraints generated in (5) are satisfiable.

The Pat typechecker operates in two modes that determine how receive guards are type checked.

Strict mode uses the lightweight syntactic checks outlined in §3 and §4, whereas interface mode

uses interface type information (§5.2) to relax these checks. This means that every Pat program
accepted in strict mode is also accepted in interface mode. More details are given in Appendix D.

6.2 Expressiveness and Typechecking Time
Tbl. 1 lists the examples implemented in Pat. Examples 1-6 are the mailbox calculus examples from

[12, Ex. 1–3, and Sec. 4.1–4.3]. Examples 7-16 are the selection of Savina benchmarks [34, Table 1,

No. 1–4, 6, 7, 12, 14–16] used in [42]. The table indicates whether a Pat program can be checked in

strict (denoted by •), in addition to interface mode (denoted by ◦). We report the mean typechecking

time, excluding phases 1–3 of the pipeline. Measurements are made on a MacBook M1 Pro with

16GB of memory, running macOS 13.2 and OCaml 5.0, and averaging over 1000 repetitions.

6.2.1 Benchmarks. Tbl. 1 shows that all but one of the mailbox calculus examples from [12] can be

checked in strict mode. The Savina examples capture typical concurrent programming patterns,

namely, master-worker (K-Fork, Fibonacci, Log Map), client-server (Ping Pong, Counter), and peer-

to-peer (Big), and common network topologies such as star (Philosopher, Smokers, Transaction) and

ring (Thread Ring). Most of these programs require contextual type information (8, 9, and 12–16)

to type check. As Pat does not yet support recursive types, we instead emulate fixed collections

using definition parameters in examples 8, 10, 12–16. We could not encode the Sleeping Barber [42,

Ex. 8] example since the number of collection elements varies throughout execution.

The examples reveal the benefits of mailbox typing. Boilerplate runtime checks, such as manual

error handling (§1.2) are unnecessary since errors (e.g. unexpected messages) are statically ruled

out by the type system. Mailbox types also have an edge over session typing tools for actor systems,

e.g. [42, 53]. In the latter approach, one typically specifies protocols in external tools and writes

23

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

code to accommodate the session typing framework. By contrast, mailbox typing naturally fits

idiomatic actor programming. This flexibility does not incur high typechecking runtime (see Tbl. 1).

Robot Door Warehouse

Want(PartNum)

Busy()

Open door

GoIn()

Prepare(PartNum)

Drive in

Inside()

Close door

Prepared()

Deliver()

Lock table

Delivered()

Take part

PartTaken()

WantLeave()

Open door

GoOut()

Drive out

Outside()

Close door

TableIdle()

alt [Door is already in use]

[Door is not in use]

Fig. 13. Factory use case

6.2.2 Case Study. Finally we describe a real-world use case

written by Actyx AG [1], who develop control software for

factories. The use case captures a scenario where multiple

robots on a factory floor acquire parts from a warehouse that

provides access through a single door. Robots negotiate with

the door to gain entry into the warehouse and obtain the part

they require. The behaviour of our three entities, Robot, Door,
andWarehouse is shown in Fig. 13. Our concrete syntax closely
follows the core calculus of §3, without requiring that pattern

variables in mailbox types are specified explicitly. Type check-

ing our completed case study given in Appendix D.2 relies on

contextual type information (see §5), and takes ≈89.6 ms.

We give an excerpt of our Warehouse process (below) that

maps the interactions of its lifeline in Fig. 13. In its initial state,

empty, the Warehouse expects a Prepare message (if there are

Robots in the system), or none (if no Robot requests access),
expressed as the guard Prepared + 1 on line 2. When a part

is requested, the Warehouse transitions to the state engaged,

where it awaits a Deliver message from the Door and notifies

the Robot collecting the part via a Delivered message (lines

9–15). Subsequent interactions that theWarehouse undertakes

with the Door and Robot are detailed in Appendix D.2. Note

that our type system enables us to be precise with respect

to the messages mailboxes receive. Specifically, the guard on

line 2 expects at most one Prepare message, capturing the mutual exclusion requirement between

Robots, whereas the guard on line 10 expects exactly Deliver.

1 def empty(self: wh?): Unit {
2 guard self: Prepare + 1 {
3 free � ()
4 receive Prepare(partNum, door) from self �
5 door ! Prepared(self);
6 engaged(self)
7 }
8 }

9 def engaged(self: wh?): Unit {
10 guard self: Deliver {
11 receive Deliver(robot, door) from self �
12 robot ! Delivered(self, door);
13 given(self, door)
14 }
15 }

7 RELATEDWORK
TAkka [26] introduced typed actor communication for Akka [50], where PIDs are parameterised

by the type an actor may receive. The authors uncover the type pollution problem, where an actor

reference must expose all types it can receive, and show how it can be mitigated via subtyping. Akka

Typed (now standard in Akka) is inspired by TAkka. Fowler et al. [20] characterise core calculi for

typed channels and actors and give translations between the two models. They show that modelling

channels with actors is more complex than the modelling actors with channels, underlining the

expressiveness mismatch, and show that synchronisation alleviates the type pollution problem; we

can achieve a similar effect using multiple mailboxes (e.g. as done in example 3 of Tbl. 1).

Developing behavioural type systems for actor languages is challenging due to the unidirectional

and asymmetric nature of mailboxes. Mostrous and Vasconcelos [40] investigate session typing for

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Special Delivery , ,

Core Erlang, using selective message reception and unique references to encode binary session-

typed channels. Tabone and Francalanza [52, 53] develop a tool that statically checks Elixir [35]

actors against binary session types to prove session fidelity. In contrast, our system is more general

and supports many-to-one mailbox communication.

Neykova and Yoshida [42] propose a programming model for dynamically checking actor com-

munication against multiparty session types [29], which was later implemented in Erlang [18]. Later

work [41] shows how causality information in global types can support efficient recovery strategies.

Harvey et al. [25] use multiparty session types with explicit connection actions [31] to give strong

guarantees about actors that support dynamic discovery and code replacement, although an actor

can only participate in one session at a time. Using session types to structure communication

requires specifying point-to-point interactions, typically using different libraries and formalisms.

In contrast, our mailbox typing approach naturally fits idiomatic actor programming paradigms.

Active objects [10] are actor-like entities, which return the result of a remote method invocation

via a future. Bagherzadeh and Rajan [4] define a type system for active objects which can rule out

data races; unlike our approach, this work targets an imperative calculus and is not validated via

an implementation. Kamburjan et al. [36] apply session-based reasoning to a core active object

calculus where types encode remote calls and future resolutions. In their calculus, communication

correctness is ensured by static checks against session automata [5] derived from session types.

Mailbox types are inspired by behavioural type systems [9] for the objective join calculus [17].
The technique can be implemented in Java using code generation via matching automata [22], and
dependency graphs can rule out deadlocks [44], but the authors do not consider a programming

language design. Scalas et al. [51] define a behavioural type system for Scala actors. Types are

written in a domain-specific language, and type-level model checking determines safety and liveness

properties. Their system focuses on the behaviour of a process, rather than the state of the mailbox.

Christakis and Sagonas [8] implement a static analysis pass for Erlang that detects communica-

tion errors such as receiving when a mailbox is empty, payload mismatches, redundant patterns,

and orphan messages. All of these issues can be detected with mailbox types, and mailbox types

additionally allow us to specify the mailbox state. Harrison [24] implements an approach incorpo-

rating aspects of both typechecking and static analysis to detect message passing errors such as

orphan messages and redundant patterns.

8 CONCLUSION AND FUTUREWORK
Concurrent and distributed applications can harbour subtle and insidious bugs, including protocol

violations and deadlocks. Behavioural types ensure correct-by-construction communication-centric

software, but are difficult to apply to actor languages. We have proposed the first language design
incorporating mailbox types which characterise mailbox communication. The multiple-writer,

single-reader nature of mailbox-oriented messaging makes the integration of mailbox types in

programming languages highly challenging. We have addressed these challenges through a novel

use of quasi-linear types and have formalised and implemented an algorithmic type system based

on backwards bidirectional typing (§4), proving it to be sound and complete with respect to the

declarative type system (§3). Our approach can flexibly express common communication patterns

(e.g. master-worker) and a real-world case study based on factory automation.

Future work. We are investigating implementing mailbox types in a tool for mainstream actor

languages, e.g. Erlang; in parallel, we are investigating how languages with first-class mailboxes can

be compiled to standard actor languages in order to leverage mature runtimes. We plan to consider

finer-grained inter-process alias control, and co-contextual typing with type constraints (as well as
pattern constraints), enabling us to study more advanced language features, e.g. polymorphism.

25

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

REFERENCES
[1] 2023. Actyx AG. https://actyx.io

[2] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. 1998. On Bisimulations for the Asynchronous pi-Calculus.

Theor. Comput. Sci. 195, 2 (1998), 291–324.
[3] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay,

Nils Gesbert, Elena Giachino, RaymondHu, Einar Broch Johnsen, FranciscoMartins, VivianaMascardi, FabrizioMontesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types

in Programming Languages. Found. Trends Program. Lang. 3, 2-3 (2016), 95–230. https://doi.org/10.1561/2500000031

[4] Mehdi Bagherzadeh and Hridesh Rajan. 2017. Order types: static reasoning about message races in asynchronous

message passing concurrency. In AGERE!@SPLASH. ACM, 21–30.

[5] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. 2013. A Fresh Approach to Learning

Register Automata. In Developments in Language Theory (LNCS, Vol. 7907). Springer, 118–130.
[6] Janusz A Brzozowski. 1964. Derivatives of regular expressions. Journal of the ACM (JACM) 11, 4 (1964), 481–494.
[7] Avik Chaudhuri. 2009. A Concurrent ML library in Concurrent Haskell. In ICFP. ACM, 269–280.

[8] Maria Christakis and Konstantinos Sagonas. 2011. Detection of Asynchronous Message Passing Errors Using Static

Analysis. In PADL (Lecture Notes in Computer Science, Vol. 6539). Springer, 5–18.
[9] Silvia Crafa and Luca Padovani. 2017. The Chemical Approach to Typestate-Oriented Programming. ACM Trans.

Program. Lang. Syst. 39, 3 (2017), 13:1–13:45.
[10] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. 2007. A Complete Guide to the Future. In ESOP (Lecture

Notes in Computer Science, Vol. 4421). Springer, 316–330.
[11] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (Lecture Notes in

Computer Science, Vol. 4963). Springer, 337–340.
[12] Ugo de’Liguoro and Luca Padovani. 2018. Mailbox Types for Unordered Interactions. In ECOOP (LIPIcs, Vol. 109).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:28.

[13] Jay L. Devore and Kenneth N. Berk. 2012. Modern Mathematical Statistics with Applications. Springer.
[14] Jana Dunfield and Neel Krishnaswami. 2022. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2022), 98:1–98:38.
[15] Robert Ennals, Richard Sharp, and Alan Mycroft. 2004. Linear Types for Packet Processing. In Programming Languages

and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings (Lecture Notes in
Computer Science, Vol. 2986), David A. Schmidt (Ed.). Springer, 204–218. https://doi.org/10.1007/978-3-540-24725-8_15

[16] Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira Mezini. 2015. A co-contextual formulation

of type rules and its application to incremental type checking. In OOPSLA. ACM, 880–897.

[17] Cédric Fournet and Georges Gonthier. 1996. The Reflexive CHAM and the Join-Calculus. In POPL. ACM Press, 372–385.

[18] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session Actors. In ICE (EPTCS, Vol. 223). 36–50.
[19] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021. Separating Sessions Smoothly. In

CONCUR (LIPIcs, Vol. 203). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 36:1–36:18.

[20] Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing Metaphors: Actors as Channels and Channels as Actors.

In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:28.

[21] Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types. J. Funct.
Program. 20, 1 (2010), 19–50.

[22] Rosita Gerbo and Luca Padovani. 2019. Concurrent Typestate-Oriented Programming in Java. In PLACES@ETAPS
(EPTCS, Vol. 291). 24–34.

[23] Seymour Ginsburg and Edwin Spanier. 1966. Semigroups, Presburger formulas, and languages. Pacific journal of
Mathematics 16, 2 (1966), 285–296.

[24] Joseph R. Harrison. 2018. Automatic detection of core Erlang message passing errors. In Erlang Workshop. ACM,

37–48.

[25] Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021. Multiparty Session Types for Safe Runtime

Adaptation in an Actor Language. In ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

10:1–10:30.

[26] Jiansen He, Philip Wadler, and Philip W. Trinder. 2014. Typecasting actors: from Akka to TAkka. In SCALA@ECOOP.
ACM, 23–33.

[27] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.).
Springer, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[28] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP (Lecture Notes in Computer Science, Vol. 1381). Springer,
122–138.

26

https://actyx.io
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-540-24725-8_15
https://doi.org/10.1007/3-540-57208-2_35

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Special Delivery , ,

[29] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1

(2016), 9:1–9:67.

[30] Mark W. Hopkins and Dexter Kozen. 1999. Parikh’s Theorem in Commutative Kleene Algebra. In LICS. IEEE Computer

Society, 394–401.

[31] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In FASE (Lecture
Notes in Computer Science, Vol. 10202). Springer, 116–133.

[32] Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based Distributed Programming in Java. In ECOOP
(Lecture Notes in Computer Science, Vol. 5142). Springer, 516–541.

[33] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous,

Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of

Session Types and Behavioural Contracts. ACM Comput. Surv. 49, 1 (2016), 3:1–3:36. https://doi.org/10.1145/2873052

[34] Shams Mahmood Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation

of Actor Libraries. In AGERE!@SPLASH. ACM, 67–80.

[35] Saša Jurić. 2019. Elixir in Action. Manning.

[36] Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. 2016. Session-Based Compositional Analysis for

Actor-Based Languages Using Futures. In ICFEM (Lecture Notes in Computer Science, Vol. 10009). 296–312.
[37] Naoki Kobayashi. 1999. Quasi-Linear Types. In POPL. ACM, 29–42.

[38] Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira Mezini. 2017. A Co-contextual Type Checker

for Featherweight Java. In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:26.

[39] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming

languages. Information and Computation 185, 2 (2003), 182–210.

[40] Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2011. Session Typing for a Featherweight Erlang. In COORDI-
NATION (Lecture Notes in Computer Science, Vol. 6721). Springer, 95–109.

[41] Rumyana Neykova and Nobuko Yoshida. 2017. Let it recover: multiparty protocol-induced recovery. In CC. ACM,

98–108.

[42] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017).
[43] Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone

too far? affordable 2nd-class values for fun and (co-)effect. In OOPSLA. ACM, 234–251.

[44] Luca Padovani. 2018. Deadlock-Free Typestate-Oriented Programming. Art Sci. Eng. Program. 2, 3 (2018), 15.
[45] Luca Padovani. 2018. Mailbox Calculus Checker. https://boystrange.github.io/mcc/

[46] Luca Padovani. 2018. A type checking algorithm for concurrent object protocols. Journal of Logical and Algebraic
Methods in Programming 100 (2018), 16–35. https://doi.org/10.1016/j.jlamp.2018.06.001

[47] Rohit Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966), 570–581.

[48] Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000),
1–44.

[49] Andrew M. Pitts. 1998. Existential Types: Logical Relations and Operational Equivalence. In ICALP (Lecture Notes in
Computer Science, Vol. 1443). Springer, 309–326.

[50] Raymond Roestenburg, Rob Bakker, and Rob Williams. 2015. Akka in Action. Manning.

[51] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying message-passing programs with dependent

behavioural types. In PLDI. ACM, 502–516.

[52] Gerard Tabone and Adrian Francalanza. 2021. Session types in Elixir. In AGERE!@SPLASH. ACM, 12–23.

[53] Gerard Tabone and Adrian Francalanza. 2022. Session Fidelity for ElixirST: A Session-Based Type System for Elixir

Modules. In ICE (EPTCS, Vol. 365). 17–36.
[54] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based Language and its Typing System. In

PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Athens, Greece, July 4-8,
1994, Proceedings (Lecture Notes in Computer Science, Vol. 817), Constantine Halatsis, Dimitris G. Maritsas, George

Philokyprou, and Sergios Theodoridis (Eds.). Springer, 398–413. https://doi.org/10.1007/3-540-58184-7_118

[55] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why Do Scala Developers Mix the Actor Model with

other Concurrency Models?. In ECOOP (Lecture Notes in Computer Science, Vol. 7920). Springer, 302–326.
[56] Phil Trinder, Natalia Chechina, Nikolaos Papaspyrou, Konstantinos Sagonas, Simon Thompson, Stephen Adams,

Stavros Aronis, Robert Baker, Eva Bihari, Olivier Boudeville, et al. 2017. Scaling reliably: Improving the scalability

of the Erlang distributed actor platform. ACM Transactions on Programming Languages and Systems (TOPLAS) 39, 4
(2017), 1–46.

[57] Vasco T. Vasconcelos. 2012. Fundamentals of session types. Inf. Comput. 217 (2012), 52–70.
[58] Philip Wadler. 2014. Propositions as sessions. J. Funct. Program. 24, 2-3 (2014), 384–418.
[59] John Whitington. 2013. OCaml from the Very Beginning. Coherent Press.

27

https://doi.org/10.1145/2873052
https://boystrange.github.io/mcc/
https://doi.org/10.1016/j.jlamp.2018.06.001
https://doi.org/10.1007/3-540-58184-7_118

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

[60] Noam Zeilberger. 2015. Balanced polymorphism and linear lambda calculus. Talk at TYPES. http://noamz.org/papers/

linprin.pdf

28

http://noamz.org/papers/linprin.pdf
http://noamz.org/papers/linprin.pdf

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Special Delivery , ,

Appendices

APPENDIX CONTENTS

A Omitted Definitions 30

A.1 Algorithmic environment combination operators 30

B Constraint Solving Overview 31

C Details of Extensions 32

C.1 Product and sum types 32

C.2 Contextual Type Information 33

D Supplementary Implementation and Evaluation Material 37

D.1 Experimental Conditions 37

D.2 Case Study 37

E Proofs 40

E.1 Preservation 40

E.2 Progress 50

E.3 Algorithmic Soundness 51

E.4 Algorithmic Completeness 61

29

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

A OMITTED DEFINITIONS
Here we add in the omitted definitions from the main body of the paper.

A.1 Algorithmic environment combination operators

Environment join Θ1 # Θ2 ▶ Θ;Φ

· # · ▶ ·; ∅

𝑥 ∉ dom(Θ2)
Θ1 # Θ2 ▶ Θ;Φ

Θ1, 𝑥 :𝜏 # Θ2 ▶ Θ, 𝑥 :𝜏 ;Φ

𝑥 ∉ dom(Θ1)
Θ1 # Θ2 ▶ Θ;Φ

Θ1 # Θ2, 𝑥 :𝜏 ▶ Θ, 𝑥 :𝜏 ;Φ

𝜏1 # 𝜏2 ▶ 𝜎 ;Φ1 Θ1 # Θ2 ▶ Θ;Φ2

Θ1, 𝑥 :𝜏1 # Θ2, 𝑥 :𝜏2 ▶ Θ, 𝑥 :𝜎 ;Φ1 ∪ Φ2

Environment merge Θ1 ⊓ Θ2 ▶ Θ;Φ

· ⊓ · ▶ ·; ∅
𝑥 ∉ dom(Θ2) Θ1 ⊓ Θ2 ▶ Θ;Φ

Θ1, 𝑥 :𝐶 ⊓ Θ2 ▶ Θ, 𝑥 :𝐶;Φ

𝑥 ∉ dom(Θ2) Θ1 ⊓ Θ2 ▶ Θ;Φ

Θ1, 𝑥 :!𝛾[⊓ Θ2 ▶ Θ, 𝑥 :!(𝛾 ⊕ 1)[;Φ

𝑥 ∉ dom(Θ1) Θ1 ⊓ Θ2 ▶ Θ;Φ2

Θ1 ⊓ Θ2, 𝑥 :𝐶 ▶ Θ, 𝑥 :𝜏 ;Φ

𝑥 ∉ dom(Θ1) Θ1 ⊓ Θ2 ▶ Θ;Φ2

Θ1 ⊓ Θ2, 𝑥 :!𝛾[▶ Θ, 𝑥 :!(𝛾 ⊕ 1)[;Φ

𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ1 Θ1 ⊓ Θ2 ▶ Θ;Φ2

Θ1, 𝑥 :𝜏1 ⊓ Θ2, 𝑥 :𝜏2 ▶ Θ, 𝑥 :𝜎 ;Φ1 ∪ Φ2

Disjoint combination Θ1 + Θ2 ▶ Θ;Φ

· + · ▶ ·; ∅

𝑥 ∉ dom(Θ2)
Θ1 + Θ2 ▶ Θ;Φ

Θ1, 𝑥 :𝜏 + Θ2 ▶ Θ, 𝑥 :𝜏 ;Φ

𝑥 ∉ dom(Θ1)
Θ1 + Θ2 ▶ Θ;Φ

Θ1 + Θ2, 𝑥 :𝜏 ▶ Θ, 𝑥 :𝜏 ;Φ

Θ1 + Θ2 ▶ Θ;Φ1 𝜏 ∼ 𝜎 ▶ Φ2

unr(𝜏) ▶ Φ3 unr(𝜎) ▶ Φ4

Θ1, 𝑥 :𝜏 + Θ2, 𝑥 :𝜎 ▶ Θ, 𝑥 :𝜏 ;Φ1 ∪ · · · ∪ Φ4

The environment join operator #Θ1Θ2ΘΦ concatenates Θ1 and Θ2, computing the algorithmic

type join of any types for overlapping variables, and produces constraints Φ.
The environment merge computes the algorithmic type merge of any overlapping types. If a

variable is in one environment but not another, then if it is a base type, it is simply added to the

output environment. If it is a send mailbox type !𝛾[, then its type is changed to !(𝛾 ⊕ 1)[to denote
the fact that it may not be used.

Disjoint environment combination combines two environments; if there are two overlapping

types then they must be equivalent and unrestricted.

30

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Special Delivery , ,

B CONSTRAINT SOLVING OVERVIEW
This appendix outlines how to solve and check the satisfiability of the pattern inclusion constraints

generated by the algorithmic type system. As this process isn’t novel, and is covered in depth

elsewhere [46], we provide only an informal overview.

Identify and group bounds A pattern bound is of the form 𝛾 <:𝛼 i.e. a constraint whose right-

hand-side is a pattern variable. The first step is to identify and group all pattern bounds

using pattern disjunction: for example, given a constraint set {𝛾 <:𝛼, 𝛿 ⊑ 𝛽, 1<: 1} we
would produce a grouped constraint 𝛾 ⊕ 𝛿 <:𝛼 .

Calculate closed-form solutions Hopkins and Kozen [30] define a closed-form solution for

pattern bounds: given a set of pattern bound constraints (𝛾𝑖 <:𝛼𝑖)𝑖 there exists a pattern
𝛿𝑖 ≃ 𝛾𝑖 for each 𝛾𝑖 such that 𝛼𝑖 ∉ pv(𝛿𝑖). We can then substitute each closed pattern

throughout the set of pattern bound constraints to obtain a set of closed pattern bounds,

providing a mapping from pattern variables to closed patterns. This allows us to substitute

out all pattern variables in the remaining constraints to obtain a system of closed inclusion

constraints.

Translate to Presburger formulae and check satisfiability Finally, we translate the system

of inclusions into Presburger formulae. Commutative regular expressions, and therefore

patterns, can be expressed as semilinear sets [47] that describe Presburger formulae [23].

Since checking the satisfiability of a Presburger formula is decidable, an external solver like

Z3 [11] can be used to determine whether each constraint holds.

31

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

C DETAILS OF EXTENSIONS
Here we discuss the details of the extensions overviewed in §5.

C.1 Product and sum types
Product and sum types can be added relatively straightforwardly. In both cases, their compo-

nents must be returnable as otherwise it would not be possible to substitute their contents upon

deconstruction.

Product types. We can write the declarative typing rules for products as follows; the rules are

unremarkable apart from the requirement that each component of the pair must be returnable in

the elimination form.

T-Pair

Γ1 ⊢ 𝑉 :𝐴 Γ2 ⊢𝑊 :𝐵

Γ1 + Γ2 ⊢ (𝑉 ,𝑊) :𝐴 × 𝐵

T-LetPair

Γ1 ⊢ 𝑉 :𝐴1 ×𝐴2 returnable(𝐴) returnable(𝐵) Γ2, 𝑥 : 𝐴1, 𝑦 : 𝐴2 ⊢ 𝑉 :𝐵

Γ1 + Γ2 ⊢ let (𝑥,𝑦) = 𝑉 in𝑀 :𝐵

We can write the corresponding algorithmic rules as follows:

TC-Pair

𝑉 ⇐ 𝜏 ▶ Θ1; Φ1 𝑊 ⇐ 𝜎 ▶ Θ2; Φ2 Θ1 + Θ2 ▶ Θ;Φ3

(𝑉 ,𝑊) ⇐ 𝜏 × 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

TC-LetPair

𝑉 ⇐ 𝜏1 × 𝜏2 ▶ Θ1; Φ1 returnable(𝜏1) returnable(𝜏2) 𝑀 ⇐ 𝜏 ▶ Θ2; Φ2

check(Θ2, 𝑥, 𝐴1) = Φ3 check(Θ2, 𝑦, 𝐴2) = Φ4

Θ1 + Θ2 ▶ Θ;Φ5

let (𝑥,𝑦): (𝜏1 × 𝜏2) = 𝑉 in𝑀 ⇐ 𝜏 ▶ Θ; Φ1 ∪ · · · ∪ Φ5

TC-LetPairNoAnn

𝑀 ⇐ 𝐵 ▶ Θ, 𝑥 : 𝜏1, 𝑦 : 𝜏2; Θ1Φ1

returnable(𝜏1) returnable(𝜏2) 𝑉 ⇐ 𝜏1 × 𝜏2 ▶ Θ2; Φ2 Θ1 + Θ2 ▶ Θ;Φ3

let (𝑥,𝑦) = 𝑉 in𝑀 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

Pair construction (TC-Pair) checks that both components have the given types. Environment

combination and constraints are handled as usual. Deconstructing the pair in general requires an

annotation (TC-LetPair); as with the let rule, we check that the pair has the given annotation and

that the types inferred in the environment of the continuation are consistent with the annotation.

If both components of the pair are used within the continuation then we can omit the annotation

(TC-LetPairNoAnn): the rule first checks that the continuation has the given type, and inspects

the resulting environment to construct the product type used for checking 𝑉 .

Sum types. Sum types are similar to product types; again, the declarative rules are unremarkable

except for the requirement that sum components must be returnable in the elimination rule.

32

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Special Delivery , ,

T-Inl

Γ ⊢ 𝑉 :𝐴

Γ ⊢ inl 𝑉 :𝐴 + 𝐵

T-Inr

Γ ⊢ 𝑉 :𝐵

Γ ⊢ inr 𝑉 :𝐴 + 𝐵

T-Case

Γ1 ⊢ 𝑉 :𝐴1 +𝐴2

returnable(𝐴) returnable(𝐵) Γ2, 𝑥 : 𝐴1 ⊢ 𝑀 :𝐵 Γ2, 𝑦 : 𝐴2 ⊢ 𝑁 :𝐵

Γ ⊢ case 𝑉 of {inl 𝑥 : 𝐴1 ↦→ 𝑀 ; inr 𝑦 : 𝐴2 ↦→ 𝑁 } :𝐵

T-CaseNoAnn

Γ1 ⊢ 𝑉 :𝐴1 +𝐴2

Γ2, 𝑥 : 𝐴1 ⊢ 𝑀 :𝐵 Γ2, 𝑦 : 𝐴2 ⊢ 𝑁 :𝐵

Γ ⊢ case 𝑉 of {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } :𝐵

We can also write the corresponding algorithmic rules:

TC-Inl

𝑉 ⇐ 𝜏 ▶ Θ; Φ

inl 𝑉 ⇐ 𝜏 + 𝜎 ▶ Θ; Φ

TC-Inr

𝑉 ⇐ 𝜎 ▶ Θ; Φ

inr 𝑉 ⇐ 𝜏 + 𝜎 ▶ Θ; Φ

TC-Case

𝑉 ⇐ 𝐴 + 𝐵 ▶ Θ1; Φ1 𝑀 ⇐ 𝜏 ▶ Θ2; Φ2

𝑁 ⇐ 𝜏 ▶ Θ3; Φ3 check(Θ2, 𝑥, 𝐴) = Φ4

check(Θ3, 𝑦, 𝐵) = Φ5 Θ2 −𝑥 ⊓ Θ3 −𝑦 ▶ Θ4;Φ6 Θ1 + Θ4 ▶ Θ;Φ7

case 𝑉 of {inl 𝑥 : 𝐴 ↦→ 𝑀 ; inr 𝑦 : 𝐵 ↦→ 𝑁 } ⇐ 𝜏 ▶ Θ; Φ1 ∪ · · · ∪ Φ7

TC-CaseNoAnn

𝑀 ⇐ 𝜏 ▶ Θ1, 𝑥 : 𝜏1; Φ1 𝑁 ⇐ 𝜏 ▶ Θ2, 𝑦 : 𝜏2; Φ2

𝑉 ⇐ 𝜏1 + 𝜏2 ▶ Θ3; Φ3 Θ1 ⊓ Θ2 ▶ Θ4;Φ4 Θ3 + Θ4 ▶ Θ;Φ5

case 𝑉 of {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } ⇐ 𝜎 ▶ Θ; Φ1 ∪ · · · ∪ Φ5

As expected, sum injections are checking cases; similar to the product rules, we also have two

separate rules for case expressions which allow annotations to be elided if both 𝑥 and 𝑦 are used

within continuations𝑀 and 𝑁 .

C.2 Contextual Type Information
The other main extension supplements co-contextual type checking with contextual type informa-

tion in order to enable extensions such as higher-order functions and interfaces.

C.2.1 Extended syntax. We begin by showing the modified syntax.

Syntax

Modified types 𝜋, 𝜌 ::= 𝐶 | !𝐼𝛾 | ?𝐼𝛿 | −→𝜏 ⋄−→ 𝜎

Interfaces 𝐼 ::= · | 𝐼 , m ↦→ 𝜋

Linearity annotations ⋄ ::= □ | ■
Additional values 𝑉 ,𝑊 ::= · · · | _⋄ (−−−→𝑥 : 𝜏):𝜎 .𝑀
Modified computations 𝑀, 𝑁 ::= · · · | 𝑉 −→𝜏 −→𝜎 (𝑊) | new[𝐼] | guard𝐼 𝑉 :𝐸 {−→𝐺 }

| 𝑉 !
𝐼 m[
−→
𝑊]

33

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Like signatures in the core calculus, interfaces 𝐼 map message names to lists of types. We modify

types 𝜋, 𝜌 to include interface-annotated mailbox types, as well as 𝑛-ary function types
−→𝜏 ⋄−→ 𝜎

that are annotated as either linear (□, meaning that the function closes over linear variables and

therefore must be used precisely once) or unrestricted (■, meaning that the function only closes

over unrestricted variables and therefore can be used an unlimited number of times).

First-class functions. We extend values with fully-annotated, 𝑛-ary anonymous functions. We

require a return annotation since we wish to check the body type, while also synthesising a

return type. We opt for an 𝑛-ary function rather than a curried representation because anonymous

functions may only close over returnable values, to ensure they do not violate the conditions on

lexical scoping once applied.

Example C.1. Consider the following expression:

letmb = new in
let 𝑓 = (_□ (): 1 .mb ! m[]) in
guardmb : m {
receive m[] from mb ↦→ free mb
}
𝑓 ()

Here we bind 𝑓 to a function which sends message m to mailbox mb; note that it is used lexically

before the guard, which aligns with type combination. However, after reducing the expression

(assuming that 𝑎 is chosen as a runtime name), we obtain the following term:

guard a : m {
receive m[] from mb ↦→ free mb
}
(_□ (): 1 .mb ! m[]) ()

After substituting the function body for 𝑓 we now have a second-class use after the first-class
use, violating the ordering of returnable and second-class usages.

Mailbox terms. We extend computations so that a user specifies an interface 𝐼 when creating a

mailbox (new[𝐼]). Furthermore, we also augment send and guard expressions with the interface of

the mailbox they operate on. Unlike the annotation on new, this does not need to be specified by

the user, but instead is added by a straightforward type-directed translation.

C.2.2 Type-directed translation. We propagate annotations to function application and mailbox

terms via a contextual type-directed translation.

To do so, we introduce pre-types 𝑃,𝑄 : the main difference is that mailbox types do not carry a

pattern, but only an interface.

Pre-types 𝑃,𝑄 ::= 𝐶 | Mailbox(𝐼) | −→𝑃 ⋄−→ 𝑄

Pre-type environments Ω ::= · | Ω, 𝑥 : 𝑃

The type-directed translation pass follows the form of a standard type system for the simply-

typed _ calculus so we omit the rules here. However the judgement has the form Ω ⊢ 𝑀 : 𝑃 ⇝ 𝑁

which can be read “under pre-type environment Ω, term𝑀 has pre-type 𝑃 and produces annotated

term 𝑁 ”.

34

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Special Delivery , ,

C.2.3 Constraint generation rules. Finally, we can see how to write constraint generation rules for

the extended calculus. The rules in the declarative setting are similar.

Modified constraint generation rules

𝑀 ⇒ 𝜏 ▶ Θ; Φ 𝑀 ⇐ 𝜏 ▶ Θ; Φ {𝐸; 𝐼 } 𝐺⇐ 𝜏 ▶ Ψ; Φ; 𝐹

TS-LinLam

𝑀 ⇐ 𝜎 ▶ Θ′; Φ1 Θ = Θ′ −−→𝑥
check(−→𝑥 ,−→𝜏 ,Θ′) = Φ2 returnable(Θ)

_□ (−−−→𝑥 : 𝜏):𝜎 .𝑀 ⇒ −→𝜏 □−→ 𝜎 ▶ Θ; Φ1 ∪ Φ2

TS-UnLam

𝑀 ⇐ 𝜎 ▶ Θ′; Φ1 Θ = Θ′ −−→𝑥
check(−→𝑥 ,−→𝜏 ,Θ′) = Φ2 unr(Θ) ▶ Φ3 returnable(Θ)

_■ (−−−→𝑥 : 𝜏):𝜎 .𝑀 ⇒ −→𝜏 ■−→ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

TS-FnApp

𝑉 ⇐ −→𝜏 ⋄−→ 𝜎 ▶ Θ′; Φ
(𝑊𝑖 ⇐ 𝜏𝑖 ▶ Θ𝑖 ; Φ𝑖)𝑖∈1..𝑛 Θ′ + Θ1 + . . . + Θ𝑛 ▶ Θ;Φ

𝑉
−→
𝜏
⋄−→𝜎 (−→𝑊) ⇒ 𝜎 ▶ Θ; Φ ∪ Φ1 ∪ . . . ∪ Φ𝑛

TS-Send

𝐼 (m) = −→𝜋 𝑉 ⇐ !𝐼m◦ ▶ Θ′; Φ
(𝑊𝑖 ⇐ ⌈𝜋𝑖⌉ ▶ Θ𝑖 ; Φ

′
𝑖)𝑖 Θ′ + Θ1 + · · · + Θ𝑛 ▶ Θ;Φ′′

𝑉 !
𝐼 m[
−→
𝑊]⇒ 1 ▶ Θ; Φ ∪ Φ′

1
∪ · · · ∪ Φ′𝑛 ∪ Φ′′

TS-New

new[𝐼]⇒ ?𝐼1• ▶ ·; ∅

TC-Guard

{𝐸; 𝐼 } −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ1; 𝐹

𝑉 ⇐ ?𝐼𝐹 • ▶ Θ′; Φ2 Ψ + Θ′ ▶ Θ;Φ3

guard𝐼 𝑉 :𝐸 {−→𝐺 } ⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3 ∪ {𝐸 <: 𝐹 }

TCG-Recv

𝑀 ⇐ 𝜏 ▶ Θ′, 𝑦 : ?𝐼𝛾•; Φ1

𝐼 (m) = −→𝜋 Θ = Θ′ −−→𝑥 interfaces(−→𝜋) ∩ interfaces(Θ) = ∅ check(Θ′,−→𝑥 ,
−−→
⌈𝜋⌉) = Φ2

{𝐸; 𝐼 } receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾}; m ⊙ (𝐸 / m)
We require three new rules for first-class functions: TS-LinLam types a linear anonymous

function by checking that the body has the given result type, and the inferred environment uses

variables consistently with the parameter annotations; the rule synthesises a type consistent with

the annotation. Further, we require that the inferred environment only closes over variables with

returnable types. Rule TS-UnLam is similar, but additionally requires that the inferred environment

is unrestricted. Rule TS-FnApp types an annotated function application, checking that the function

has the given annotation and that the arguments have the correct types.

As for the rules that support interfaces, rule TS-Send is similar but looks up the types according

to the interface rather than the global signature, and checks that the target mailbox has the given

interface. Rule TS-New synthesises a mailbox type with the user-supplied interface. Finally, we

35

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

modify the shape of the guard typing judgement to record the interface of the mailbox being

guarded upon, and use this to look up the desired payload types in TCG-Recv.

36

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Special Delivery , ,

Lexical
Analysis Desugaring IR

Conversion

Contextual
type-

checking

Constraint
Generation

Constraint
Solving

Fig. 14. Pat type checking pipeline

D SUPPLEMENTARY IMPLEMENTATION AND EVALUATION MATERIAL
Our typechecking tool processes Pat programs specified in plain text files that are structured in

three segments:

(1) Interface definitions that establish the set of messages that a mailbox can receive;

(2) Function definitions that specify processes that are instantiable using spawn;

(3) Body an invocation of a function defined in (2) that acts as the program entry point.

Pat programs are type checked following the six-stage pipeline of Fig. 14; see §6.1 for an overview.

D.1 Experimental Conditions
We report the mean typechecking time, excluding phases 1–3 of the pipeline. Measurements are

made on a MacBook M1 Pro with 16GB of memory, running macOS 13.2 and OCaml 5.0. To ensure

minimal variability in our measurements show in Tbl. 1, we preformed 1000 repetition of each

experiment. The number of repetitions was determined empirically by calculating the coefficient

of variation (CV) [13], i.e. the ratio of the standard deviation to the mean, CV = 𝜎/𝑥 , for different
repetitions until an adequately-low value (<10%) was obtained.

D.2 Case Study
We give the full Pat program for our factory case study described in §6.2.2. The interaction sequence

between our different entities, Robots, Door, and Warehouse, is captured in Fig. 13 and naturally

translates to the code that follows.

Interfaces. The messages that Robot, Door, and Warehouse accept are defined by the interfaces:

1 interface Robot {
2 GoIn(Door!), GoOut(Door!), Busy(), Delivered(Warehouse!, Door!)
3 }
4

5 interface Door {
6 Want(Int, Robot!), Inside(Robot!), Outside(), WantLeave(Robot!), Prepared(Warehouse!), TableIdle()
7 }
8

9 interface Warehouse {
10 Prepare(Int, Door!), Deliver(Robot!, Door!), PartTaken()
11 }

Robot. Robots are initially idle and issue a Want message to the Door to obtain Warehouse access

(line 13). The Door replies either with the message Busy, in which case the Robot terminates (lines

15–16), or GoIn, to which the Robot replies by an Insidemessage before transitioning to the working

state (lines 17–19). When in working state, the Robot expects one Delivered message, as the guard

on line 23 asserts. This informs the Robot that the part is delivered by the Warehouse. The recipient

Robot replies by sending PartTaken, and notifies the Door that it wants to exit via WantLeave on lines

25–26. It then awaits GoOut and finalises its negotiation with the Door through an Outside message.

37

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

12 def idle(self: Robot?, door: Door!): Unit {
13 door ! Want(0, self);
14 guard self: (Busy + GoIn) {
15 receive Busy() from self �
16 free(self)
17 receive GoIn(door) from self �
18 door ! Inside(self);
19 working(self)
20 }
21 }

22 def working(self: Robot?): Unit {
23 let self = guard self: Delivered {
24 receive Delivered(wh, door) from self �
25 wh ! PartTaken();
26 door ! WantLeave(self); self
27 } in guard self: GoOut {
28 receive GoOut(door) from self �
29 door ! Outside();
30 free(self)
31 }
32 }

Door. The Door accepts zero or more Want messages, replying to each with Busy or GoIn. In the

latter case, the Door informs the Warehouse of an inbound Robot by sending it a Prepare message,

and transitioning to the busy state (lines 36–39). Both GoIn and Prepare include an updated self-

reference to ensure precise types. The clause free on line 35 handles the case where no Robots are

present. When busy, the Door mailbox potentially contains an Inside message from the admitted

Robot, a Preparedmessage from the Warehouse, and Wantmessages sent by other Robots requesting

access (line 44). These Want messages are answered with Busy, as lines 45–47 show. Once the

Door receives the Inside message, it awaits a Prepared message issued by the Warehouse, before

notifying the latter that the Robot is collecting its part via Deliver (lines line 48–51). Eventually,

the Robot demands exit by sending WantLeave to the Door, which handles it on lines line 53–54.

The Door transitions to the ready state, whereupon it confirms that the Robot has exited and that

the Warehouse is available; these interactions are captured by the Outside and TableIdle messages

respectively (lines 64–73). Finally, the Door transitions back to clear on line 74, ready to service

other Robots.

33 def clear(self: Door?, wh: Warehouse!): Unit {
34 guard self: *Want {
35 free � ()
36 receive Want(part, robot) from self �
37 robot ! GoIn(self);
38 wh ! Prepare(part, self);
39 busy(self)
40 }
41 }
42

43 def busy(self: Door?): Unit {
44 guard self: Inside.Prepared.*Want {
45 receive Want(partNum, robot) from self �
46 robot ! Busy();
47 busy(self)
48 receive Inside(robot) from self �
49 guard self: Prepared.*Want {
50 receive Prepared(wh) from self �
51 wh ! Deliver(robot, self);
52 guard self: WantLeave.TableIdle.*Want {
53 receive WantLeave(robot) from self �
54 robot ! GoOut(self);
55 ready(self, wh)
56 }
57 }
58 }
59 }

60 def ready(self: Door?, wh: Warehouse!): Unit {
61 guard self: Outside.TableIdle.*Want {
62 # Handle messages Outside and TableIdle in
63 # any order (code omitted) and clear door.
64 receive Outside() from self �
65 guard self: TableIdle.*Want {
66 receive TableIdle(wh) from self �
67 clear(self, wh)
68 }
69 receive TableIdle(wh) from self �
70 guard self: Outside.*Want {
71 receive Outside() from self �
72 clear(self, wh)
73 }
74 clear(self, wh)
75 }
76 }

Warehouse. The Warehouse in its empty state expects a Prepare message (if there are Robots in

the system), or none (if no Robot requests access), i.e. the guard Prepared + 1 on line 78. When a

part is requested, the Warehouse transitions to the engaged state and awaits a Delivermessage from

the Door, notifying the Robot collecting the part via a Delivered message (lines 86–92). The Robot

38

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Special Delivery , ,

acknowledges the delivery by sending PartTaken, as the guard on line 94 stipulates. To conclude its

interaction with the Door, the Warehouse sends TableIdle before transitioning back to empty.

77 def empty(self: wh?): Unit {
78 guard self: Prepare + 1 {
79 free � ()
80 receive Prepare(partNum, door) from self �
81 door ! Prepared(self);
82 engaged(self)
83 }
84 }
85

86 def engaged(self: wh?): Unit {
87 guard self: Deliver {
88 receive Deliver(robot, door) from self �
89 robot ! Delivered(self, door);
90 given(self, door)
91 }
92 }

93 def given(self: wh?, door: Door!): Unit {
94 guard self : PartTaken {
95 receive PartTaken() from self �
96 door ! TableIdle(self);
97 empty(self)
98 }
99 }
100

101 def main(): Unit { # Launcher function.
102 let robot𝑖 = new[Robot] in # 𝑛 Robot mailboxes.
103 let door = new[Door] in
104 let wh = new[Warehouse] in
105 spawn { clear(door, wh) }; # Door.
106 spawn { idle(robot𝑖, door) }; # 𝑛 Robots.
107 spawn { empty(wh) } # Warehouse.
108 }

The function main() creates 𝑛 Robot mailboxes, together with a Door and Warehouse mailbox,

spawning the respective processes on lines 105–107.

39

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

E PROOFS
E.1 Preservation
E.1.1 Auxiliary Definitions and Lemmas. We extend returnable(−) to typing environments, writing

returnable(Γ) if returnable(𝐴) for each 𝑥 : 𝐴 ∈ Γ. Similarly, we write irrelevant(𝐴) if𝐴 is irrelevant

(i.e., it is a mailbox type !𝐸[≤ !1[), and extend this to environments.

We write fv(𝑀) to return the free variables of a term.

Environment subtyping includes a notion of weakening. Read top-down, environment subtyping

rules allow us to add a variable with mailbox type !1, replace a type with its subtype, and add in

base types. It is therefore useful to introduce a definition referring to the class of types which can

be added in through T-Subs which may not be used by a term. We call these types cruft. Cruft is a
refinement of un(−) since it also encompasses types which are subtypes of !1.

Definition E.1 (Cruft). A type𝑇 is cruft, written cruft(𝑇), if either𝑇 is a base type, or irrelevant(𝑇).
A usage-aware type 𝑇[is cruft if [= ◦ and 𝑇 is cruft.

It helps to define a stricter version of environment subtyping which does not permit weakening:

Definition E.2 (Strict environment subtyping). An environment Γ is a strict subtype environment
of an environment Γ′, written Γ ≼ Γ′ if Γ ≤ Γ′ and dom(Γ) = dom(Γ′).

We extend cruft(−) to type environments and usage-aware type environments in the usual way.

Definition E.3 (Cruftless). We say that an environment is cruftless for a term 𝑀 if Γ ⊢ 𝑀 :𝐴 and

dom(Γ) = fv(𝑀).

Let us also use Π to range over type environments. A crucial lemma for taming the complexity of

environment subtyping is the following, which allows us to separate the type environment required

for typing the term from the cruft introduced by environment subtyping.

Lemma E.4. If Γ ⊢ 𝑀 :𝐴, then there exist Π1,Π2,Π3 such that:
• Γ = Π1,Π2

• Π3 ⊢ 𝑀 :𝐴′

• Π1 is cruftless for𝑀 , and Π1 ≼ Π3

• 𝐴′ ≤ 𝐴
• cruft(Π2)

Proof. Follows from the definition of environment subtyping: read top-down, each application

of environment subtyping will either add a variable with an unrestricted type, or alter the type of

an existing variable. □

The substitution lemma is only defined on disjoint environments: we should not be substituting

a name into a term where it is already free. This is ensured by distinguishing between returnable

and second-class usages of a variable: if a variable is returnable, then we know it cannot be used

within the term into which it is being substituted. If a variable is second-class, then there will be

no applicable reduction rules which result in substitution.

Lemma E.5 (Substitution). If:
• Γ1, 𝑥 : 𝐴 ⊢ 𝑀 :𝐵

• Γ2 ⊢ 𝑉 :𝐴′

• 𝐴′ ≤ 𝐴
• Γ1 + Γ2 is defined

then Γ1 + Γ2 ⊢ 𝑀{𝑉 /𝑥} :𝐵.

40

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Special Delivery , ,

Proof. By induction on the derivation of Γ1, 𝑥 : 𝐴 ⊢ 𝑀 :𝐵. □

Lemma E.6 (Subtyping preserves reliablility / usability [12]). If 𝐴 ≤ 𝐵, then:
(1) 𝐴 reliable implies 𝐵 reliable
(2) 𝐵 usable implies 𝐴 usable

Corollary E.7. If Γ1 ≤ Γ2 then:
(1) Γ1 reliable implies Γ2 reliable
(2) Γ2 usable implies Γ2 usable

Lemma E.8 (Balancing [12]). If m ⊙ 𝐹 ⊑ 𝐸 where 𝐹 ̸⊑ 0 and 𝐸 / m is defined, then 𝐹 ⊑ 𝐸 / m.

Lemma E.9. If 𝐴 ≤ 𝐵 and returnable(𝐵), then returnable(𝐴)

Proof. Follows from the fact that • ≤ ◦. □

Corollary E.10. If Γ1 ≼ Γ2 and returnable(Γ2), then returnable(Γ1).

Lemma E.11. If Γ ⊢ 𝑉 :𝐴 where returnable(𝐴) and Γ is cruftless for 𝑉 , then returnable(Γ).

Proof. By case analysis on the derivation of Γ ⊢ 𝑉 :𝐴. □

Lemma E.12. If (Π1,Π2) ⊲ Γ is defined and returnable(Π1), then Π1,Π2 ⊲ Γ = Π1 + (Π2 ⊲ Γ).

Proof. Follows from the definition of usage combination: the operation is not symmetric for

returnable mailbox types, so the returnable mailbox type must be the last occurrence of that name

in the combination. For base types, the definitions of combination for ⊲ and + coincide. □

Lemma E.13. If Γ1 ⊲ Γ2 is defined, with Γ1 and Γ2 sharing only variables of base type, then Γ1 + Γ2 is
defined.

Proof. Immediate from the definitions. □

Lemma E.14 (⊲ is associative). 𝐴1 ⊲ (𝐴2 ⊲𝐴3) ⇐⇒ (𝐴1 ⊲𝐴2) ⊲𝐴3

Proof. Follows from the fact that usage combination is associative, and that we identify patterns

up to commutativity and associativity. □

Extending to usage-aware type environments, we get the following corollary:

Corollary E.15. Γ1 ⊲ (Γ2 ⊲ Γ3) ⇐⇒ (Γ1 ⊲ Γ2) ⊲ Γ3

The same result holds for runtime type environments and ⊲⊳:

Lemma E.16 (⊲⊳ is associative). Δ1 ⊲⊳ (Δ2 ⊲⊳ Δ3) ⇐⇒ (Δ1 ⊲⊳ Δ2) ⊲⊳ Δ3

Proof. Follows the same reasoning as for ⊲. □

Lemma E.17. The ⊲⊳ operator is commutative: Δ1 ⊲⊳ Δ2 = Δ2 ⊲⊳ Δ1.

Proof. Follows from the fact that ⊞ is commutative. □

Lemma E.18. Γ1 + (Γ2 ⊲ Γ3) = (Γ1 + Γ2) ⊲ Γ3.

Proof. Follows directly from the definitions. □

Lemma E.19. If Γ1, Γ2 = Γ, then Γ1 ⊲ Γ2 = Γ

Proof. Follows from the definition of ⊲ given that Γ1 and Γ2 are disjoint. □

41

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Lemma E.20. If Γ1 ⊲ Γ2 = Γ, then |Γ1 | ⊲⊳ |Γ2 | = |Γ |.

Proof. Follows directly from the definitions, since ⊲⊳ is more liberal than ⊲. □

Lemma E.21. |Γ | ⊲⊳ Δ = | ⌈Δ⌉ ⊲ Γ |.

Proof. For each 𝑥 such that 𝑥 : 𝑇 ∈ |Γ | and 𝑥 : 𝑈 ∈ Δ, since |Γ | ⊲⊳ Δ is defined, we have that

𝑇 ⊞𝑈 is defined. The result then follows from the definition of ⊲, noting that all types in ⌈Δ⌉ are
usable and therefore combinable with any other usage. □

Lemma E.22. If Γ1 ⊲ Γ2 = Γ and irrelevant(Γ1), then Γ2 ≃ Γ.

Proof. Since irrelevant(Γ1), we have that for each 𝑥 : 𝐴, it is the case that 𝐴 = !𝐸◦ where
𝐸 ⊑ 1. □

E.1.2 Preservation proof.

Lemma E.23 (Preservation (Eqivalence)). If Γ ⊢ C and C ≡ D, then Γ ⊢ D.

Proof. By induction on the derivation of C ≡ D, relying on Lemmas E.16 and E.17 and TC-

Subs. □

Theorem 3.11 (Preservation). If ⊢ P, and Γ ⊢P C with Γ reliable, and C −→P D, then Γ ⊢P D.

Proof. By induction on the derivation of Γ ⊢ C.

Case E-Let

Assumption:

Γ1 ⊲ Γ2 = ⌊Δ′⌋

Γ3 ⊲ Γ4 = Γ1 Γ3 ⊢ 𝑀 : ⌊𝑇 ⌋
Γ4, 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :𝐵

Γ1 ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :𝐵
Γ2 ⊢ 𝐵 ▶ Σ

Δ′ ⊢ L let 𝑥 : 𝑇 = 𝑀 in 𝑁, Σ M

Δ ⊢ L let 𝑥 : 𝑇 = 𝑀 in 𝑁, Σ M

where

• Δ ≤ Δ′

• ⌊Δ′⌋ = Γ1 ⊲ Γ2

• Γ1 = Γ3 ⊲ Γ4

so, ⌊Δ′⌋ = (Γ3 ⊲ Γ4) ⊲ Γ2.

By Lemma E.14, ⌊Δ′⌋ = Γ3 ⊲ (Γ4 ⊲ Γ2).
Recomposing:

Γ3 ⊲ (Γ4 ⊲ Γ2) = ⌊Δ′⌋ Γ3 ⊢ 𝑀 : ⌊𝑇 ⌋
Γ4, 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :𝐵 Γ2 ⊢ 𝐵 ▶ Σ

(Γ4 ⊲ Γ2) ⊢ ⌊𝑇 ⌋ ▶ ⟨𝑥, 𝑁 ⟩ · Σ
Δ′ ⊢ L𝑀, ⟨𝑥, 𝑁 ⟩ · Σ M

Δ ⊢ L𝑀, ⟨𝑥, 𝑁 ⟩ · Σ M

Case E-Return

42

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Special Delivery , ,

Assumption:

Γ1 ⊲ Γ2 = ⌊Δ⌋ Γ1 ⊢ 𝑉 :𝐴 returnable(𝐴)

Γ2 = Γ3 ⊲ Γ4

Γ3, 𝑥 : 𝐴 ⊢ 𝑀 :𝐵 Γ4 ⊢ 𝐵 ▶ Σ

Γ2 ⊢ 𝐴 ▶ ⟨𝑥,𝑀⟩ · Σ
Δ ⊢ L𝑉 , ⟨𝑥,𝑀⟩ · Σ M

Environments:

• ⌊Δ⌋ = Γ1 ⊲ Γ2

• Γ2 = Γ3 ⊲ Γ4

so, ⌊Δ⌋ = Γ1 ⊲ (Γ3 ⊲ Γ4).
By Lemma E.4, we have that there exist Π1,Π2,Π3 such that:

• Γ1 = Π1,Π2

• Π3 ⊢ 𝑉 :𝐴′

• Π1 is cruftless for 𝑉 , and Π1 ≼ Π3

• 𝐴′ ≤ 𝐴
• cruft(Π2)

By Lemma E.9, returnable(𝐴′), and by Lemma E.11, returnable(Π3).
By Corollary E.10, returnable(Π1).
By Lemma E.5, Π1 + Γ3 ⊢ 𝑀{𝑉 /𝑥} :𝐵.

Equational reasoning on environments:

⌊Δ⌋
= (expanding)

Γ1 ⊲ Γ2

= (expanding)
Γ1 ⊲ (Γ3 ⊲ Γ4)
= (expanding)

Π1,Π2 ⊲ (Γ3 ⊲ Γ4)
= (Lemma E.14)
(Π1,Π2 ⊲ Γ3) ⊲ Γ4

= (Lemma E.12)
(Π1 + (Π2 ⊲ Γ3)) ⊲ Γ4

Let Δ′ = | (Π1 + (Π2 ⊲ Γ3)) ⊲ Γ4 |.
By the definitions of environment subtyping, follows that Π1 + (Π2 ⊲ Γ3) ≤ Π1 + Γ3.

Therefore:

(Π1 + (Π2 ⊲ Γ3)) ⊲ Γ4 = ⌊Δ′⌋
Π1 + Γ3 ⊢ 𝑀{𝑉 /𝑥} :𝐵

Π1 + (Π2 ⊲ Γ3) ⊢ 𝑀{𝑉 /𝑥} :𝐵 Γ4 ⊢ 𝐵 ▶ Σ

Δ′ ⊢ L𝑀{𝑉 /𝑥}, Σ M

Δ ⊢ L𝑀{𝑉 /𝑥}, Σ M

as required.

Case E-App

43

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Assumption:

⌊Δ⌋ = Γ1 ⊲ Γ2

P(𝑓) = −→𝐴 −→ 𝐵 (Γ′𝑖 ⊢ 𝑉𝑖 :𝐴𝑖)𝑖
Γ′

1
+ · · · + Γ′𝑛 ⊢ 𝑓 (

−→
𝑉) :𝐵

Γ1 ⊢ 𝑓 (
−→
𝑉) :𝐵 Γ2 ⊢ 𝐵 ▶ Σ

Δ ⊢ L 𝑓 (−→𝑉), Σ M

Since we also assume ⊢ P, we know by definition typing that:

−−−→
𝑥 : 𝐴 ⊢P 𝑀 :𝐵

⊢P def 𝑓 (−−−→𝑥 : 𝐴): 𝐵 {𝑀}

By Lemma E.5 we have that Γ′
1
+ · · · + Γ′𝑛 ⊢ 𝑀{

−→
𝑉 /−→𝑥 } :𝐵.

Thus we can recompose:

⌊Δ⌋ = Γ1 ⊲ Γ2

Γ′
1
+ · · · + Γ′𝑛 ⊢ 𝑀{

−→
𝑉 /−→𝑥 } :𝐵

Γ1 ⊢ 𝑀{
−→
𝑉 /−→𝑥 } :𝐵 Γ2 ⊢ 𝐵 ▶ Σ

Δ ⊢ L𝑀{−→𝑉 /−→𝑥 }, Σ M

as required.

Case E-New

Assumption:

Γ1 ⊲ Γ2 = ⌊Δ′⌋
· ⊢ new : ?1•

Γ1 ⊢ new : ?1•
Γ2 ⊢ ?1• ▶ Σ

Δ′ ⊢ Lnew, Σ M

Δ ⊢ Lnew, Σ M

where Δ ≤ Δ′.

Γ1, 𝑎 : ?1• ⊲ Γ2 = ⌊Δ′, 𝑎 : ?1⌋
𝑎 : ?1• ⊢ 𝑎 : ?1•

Γ1, 𝑎 : ?1 ⊢ 𝑎 : ?1•
Γ2 ⊢ ?1• ▶ Σ

Δ′, 𝑎 : ?1 ⊢ L𝑎, Σ M

Δ′ ⊢ (a𝑎) (L𝑎, Σ M)
Δ ⊢ (a𝑎) (L𝑎, Σ M)

as required.

Case E-Send

44

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Special Delivery , ,

Γ1 ⊲ Γ2 = ⌊Δ⌋ Γ1 ⊢ 𝑎 ! m[
−→
𝑉] : 1 Γ2 ⊢ 1 ▶ Σ

Δ′ ⊢ L𝑎 ! m[
−→
𝑉], Σ M

Δ ⊢ L𝑎 ! m[
−→
𝑉], Σ M

By Lemma E.4 we have that:

• Γ1 = Π1,Π2

• Π3 ⊢ 𝑎 ! m[
−→
𝑉] : 1

• Π1 is cruftless for 𝑎 ! m[
−→
𝑉] and Π1 ≼ Π3

• cruft(Π2)
Therefore we have that Π3 = Π′

3
, 𝑎 : !m such that:

𝑎 : !m◦ ⊢ 𝑎 : !m Π′
3
⊢ −→𝑉 :

−→
𝐴

−→
𝐴 ≤ P(m)

Π′
3
, 𝑎 : !m◦ ⊢ 𝑎 ! m[

−→
𝑉] : 1

Δ′

= (expanding)

|Γ1 ⊲ Γ2 |
= (expanding)

| (Π1,Π2) ⊲ Γ2 |
= (expanding)

| (Π′
1
, 𝑎 : !m◦,Π2) ⊲ Γ2 |

= (Lemma E.19)

| (Π′
1
, 𝑎 : !m◦ ⊲ Π2) ⊲ Γ2 |

= (Lemma E.15)

|Π′
1
, 𝑎 : !m◦ ⊲ (Π2 ⊲ Γ2) |
= (Lemma E.20)

|Π′
1
, 𝑎 : !m◦ | ⊲⊳ | (Π2 ⊲ Γ2) |
= (⊲⊳ is commutative)

|Π2 ⊲ Γ2 | ⊲⊳ |Π′1, 𝑎 : !m◦ |

Recomposing:

Π2 ⊲ Γ2 = ⌊ |Π2 ⊲ Γ2 | ⌋ Π2 ⊢ () : 1 Γ2 ⊢ 1 ▶ Σ

|Π2 ⊲ Γ2 | ⊢ L (), Σ M

𝑎 : !m ⊢ 𝑎 : !m ⌈Π′
1
⌉ ⊢ −→𝑉 :

−→
𝐴

−→
𝐴 ≤ ⌈P (m) ⌉

|Π′
1
, 𝑎 : !m | ⊢ 𝑎 ← m[

−→
𝑉]

|Π2 ⊲ Γ2 | ⊲⊳ |Π′1, 𝑎 : !m | ⊢ L (), Σ M ∥ 𝑎 ← m[
−→
𝑉]

Δ ⊢ L (), Σ M ∥ 𝑎 ← m[
−→
𝑉]

as required.

Case E-Spawn

Assumption:

45

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

⌈Γ1⌉ ⊲ Γ2 = ⌊Δ′⌋

Γ′
1
⊢ 𝑀 : 1

Γ1 ⊢ 𝑀 : 1

⌈Γ1⌉ ⊢ spawn 𝑀 : 1
Γ2 ⊢ 1 ▶ Σ

Δ′ ⊢ L spawn 𝑀, Σ M

Δ ⊢ L spawn 𝑀, Σ M

where Γ1 ≤ Γ′
1
.

By Lemma E.4, there exist Π1,Π2,Π3 such that:

• Γ1 = Π1,Π2

• Π3 ⊢ 𝑀 : 1
• Π1 is cruftless for𝑀 and Π1 ≼ Π3

• cruft(Π2)
We now prove that Δ′ ≤ |Π2 ⊲ Γ2 | ⊲⊳ |Π1 |.

Δ′

= (expanding)

| ⌈Γ1⌉ ⊲ Γ2 |
= (expanding)

| ⌈Π1,Π2⌉ ⊲ Γ2 |
= (Π2 cruft, so usable)

| (⌈Π1⌉,Π2) ⊲ Γ2 |
= (Lemma E.19)

| (⌈Π1⌉ ⊲ Π2) ⊲ Γ2 |
= (Lemma E.15)

| ⌈Π1⌉ ⊲ (Π2 ⊲ Γ2) |
= (Lemma E.20)

| ⌈Π1⌉ | ⊲⊳ | (Π2 ⊲ Γ2) |
= (⊲⊳ is commutative)

| (Π2 ⊲ Γ2) | ⊲⊳ | ⌈Π1⌉ |
= (|−| cancels ⌈−⌉)
| (Π2 ⊲ Γ2) | ⊲⊳ |Π1 |

It follows that since • ≤ ◦ and Π1 ≼ Π3, that ⌊Π1⌋ ≤ Π3.

From that, we can construct the following derivation:

Π2 ⊲ Γ2 = ⌊ |Π2 ⊲ Γ2 | ⌋
· ⊢ () : 1

Π2 ⊢ () : 1 Γ2 ⊢ 1 ▶ Σ

|Π2 ⊲ Γ2 | ⊢ L (), Σ M

⌊ |Π1 | ⌋ ⊲ · = ⌊ |Π1 | ⌋
Π3 ⊢ 𝑀 : 1

⌊Π1 ⌋ ⊢ 𝑀 : 1 · ⊢ 1 ▶ 𝜖
|Π1 | ⊢ L𝑀,𝜖 M

|Π2 ⊲ Γ2 | ⊲⊳ |Π1 | ⊢ L (), Σ M ∥ L𝑀,𝜖 M

Δ′ ⊢ L (), Σ M ∥ L𝑀,𝜖 M

Δ ⊢ L (), Σ M ∥ L𝑀,𝜖 M

as required.

Case E-Free

Assumption (assuming WLOG that the free guard is the first guard in the sequence):

46

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Special Delivery , ,

Γ1, 𝑎 : ?𝐹•env ⊲ Γ2 = ⌊Δ′, 𝑎 : ?𝐹•env⌋ Γ1, 𝑎 : ?𝐹•env ⊢ guard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 } :𝐴 Γ2 ⊢ 𝐴 ▶ Σ

Δ′, 𝑎 : ?𝐹env ⊢ Lguard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 }, Σ M

Δ, 𝑎 : ?1 ⊢ Lguard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 }, Σ M

Δ ⊢ (a𝑎) (Lguard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 }, Σ M)

where Δ ≤ Δ′, and ?1 ≤ ?𝐹 , and (by Lemma E.12) 𝑎 ∉ dom(Γ2).
Furthermore:

Π1, 𝑎 : ?𝐹 ′•env ⊢ 𝑎 : ?(1 ⊕ 𝐹 ′)

Π2 ⊢ 𝑀 :𝐴

Π2 ⊢ free ↦→ 𝑀 :𝐴 :: 1 Π2 ⊢ 𝑀 :𝐴 :: 𝐹 ′

Π2 ⊢ free ↦→ 𝑀 · −→𝐺 :𝐴 :: 1 ⊕ 𝐹 ′

Π1, 𝑎 : ?𝐹 ′•env + Π2 ⊢ guard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 } :𝐴

Γ1, 𝑎 : ?𝐹•env ⊢ guard𝑎 :𝐸 {free ↦→ 𝑀 · −→𝐺 } :𝐴

where cruft(Π1). Thus, Π1 + Π2 ≤ Π2 and Π1 + Π2 ⊢ 𝑀 :𝐴. Furthermore, Γ1 ≤ Π1 + Π2.

Thus, recomposing:

Γ1 ⊲ Γ2 = ⌊Δ′⌋
Π1 + Π2 ⊢ 𝑀 :𝐴

Γ1 ⊢ free ↦→ 𝑀 :𝐴 Γ2 ⊢ 𝐴 ▶ Σ

Δ′ ⊢ L𝑀, Σ M

Δ ⊢ L𝑀, Σ M

as required.

Case E-Recv

Assumption:

Γ1 ⊲ Γ2 = ⌊Δ1⌋ D Γ2 ⊢ 𝐴 ▶ Σ

Δ1 ⊢ Lguard𝑎 :𝐸ann {G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀]}, Σ M

⌈Δ2⌉ ⊢
−→
𝑉 :

−→
𝐵

−→
𝑈 ≤ ⌈P(m)⌉

Δ2, 𝑎 : !m ⊢ 𝑎 ← m[
−→
𝑉]

Δ1 ⊲⊳ (Δ2, 𝑎 : !m) ⊢ Lguard𝑎 :𝐸ann {G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀]}, Σ M ∥ 𝑎 ← m[
−→
𝑉]

Δ ⊢ Lguard𝑎 :𝐸ann {G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀]}, Σ M ∥ 𝑎 ← m[
−→
𝑉]

where D is the following derivation:

Γ1 = Γ3 + Γ4

𝑎 : ?𝐸• ⊢ 𝑎 : ?𝐸•

Γ3 ⊢ 𝑎 : ?𝐸•ty Γ4 ⊢ G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀] :𝐴 :: 𝐸ty 𝐸ty ⊑ 𝐸ann ⊨ 𝐸ty

Γ1 ⊢ guard 𝑎 {𝐸ann}G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀] :𝐴

By Lemma E.4, Γ3 = Π, 𝑎 : ?𝐸•env , where:

• ?𝐸env ≤ ?𝐸
• ?𝐸 ≤ ?𝐸ty

47

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

and thus ?𝐸env ≤ ?𝐸 ≤ ?𝐸ty .
Without loss of generality, let us consider the case where the receive is the first guard. We can

therefore write G[receive m[−→𝑥] from 𝑦 ↦→ 𝑀] as receive m[−→𝑥] from 𝑦 ↦→ 𝑀 · −→𝐺 for some

sequence

−→
𝐺 .

By T-GuardSeq and TG-Recv, and since ⊨ 𝐸ty , we have that 𝐸ty = 𝐹1⊕ · · · ⊕ 𝐹𝑛 , where 𝐹1 = m⊙ 𝐹 ′
and 𝐹 ′ ≃ 𝐸ty / m.

Furthermore:

P(m) =
−→
𝑈 ′ un(Γ4) Γ4,

−→𝑥 :

−−−→
⌈𝑈 ′⌉, 𝑦 : ?𝐹 ′• ⊢ 𝑀 :𝐴

Γ4 ⊢ receive m[−→𝑥] from 𝑦 ↦→ 𝑀 :𝐴 :: (m ⊙ 𝐹 ′)
Now, by the definition of ⊲⊳, we know that 𝐸env = m ⊙ 𝐸pat for some pattern 𝐸pat .

By the definition of ⊲, we also know that 𝑎 ∉ dom(Γ4).
By Lemma E.8, we have that 𝐸pat ⊑ 𝐸 / m, and thus ?𝐸•pat ≤ ?(𝐸 / m)•.
Further, it follows that ?𝐸 / m ≤ ?𝐹 ′.

By Lemma E.5, ⌈Δ2⌉ + Γ4, 𝑎 : ?𝐹 ′• ⊢ 𝑀{−→𝑉 /−→𝑥 , 𝑎/𝑦} :𝐴.

Equational reasoning:

Δ1 ⊲⊳ (Δ2, 𝑎 : !m)
= (expanding)

|Γ1 ⊲ Γ2 | ⊲⊳ (Δ2, 𝑎 : !m)
= (expanding)

| (Γ3 + Γ4) ⊲ Γ2 | ⊲⊳ (Δ2, 𝑎 : !m)
= (expanding)

| (Π, 𝑎 : ?𝐸•env + Γ4) ⊲ Γ2 | ⊲⊳ (Δ2, 𝑎 : !m)
= (expanding)

| (Π, 𝑎 : ?(m ⊙ 𝐸pat)• + Γ4) ⊲ Γ2 | ⊲⊳ (Δ2, 𝑎 : !m)
= (Lemma E.12)

| (Π + Γ4) ⊲ Γ2, 𝑎 : ?(m ⊙ 𝐸pat)• | ⊲⊳ (Δ2, 𝑎 : !m)
= (Definition of ⊲⊳)

(| (Π + Γ4) ⊲ Γ2 | ⊲⊳ Δ2), 𝑎 : ?𝐸pat
= (Lemma E.21, since un(Γ4))
(| ⌈Δ2⌉ ⊲ ((Π + Γ4) ⊲ Γ2) |), 𝑎 : ?𝐸pat
= (Lemma E.14)

(| (⌈Δ2⌉ ⊲ (Π + Γ4)) ⊲ Γ2 |), 𝑎 : ?𝐸pat
= (Lemma E.13)

(| (⌈Δ2⌉ + (Π + Γ4)) ⊲ Γ2 |), 𝑎 : ?𝐸pat
= (𝑎 disjoint from environments)

| (⌈Δ2⌉ + (Π + Γ4), 𝑎 : ?𝐸•pat) ⊲ Γ2 |

Let Δ′ = | (⌈Δ2⌉ + (Π + Γ4), 𝑎 : ?𝐸•pat) ⊲ Γ2 |
Recomposing:

⌊Δ⌋ = ⌈Δ2 ⌉ + (Π + Γ4), 𝑎 : ?𝐸•pat ⊲ Γ2 ⌈Δ2 ⌉ + Γ4, 𝑎 : ?𝐹 ′• ⊢ 𝑀 {−→𝑉 /−→𝑥 , 𝑎/𝑦} :𝐴 Γ2 ⊢ 𝐴 ▶ Σ

Δ′ ⊢ L𝑀 {−→𝑉 /−→𝑥 , 𝑎/𝑦}, Σ M

Δ ⊢ L𝑀 {−→𝑉 /−→𝑥 , 𝑎/𝑦}, Σ M

as required.

48

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Special Delivery , ,

Case E-Nu

Follows immediately from the induction hypothesis.

Case E-Par

Follows immediately from the induction hypothesis.

Case E-Struct

Follows immediately from Lemma E.23 and the induction hypothesis. □

49

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

E.2 Progress
Lemma E.24 (Canonical forms). If · ⊢ C then there exists some D such that C ≡ D and D is in

canonical form.

Proof. Follows from the structural congruence rules. □

Lemma E.25 (Progress (Thread Reduction)). If Γ ⊢P L𝑀, Σ M, then either:
• 𝑀 is a value and Σ = 𝜖 ; or
• there exists some𝑀 ′, Σ′ such that L𝑀, Σ M −→ L𝑀 ′, Σ′ M; or
• 𝑀 is a communication and concurrency construct, i.e. new, or spawn 𝑀 , or
𝑉 ! m[

−→
𝑊], or guard𝑉 :𝐸 {−→𝐺 }.

Proof. By case analysis on the derivation of Γ ⊢ L𝑀, Σ M and inspection of the reduction

rules. □

Theorem 3.16 (Partial Progress). Suppose ⊢ P and · ⊢P C where C is in canonical form:

C = (a𝑎1) · · · (a𝑎𝑙) (L𝑀1, Σ1 M ∥ · · · L𝑀𝑚, Σ𝑚 M ∥ M)
Then for each𝑀𝑖 , either:
• there exist𝑀 ′𝑖 , Σ

′
𝑖 such that L𝑀𝑖 , Σ𝑖 M −→ L𝑀 ′𝑖 , Σ

′
𝑖 M; or

• 𝑀𝑖 is a value and Σ𝑖 = 𝜖 ; or
• waiting(𝑀𝑖 , 𝑎 𝑗 , m𝑗) whereM does not contain a message m𝑗 for 𝑎 𝑗 and 𝑎 𝑗 ∉ fv(−→𝐺𝑖) ∪ fv(Σ𝑖), where−→
𝐺𝑖 are the guard clauses of𝑀𝑖 .

Proof. Functional reduction enjoys progress (E.25), and the constructs new, spawn 𝑀 , and

𝑎 ! m[
−→
𝑉] can all always reduce. Therefore, the body of an irreducible thread L𝑀𝑘 , Σ𝑘 M must be

waiting for a message m on some name 𝑎. To be waiting, name 𝑎 must be returnable, and therefore

cannot occur free in 𝑀𝑘 or Σ𝑘 . It cannot be the case that message m for 𝑎 is contained inM (in

which case the configuration could reduce), so typing ensures that 𝑎 is free in one of the other

threads. Extending this reasoning we see that if a configuration contains irreducible non-value

threads, then C must contain a cyclic inter-thread dependency. □

50

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Special Delivery , ,

E.3 Algorithmic Soundness
A solution for a set of constraints is also a solution for a subset of those constraints.

Lemma E.26. If Ξ is a solution for a constraint set Φ1 ∪ Φ2, then Ξ is a solution for Φ1.

Proof. Since Ξ is a solution for Φ1 ∪ Φ2, it follows that dom(Φ1 ∪ Φ2) ⊆ dom(Ξ). The result
follows from the fact that dom(Φ1) ⊆ dom(Φ1 ∪ Φ2) ⊆ dom(Ξ). □

The pattern variables in an inferred environment must either occur in the type, program, or

constraint set.

Lemma E.27. If𝑀 ⇒P 𝜏 ▶ Θ; Φ or𝑀 ⇐P 𝜏 ▶ Θ; Φ, then pv(Θ) ⊆ pv(𝜏) ∪ pv(P) ∪ pv(Φ).

Proof. By mutual induction on the two derivations, noting that whenever a pattern variable is

introduced fresh, it is always added to the constraint set. □

Application of a usable substitution preserves algorithmic subtyping in the declarative setting.

Lemma E.28. If 𝜏 ≤ 𝜎 ▶ Φ and Ξ is a usable solution of Φwith pv(𝜎) ⊆ dom(Ξ), then Ξ(𝜏) ≤ Ξ(𝜎).

Proof. By case analysis on the derivation of 𝜏 ≤ 𝜎 ▶ Φ. □

As a direct corollary, we can show that constraints generated by equivalence preserve subtyping

in both directions.

Corollary E.29. If 𝜏 ∼ 𝜎 ▶ Φ and Ξ is a usable solution of Φ with pv(𝜎) ⊆ dom(Ξ), then both
Ξ(𝜏) ≤ Ξ(𝜎) and Ξ(𝜎) ≤ Ξ(𝜏).

Similarly, application of a usable substitution preserves unrestrictedness.

Lemma E.30. If unr(𝜏) ▶ Φ and Ξ is a usable solution of Φ with pv(𝜎) ⊆ dom(Ξ), then there exists
some 𝐴 such that un(𝐴) and 𝐴 ≤ Ξ(𝜏).

Proof. By case analysis on the derivation of unr(𝜏) ▶ Φ, noting that cases are undefined for

linear types, and the result follows straightforwardly for base types.

The only interesting case is unr(!𝛾◦) ▶ 1<:𝛾 ; since Ξ is a usable solution, we have that 1 ⊑ Ξ(𝛾)
and Ξ(𝛾) ̸⊑ 0.
Thus, it follows that Ξ(𝛾) ≃ 1 and therefore !1 ≤ Ξ(𝛾), noting that un(!1) as required. □

Again, this is straightforward to extend to environments.

Corollary E.31. If Ξ is a usable solution of unr(Θ) ▶ Φ where pv(Θ) ⊆ dom(Ξ), then there exists
some Γ such that Γ ≤ Ξ(Θ) and un(Γ).

If two environments are combinable, and we have a solution for the constraints generated by

their algorithmic combination, then their combination is defined.

Lemma E.32. If Θ1 +Θ2 ▶ Θ;Φ and Ξ is a usable solution of Φ where pv(Θ1) ∪ pv(Θ2) ⊆ dom(Ξ),
then there exists some Γ such that Γ ≤ Ξ(Θ2) and Ξ(Θ1) + Γ = Ξ(Θ).

Proof. By induction on the derivation of Θ1 + Θ2 ▶ Θ;Φ.

Case Θ1, 𝑥 : 𝜏 + Θ2 ▶ Θ;Φ

Assumption:

𝑥 ∉ dom(Θ2) Θ1 + Θ2 ▶ Θ;Φ

Θ1, 𝑥 : 𝜏 + Θ2 ▶ Θ, 𝑥 : 𝜏 ;Φ

51

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

We also assume that Ξ is a usable solution for Φ.
By the IH, we have that there exists some Γ ≤ Ξ(Θ2) such that Ξ(Θ1) + Γ = Ξ(Θ).
Since 𝑥 ∉ dom(Θ2), by the definition of + in the declarative setting, we have that

Ξ(Θ1), 𝑥 : Ξ(𝜏) + Ξ(Θ2) ≤ Ξ(Θ), 𝑥 : Ξ(𝜏)
as required.

Case Θ1 + Θ2, 𝑥 : 𝜏 ▶ Θ;Φ

Symmetric to the first case.

Case Θ1, 𝑥 : 𝜏 + Θ2, 𝑥 : 𝜎 ▶ Θ;Φ

Assumption:

Θ1 + Θ2 ▶ Θ;Φ1 𝜏 ∼ 𝜎 ▶ Φ2

unr(𝜏) ▶ Φ3 unr(𝜎) ▶ Φ4

Θ1, 𝑥 : 𝜏 + Θ2, 𝑥 : 𝜎 ▶ Θ, 𝑥 : 𝜏 ;Φ1 ∪ · · · ∪ Φ4

We also assume that Ξ is a usable solution for Φ1 ∪ · · · ∪ Φ4.

By the IH, there exists some Γ such that Γ ≤ Ξ(Θ2) and
Ξ(Θ1) + Γ = Ξ(Θ)

By the definitions of ∼ and unr(−), and knowing that Ξ is a usable solution for Φ2 ∪ Φ3 ∪ Φ4, we

have that either 𝜏 = 𝜎 = 𝐶 for some base type 𝐶 (in which case we can conclude with logic similar

to the previous case), or 𝜏 = !𝛾◦ and 𝜎 = !𝛿◦ where Ξ(𝛾),Ξ(𝛿) ⊑ 1.
Since Ξ is usable, we know that Ξ(𝛾),Ξ(𝛿) ̸⊑ 0. Therefore, we have that 𝜏, 𝜎 ≤ !1◦.
We can then show that Γ, 𝑥 : Γ, 𝑥 : Ξ(!𝜏◦) ≤ Ξ(Θ2), 𝑥 : Ξ(!𝜎◦)
and further that Ξ(Θ1), 𝑥 : Ξ(!𝜏◦) + Γ, 𝑥 : Ξ(!𝜏◦) = Ξ(Θ), 𝑥 : Ξ(!𝜏◦) as required.

□

We can generalise the previous result to an 𝑛-ary combination:

Corollary E.33. If Θ1 + . . . + Θ𝑛 ▶ Θ;Φ where Ξ is a usable solution for Φ such that pv(Θ1) ∪
· · · ∪ pv(Θ𝑛) ⊆ dom(Ξ), then there exist (Γ𝑖 ≤ Θ𝑖)𝑖 such that Γ1 + . . . + Γ𝑛 = Ξ(Θ).
We now turn our attention to the relation between the algorithmic join and type combination

operators.

Lemma E.34. If 𝜏1 # 𝜏2 ▶ 𝜎 ;Φ and Ξ is a usable solution of Φ such that pv(𝜏1) ∪ pv(𝜏2) ⊆ dom(Ξ),
then there exist 𝜏 ′

1
≤ Ξ(𝜏1), 𝜏 ′2 ≤ Ξ(𝜏2) where 𝜏 ′1 ⊲ 𝜏 ′2 = Ξ(𝜎).

Proof. By case analysis on the derivation of 𝜏1 # 𝜏2 ▶ 𝜎 ;Φ.

Case !𝛾[1 # !𝛿[2 ▶ !(𝛾 ⊙ 𝛿)[1⊲[2
; ∅

We can immediately conclude with !(Ξ(𝛾))[1 ⊲ !(Ξ(𝛿))[2 = !(Ξ(𝛾) ⊙ Ξ(𝛿))[1⊲[2
as required.

Case !𝛾[1 # ?𝛿[2 ▶ ?(𝛼)[1⊲[2
;𝛾 ⊙ 𝛼 <:𝛿

Since Ξ is a solution for 𝛾 ⊙ 𝛼 <:𝛿 , we have that Ξ(𝛾 ⊙ 𝛼) ⊑ Ξ(𝛿).
By expansion of Ξ(−), we have that Ξ(𝛾) ⊙ Ξ(𝛿) ⊑ Ξ(𝛿).
Since receive mailbox types are covariant in their patterns, we can show that ?(Ξ(𝛾) ⊙ Ξ(𝛼)) ≤

?Ξ(𝛿)
and we can conclude that

!(Ξ(𝛾))[1 ⊲ ?(Ξ(𝛾) ⊙ Ξ(𝛼))[2 = ?Ξ(𝛼)[1⊲[2

52

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Special Delivery , ,

as required.

Case ?𝛾 # !𝛿 ▶ ?𝛼 ;𝛿 ⊙ 𝛼 <:𝛾

Symmetric to the previous case.

Case 𝜏 # 𝜎 ▶ 𝜏 ;Φ

Assumption: 𝜏 , 𝜎 are not mailbox types and 𝜏 ∼ 𝜎 ▶ Φ.
By Lemma E.28, Ξ(𝜏) ≃ Ξ(𝜎). Since neither type is a mailbox type we have that Ξ(𝜏) = 𝜏 = 𝜎 =

Ξ(𝜎) = 𝐶 for some base type 𝐶 , as required. □

We can extend this result to environments.

Lemma E.35. IfΘ1 #Θ2 ▶ Θ;Φ and Ξ is a usable solution of Φ such that pv(Θ1)∪pv(Θ2) ⊆ dom(Ξ),
then there exist Γ1 ≤ Ξ(Θ1) and Γ2 ≤ Ξ(Θ2) such that Γ1 ⊲ Γ2 = Ξ(Θ).

Proof. A direct consequence of Lemma E.34. □

Lemma E.36. If 𝜏1⊓𝜏2 ▶ 𝜎 ;Φ andΞ is a usable substitution ofΦ such that pv(𝜏1)∪pv(𝜏2) ⊆ dom(Ξ),
then Ξ(𝜎) ≤ Ξ(𝜏1) and Ξ(𝜎) ≤ Ξ(𝜏2).

Proof. By case analysis on the derivation of 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ.
For two mailbox types 𝐽[1

and 𝐽[2
, since • ≤ ◦ it is always the case that max([1, [2) ≤ [1 and

max([1, [2) ≤ [2, so therefore it suffices to consider the non-usage-annotated merge 𝜋1 ⊓ 𝜋2 ▶ 𝜌 ; ∅

Case !𝛾 ⊓ !𝛿 ▶ !(𝛾 ⊕ 𝛿); ∅

By appeal to the definition of J−K we have that JΞ(𝛾) ⊕ Ξ(𝛿)K = JΞ(𝛾)K ⊎ JΞ(𝛿)K and therefore:

• JΞ(𝛾)K ⊆ JΞ(𝛾) ⊕ Ξ(𝛿)K; and
• JΞ(𝛿)K ⊆ JΞ(𝛾) ⊕ Ξ(𝛿)K

By the reflexivity of subtyping and the definition of pattern inclusion, it follows that:

• Ξ(𝛾) ⊑ (Ξ(𝛾) ⊕ Ξ(𝛿)); and
• Ξ(𝛿) ⊑ (Ξ(𝛾) ⊕ Ξ(𝛿))

Therefore, since output mailbox types are contravariant in their patterns, it follows that both:

• !(Ξ(𝛾) ⊕ Ξ(𝛿)) ≤ !(Ξ(𝛾)); and
• !(Ξ(𝛾) ⊕ Ξ(𝛿)) ≤ !(Ξ(𝛿))
as required.

Case ?𝛾 ⊓ ?𝛿 ▶ ?𝛼 ; {𝛼 <:𝛾, 𝛼 <:𝛿}

(where 𝛼 fresh).

Since Ξ is a usable solution, it follows that:

• Ξ(𝛼) ⊑ Ξ(𝛾); and
• Ξ(𝛼) ⊑ Ξ(𝛿)

Since receive mailbox types are covariant in their pattern arguments, it follows that:

• ?(Ξ(𝛼)) ≤ ?(Ξ(𝛾)); and
• ?(Ξ(𝛼)) ≤ ?(Ξ(𝛿))

as required.

Case 𝜏 ⊓ 𝜎 ▶ 𝜏 ;Φ

53

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

where 𝜏, 𝜎 are not mailbox types and 𝜏 ∼ 𝜎 ▶ Φ.
By Lemma E.29:

(1) Ξ(𝜏) ≤ Ξ(𝜎); and
(2) Ξ(𝜎) ≤ Ξ(𝜏).

By the reflexivity of subtyping we have that Ξ(𝜏) ≤ Ξ(𝜏), and for the second obligation we can

conclude with (2) as required. □

Lemma E.37. IfΘ1⊓Θ2 ▶ Θ;Φ andΞ is a usable solution ofΦ such that pv(Θ1)∪pv(Θ2) ⊆ dom(Ξ),
then Ξ(Θ) ≤ Ξ(Θ1) and Ξ(Θ) ≤ Ξ(Θ2).

Proof. By induction on the derivation of Θ1 ⊓ Θ2 ▶ Θ;Φ with appeal to Lemma E.36. □

Lemma E.38 (Subpattern PNF). If 𝐸 ⊨ 𝐹 and 𝐸 ⊑ 𝐹 , then ⊨ 𝐹 .

Proof. For it to be the case that 𝐸 ⊨ 𝐹 it must be the case that 𝐹 = 𝐹1 ⊕ · · · ⊕ 𝐹𝑛 where 𝐸 ⊨lit 𝐹𝑖
for 𝑖 ∈ 1..𝑛.

It suffices to consider the case where we have some 𝐹 𝑗 = m𝑗 ⊙ 𝐹 ′𝑗 where 𝐹 𝑗 ̸⊑ 𝐸. In this case, the

following must hold:

𝐹 𝑗 ≃ 𝐸 / m𝑗
𝐸 ⊨lit m𝑗 ⊙ 𝐹 𝑗

and by the definition of pattern residual and the fact that m𝑗 ̸⊑ 𝐸 it must be the case that 𝐸 / m𝑗 ≃ 0.
Consequently we know that 𝐹 𝑗 ≃ 0.
To ensure that ⊨ 𝐹 we need to show 𝐹 ⊨ 𝐹 and therefore that 0 ≃ 𝐹 / m𝑗 , which follows by the

definition of pattern derivative as required. □

Algorithmic soundness relies on the following generalised result:

Lemma E.39 (Algorithmic Soundness (Generalised)).

• If ⊢ P ⊲ Φ1 and 𝑀 ⇒P 𝜏 ▶ Θ; Φ2 where Ξ is a usable solution of Φ1 ∪ Φ2 and pv(𝜏) ∪ pv(P) ⊆
dom(Ξ), then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
• If ⊢ P ⊲ Φ1 and 𝑀 ⇐P 𝜏 ▶ Θ; Φ2 where Ξ is a usable solution of Φ1 ∪ Φ2 and pv(𝜏) ∪ pv(P) ⊆
dom(Ξ), then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
• If ⊢ P ⊲Φ1 and {𝐸} 𝐺⇐P 𝜏 ▶ Θ; Φ; 𝐹 where Ξ is a usable solution of Φ1∪Φ2 and pv(𝜏) ∪pv(P) ⊆
dom(Ξ), then Ξ(Θ) ⊢Ξ(P) 𝐺 :Ξ(𝜏) :: 𝐹 and 𝐸 ⊨lit 𝐹 .

• If ⊢ P ⊲Φ1 and {𝐸}
−→
𝐺 ⇐P 𝜏 ▶ Θ; Φ; 𝐹 where Ξ is a usable solution of Φ1∪Φ2 and pv(𝜏)∪pv(P) ⊆

dom(Ξ), then Ξ(Θ) ⊢Ξ(P) 𝐺 :Ξ(𝜏) :: 𝐹 and 𝐸 ⊨lit 𝐹 .

Proof. By mutual induction on all statements. We inline our proof of statement 4 with TC-

Guard.

We know in all cases that the solution covers the pattern variables in the program, return type,

and constraints. Therefore by Lemma E.27 we know that any produced environment will contain

pattern variables contained in the solution. We make use of this fact implicitly throughout the

proof.

Statement 1: Synthesis.

Case TS-Base

54

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Special Delivery , ,

Assumption:

𝑐 has base type 𝐷

𝑐 ⇒ 𝐷 ▶ ·; ∅
By T-Const:

· ⊢ 𝑐 :𝐷

noting that:

• un(·)
• Ξ(𝑐) = 𝑐
• Ξ(𝐷) = 𝐷

as required.

Case TS-Unit

Similar to TS-Base.

Case TS-New

Similar to TS-Base.

Case TS-Spawn

Assumption:

𝑀 ⇐ 1 ▶ Θ; Φ

spawn 𝑀 ⇒ 1 ▶ ⌈Θ⌉; Φ
Furthermore, we assume that Ξ is a usable solution for Φ.
By the IH (2),

Ξ(Θ) ⊢ 𝑀 : 1
Recomposing by T-Spawn:

Ξ(Θ) ⊢ 𝑀 : 1

⌈Ξ(Θ)⌉ ⊢ spawn 𝑀 : 1

as required.

Case TS-Send

Assumption:

P(m) = −→𝜋 𝑉 ⇐ !m◦ ▶ Θ′; Φ
(𝑊𝑖 ⇐ ⌈𝜋𝑖⌉ ▶ Θ′𝑖 ; Φ

′
𝑖)𝑖∈1..𝑛 Θ′ + Θ′

1
+ · · · + Θ′𝑛 ▶ Θ;Φ′′

𝑉 ! m[
−→
𝑊]⇒ 1 ▶ Θ; Φ ∪ Φ′

1
∪ · · · ∪ Φ′𝑛 ∪ Φ′′

Also, we assume ⊢ P ⊲ Φprog.

Furthermore, we assume that Ξ is a solution for Φprog ∪ Φ ∪ Φ′1 ∪ · · · ∪ Φ′𝑛 ∪ Φ′′. By Lemma E.26,

we have that Ξ is also a solution for each constraint set individually.

Thus, by the IH:

55

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

• Ξ(Θ′) ⊢ 𝑉 : !m◦

• Ξ(Θ′𝑖) ⊢𝑊𝑖 : ⌈Ξ(𝜋𝑖)⌉ for 𝑖 ∈ 1..𝑛

By Corollary E.33, there exist Γ′ ≤ Ξ(Θ′) and Γ′𝑖 ≤ Ξ(Θ′𝑖) for 𝑖 ∈ 1..𝑛 such that Γ′ + Γ′
1
+ . . .+ Γ′𝑛 =

Ξ(Θ). Therefore:

Ξ(P)(m) =
−−−→
Ξ(𝜋)

Ξ(Θ′) ⊢ 𝑉 : !m◦

Γ′ ⊢ 𝑉 : !m◦
(Ξ(Θ′𝑖) ⊢𝑊𝑖 :Ξ(𝐴𝑖))𝑖∈1..𝑛

(Γ′𝑖 ⊢𝑊𝑖 :Ξ(𝐴𝑖))𝑖∈1..𝑛

Γ′ + Γ′
1
+ . . . + Γ′𝑛 ⊢ 𝑉 ! m[

−→
𝑊] : 1

as required.

Case TS-App

Assumption:

TS-App

P(𝑓) = −→𝜏 −→ 𝜎

(𝑉𝑖 ⇐ 𝜏𝑖 ▶ Θ𝑖 ; Φ𝑖)𝑖∈1..𝑛 Θ1 + · · · + Θ𝑛 ▶ Θ;Φ

𝑓 (−→𝑉) ⇒ 𝜎 ▶ Θ; Φ ∪ Φ1 ∪ . . . ∪ Φ𝑛
Also, we assume ⊢ P ⊲ Φprog.

We can also assume that there exists some Ξ which is a usable solution of Φprog ∪ Φ1 ∪ . . . ∪ Φ𝑛 .
By Lemma E.26, we have that Ξ is a solution for all Φ𝑖 individually.
By the IH, Ξ(Θ𝑖) ⊢ 𝑉𝑖 :Ξ(𝜏𝑖) for all 𝑖 .
By Corollary E.33, there exist (Γ𝑖 ≤ Θ𝑖)𝑖∈1..𝑛 such that Γ1 + . . . + Γ𝑛 = Ξ(Θ).
Thus by T-Subs and T-App:

Ξ(P(𝑓)) =
−−−→
Ξ(𝜏) −→ Ξ(𝜎)

(Ξ(Θ𝑖) ⊢ 𝑉𝑖 :Ξ(𝜏𝑖))𝑖∈1..𝑛

(Γ𝑖 ⊢ 𝑉𝑖 :Ξ(𝜏𝑖))𝑖∈1..𝑛

Γ1 + · · · + Γ𝑛 ⊢ 𝑓 (
−→
𝑉) :Ξ(𝜎)

as required.

Statement 2: Checking.

Case TC-Var

Assumption:

TC-Var

𝑥 ⇐ 𝜏 ▶ 𝑥 : 𝜏 ; ∅
By T-Var:

𝑥 : Ξ(𝜏) ⊢ 𝑥 :Ξ(𝜏)
as required.

Case TC-Let

56

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

Special Delivery , ,

Assumption:

TC-Let

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝜎 ▶ Θ2; Φ2

check(Θ2, 𝑥, ⌊𝑇 ⌋) = Φ3 Θ1 −𝑥 # Θ2 ▶ Θ;Φ4

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝜎 ▶ Θ; Φ1 ∪ · · · ∪ Φ4

We also assume that we have some usable solution Ξ for Φ1 ∪ · · · ∪ Φ4, and by Lemma E.26, we

know that Ξ is a usable solution for all Φ𝑖 individually.
By the IH, we have that:

• Ξ(Θ1) ⊢ 𝑀 : ⌊Ξ(𝑇)⌋
• Ξ(Θ2) ⊢ 𝑁 :Ξ(𝜎)

Since 𝑇 does not contain any type variables we have that Ξ(⌊𝑇 ⌋) = ⌊𝑇 ⌋.
By Lemma E.35, there exist some Γ1, Γ2 such that Γ1 ≤ Ξ(Θ1 −𝑥), Γ2 ≤ Ξ(Θ2) and Γ1 ⊲ Γ2 = Ξ(Θ)
By the definition of check, we have two subcases based on whether 𝑥 ∈ dom(Θ2):

Subcase 𝑥 ∉ dom(Θ2)

In this case we have that unr(⌊𝑇 ⌋) ▶ Φ.
By Lemma E.30, we have that un(⌊𝑇 ⌋).
Thus by T-Let and T-Subs:

Ξ(Θ1) ⊢ 𝑀 : ⌊𝑇 ⌋

Ξ(Θ2) ⊢ 𝑁 :Ξ(𝜎)
Ξ(Θ2), 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :Ξ(𝜎)

Γ ⊢ 𝑁 :Ξ(𝜎)
Ξ(Θ) ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :Ξ(𝜎)

as required.

Subcase 𝑥 ∈ dom(Θ2)

In this case, we have that 𝑥 : ⌊𝑇 ⌋ ∈ Θ2 and ⌊𝑇 ⌋ ≤ 𝜎 ▶ Φ1.

By Lemma E.28, ⌊𝑇 ⌋ ≤ Ξ(𝜎).
Thus by T-Let and T-Subs:

Ξ(Θ1) ⊢ 𝑀 : ⌊𝑇 ⌋
Ξ(Θ2), 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :Ξ(𝜎)

Γ ⊢ 𝑁 :Ξ(𝜎)
Ξ(Θ) ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :Ξ(𝜎)

as required.

Case TC-Guard

Assumption:

({𝐸} 𝐺𝑖⇐ 𝜏 ▶ Ψ𝑖 ; Φ𝑖 ; 𝐹𝑖)𝑖∈1..𝑛

Ψ1 ⊓ . . . ⊓ Ψ𝑛 ▶ Ψ;Φ Φ′ =
⋃
𝑖∈1..𝑛

Φ𝑖

{𝐸} −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ ∪ Φ′; 𝐹1 ⊕ . . . ⊕ 𝐹𝑛
𝑀 ⇐ ?𝐹 • ▶ Θ′; Φ2 Ψ + Θ′ ▶ Θ;Φ3

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝜏 ▶ Θ; Φ ∪ Φ′ ∪ Φ2 ∪ Φ3 ∪ {𝐸 <: 𝐹 }

57

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

where 𝐹 = 𝐹1 ⊕ · · · ⊕ 𝐹𝑛 .
Since guards must be unique we know that there will be at most one fail branch in

−→
𝐺 . Without

loss of generality assume that 𝐺1 = fail (the order of guards does not matter, and the argument is

the same if there is no fail guard).
Let us assume without loss of generality that 𝑛 > 1 (i.e., fail is not the only guard).

Thus we have that:

• {𝐸} fail⇐ 𝜏 ▶ ⊤; ∅; 0 (i.e., Ψ1 = ⊤,Φ1 = ∅, 𝐹1 = 0)
• {𝐸} 𝐺𝑖⇐ 𝜏 ▶ Θ𝑖 ; Φ𝑖 ; 𝐹𝑖 for 2 ≤ 𝑖 ≤ 𝑛
• Θ2 ⊓ . . . ⊓ Θ𝑛 ▶ Θ;Φ

By repeated use of the induction hypothesis (statement 3), we have that Ξ(Θ𝑖) ⊢ 𝐺𝑖 :Ξ(𝜏) :: 𝐹𝑖
where 𝐸 ⊨lit 𝐹𝑖 for 2 ≤ 𝑖 ≤ 𝑛.

Since 𝐹 = 𝐹1 ⊕ · · · ⊕ 𝐹𝑛 and 𝐸 ⊨lit 𝐹𝑖 for 𝑖 ∈ 1..𝑛, it follows by the definition of pattern normal

form that 𝐸 ⊨ 𝐹 .
Since Ξ is a usable solution of the constraint set we have that 𝐸 ⊑ 𝐹 .
Now since 𝐸 ⊨ 𝐹 and 𝐸 ⊑ 𝐹 , by Lemma E.38 we have that ⊨ 𝐹 .
By Lemma E.37, we have that there exists some Γ such that Γ ≤ Θ𝑖 for each 𝑖 . Thus, by T-Subs,

we can show: Γ ⊢ 𝐺𝑖 :Ξ(𝜏) :: 𝐹𝑖 .

Therefore, by T-GuardSeq we can show that Γ ⊢ fail ·𝐺2 · . . . ·𝐺𝑛 :Ξ(𝜏) :: 𝐹 .

By the IH (statement 2), we have that Ξ(Θ′) ⊢ 𝑉 : ?𝐹 .
By Lemma E.32, there exists some Θ′′ ≤ Θ′ such that Γ + Ξ(Θ′′) = Ξ(Θ).
Thus, we can show:

Ξ(Θ′) ⊢ 𝑉 : ?𝐹 •

Ξ(Θ′′) ⊢ 𝑉 : ?𝐹 •
Γ ⊢ fail · −→𝐺 :Ξ(𝜏) :: 𝐹 𝐸 ⊑ 𝐹 ⊨ 𝐹

Ξ(Θ′′) + Γ ⊢ guard𝑉 :𝐸 {fail · −→𝐺 } :Ξ(𝜏)

as required.

Case TC-Sub

Assumption:

𝑀 ⇒ 𝜏 ▶ Θ; Φ1 𝜏 ≤ 𝜎 ▶ Φ2

𝑀 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2

By the IH (statement 1), Ξ(Θ) ⊢ 𝑀 :Ξ(𝜏).
By Lemma E.28, Ξ(𝜏) ≤ Ξ(𝜎).
Therefore by T-Sub:

Ξ(Θ) ⊢ 𝑀 :Ξ(𝜏)
Ξ(Θ) ⊢ 𝑀 :Ξ(𝜎)

as required.

Statement 3: Guards. Note that there is no case for TCG-Fail since (contrary to the theorem

statement) it is not typable under a non-null typing environment.

Case TCG-Free

58

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

Special Delivery , ,

Assumption:

𝑀 ⇐ 𝜏 ▶ Θ; Φ

{𝐸} free ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ; 1

By the IH (statement 2), we have that Ξ(Θ) ⊢ 𝑀 :Ξ(𝜏).
Trivially, 𝐸 ⊨lit 1.
Therefore, we can reconstruct by TG-Free:

Ξ(Θ) ⊢ 𝑀 :Ξ(𝜏)
Ξ(Θ) ⊢ free ↦→ 𝑀 :Ξ(𝜏) :: 1

as required.

Case TCG-Recv

Assumption:

TCG-Recv

𝑀 ⇐ 𝜎 ▶ Θ′, 𝑦 : ?𝛿•; Φ1

P(m) = −→𝜋 Θ = Θ′ −−→𝑥 base(−→𝜋) ∨ base(Θ′) check(Θ′,−→𝑥 ,
−−→
⌈𝜋⌉) = Φ3

{𝐸} receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3 ∪ {𝐸 / m<:𝛿}; m ⊙ (𝐸 / m)

We also assume that we have some usable solution Ξ for Φ1 ∪ Φ2 ∪ Φ3 ∪ {𝐸 / m<:𝛿}.
As usual, by Lemma E.26 we can assume that Ξ is a usable solution for all Φ𝑖 .
By the IH, Ξ(Θ′), 𝑦 : ?Ξ(𝛿)• ⊢ 𝑀 :Ξ(𝜎).
Suppose Θ′ = Θ, 𝑥1 : 𝜏1, . . . , 𝑥𝑚 : 𝜏𝑚 and

−→𝑥 = 𝑥1, . . . , 𝑥𝑚 .

Then by the definition of check we have that:

• (𝜏𝑖 ≤ ⌈𝜋𝑖⌉ ▶ Φ′𝑖)𝑖∈1..𝑚

• (unr(𝜏𝑖) ▶ Φ′𝑖)𝑖∈𝑚+1..𝑛
Thus by Lemma E.28, ⌈Ξ(𝜋𝑖)⌉ ≤ Ξ(𝜏𝑖) for each 𝑖 ∈ 1..𝑚.

By Lemma E.30, there exist 𝐴 𝑗 ≤ Ξ(𝜏 𝑗) such that un(𝐴 𝑗) for 𝑗 ∈𝑚 + 1..𝑛.

Thus it follows by the definition of environment subtyping that Ξ(Θ) ≤ Ξ(Θ′).
It follows from the fact that pattern substitution preserves type shape that if base(−→𝑇) ∨base(Θ′),

we have that base(
−−−→
Ξ(𝑇)) ∨ base(Ξ(Θ′)).

Since Ξ is a usable solution of 𝐸 / m<:𝛿 we know that 𝐸 / m ⊑ Ξ(𝛿) and therefore that ?(𝐸 / m) ≤
?(Ξ(𝛿)).

It remains to be shown that 𝐸 ⊨lit m ⊙ (𝐸 / m):

m ⊙ (𝐸 / m) ≃ 𝐸
𝐸 ⊨lit m ⊙ (𝐸 / m)

The pattern residual and concatenation cancel, so the premise holds and therefore we can

conclude that 𝐸 ⊨lit m ⊙ (𝐸 / m).
Finally, we can reconstruct using TG-Recv:

59

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Ξ(P)(m) =
−−−→
Ξ(𝜋) base(

−−−→
Ξ(𝜋)) ∨ base(Ξ(Θ))

Ξ(Θ′), 𝑦 : ?Ξ(𝛿)• ⊢ 𝑀 :Ξ(𝜎)

Ξ(Θ), 𝑦 : ?(𝐸 / m)•,−→𝑥 :

−−→
⌈𝑇 ⌉ ⊢ 𝑀 :Ξ(𝜎)

Ξ(Θ) ⊢ receive m[−→𝑥] from 𝑦 ↦→ 𝑀 :Ξ(𝜎) :: m ⊙ (𝐸 / m)
as required.

□

Theorem 4.4 (Algorithmic Soundness).

• If Ξ is a covering solution for𝑀 ⇒P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
• If Ξ is a covering solution for𝑀 ⇐P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).

Proof. A direct consequence of Lemma E.39. □

60

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

Special Delivery , ,

E.4 Algorithmic Completeness
Every Γ is also a valid Θ and every 𝐴 is a valid 𝜏 . We will therefore allow ourselves to use Γ and 𝐴

in algorithmic type system derivations directly.

Definition E.40 (Closed program). A program (S,−→𝐷,𝑀) is closed if pv(S) = ∅ and pv(−→𝐷) = ∅.

E.4.1 Useful auxiliary lemmas. We begin by stating two useful results. The first lemma states that

values are typable in the algorithmic system without constraints.

Lemma E.41. If Γ ⊢ 𝑉 :𝐴, then there exists some Γ′ such that Γ ≤ Γ′ and 𝑉 ⇐ 𝐴 ▶ Γ′; ∅.

Proof. The proof is by induction on the derivation of Γ ⊢ 𝑉 :𝐴.

Case T-Var

We assume that 𝑥 : 𝐴 ⊢ 𝑥 :𝐴. By TC-Var we can show 𝑥 ⇐ 𝐴 ▶ 𝑥 : 𝐴; ∅, as required.

Case T-Const

We assume that · ⊢ 𝑐 :𝐶 , where 𝑐 has base type 𝐶 . By TS-Base, we can show that 𝑐 ⇒ 𝐶 ▶ ·; ∅.
Finally, by TC-Sub (noting that 𝐶 ≤ 𝐶 ▶ ∅) we have that 𝑐 ⇐ 𝐶 ▶ ·; ∅, as required.

Case T-Subs

Assumption:

Γ ≤ Γ′ 𝐴 ≤ 𝐵 Γ′ ⊢ 𝑉 :𝐴

Γ ⊢ 𝑉 :𝐵

By the IH, there exists some Γ′′ such that Γ′ ≤ Γ′′ and Γ′′ ⇐ 𝑉 ▶ 𝐴; ∅.
By the transitivity of subtyping, we have that Γ ≤ Γ′ ≤ Γ′′, as required. □

Lemma E.42. If𝑀 ⇒ 𝜏 ▶ Θ; Φ, then𝑀 ⇐ 𝜏 ▶ Θ; Φ.

Proof. Follows from the definition of TC-Subs, noting that the subtyping constraint is instanti-

ated as 𝜏 ≤ 𝜏 ▶ Φ. There are two ways we can create a derivation of 𝜏 ≤ 𝜏 ▶ Φ: either if 𝜏 = 𝐶 and

we have 𝜏 ≤ 𝜏 ▶ ∅, or if 𝜏 is a mailbox type (take an output mailbox type here, although the reason-

ing is the same for an input mailbox). In this case, we would have a derivation of !𝛾[≤ !𝛾[▶ 𝛾 <:𝛾 .

Since 𝛾 <:𝛾 is a tautology, it follows that we need not add an additional constraint and can show

!𝛾[≤ !𝛾[▶ ∅.
Using TC-Subs we can construct:

𝑀 ⇒ 𝜏 ▶ Θ; Φ 𝜏 ≤ 𝜏 ▶ ∅
𝑀 ⇐ 𝜏 ▶ Θ; Φ

as required. □

E.4.2 Completeness of auxiliary definitions. We now need to show completeness for all auxiliary

judgements (e.g., subtyping, environment combination).

Lemma E.43 (Completeness of type join). If:
• 𝐴1 ⊲𝐴2 = 𝐵,
• 𝐴1 ≤ Ξ1 (𝜏1),
• 𝐴2 ≤ Ξ2 (𝜏2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅

61

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

then there exist Θ,Φ such that 𝜏1 # 𝜏2 ▶ 𝜎 ;Φ, and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ such
that 𝐵 ≤ Ξ(𝜎).

Proof. We proceed by case analysis on the derivation of 𝐴1 ⊲ 𝐴2 = 𝐵. Base types follow

straightforwardly, so we concentrate on mailbox types.

Case 𝐴1 = !𝐸[1

1
, 𝐴2 = !𝐸[2

2

Assumption:

!𝐸1 ⊲ !𝐸2 = !𝐸1 ⊙ 𝐸2

!𝐸[1

1
⊲ !𝐸[2

2
= !(𝐸1 ⊙ 𝐸2)[1⊲[2

Since the domains of Ξ1,Ξ2 are disjoint, let Ξ = Ξ1 ∪ Ξ2.

In order for !𝐸𝑖 ≤ Ξ𝑖 (𝜏𝑖) (for 𝑖 ∈ 1, 2) to hold, it must be the case that 𝜏𝑖 = !𝛾𝑖 with Ξ(𝛾𝑖) ⊑ 𝐸𝑖 .
In this case we can construct a derivation:

!𝛾1 # !𝛾2 ▶ !(𝛾1 ⊙ 𝛾2); ∅
!𝛾[1

1
!𝛾[2

2
▶ !(𝛾1 ⊙ 𝛾2)[1⊲[2

; ∅
Noting that Ξ(𝛾𝑖) ⊑ 𝐸𝑖 , it follows by the definition of pattern semantics that Ξ(𝛾1 ⊙𝛾2) ⊑ 𝐸1 ⊙ 𝐸2

and therefore that !(𝛾1 ⊙ 𝛾2)[1⊲[2 ≤ Ξ(!(𝛾1 ⊙ 𝛾2))[1⊲[2

with Ξ ⊇ Ξ1 ∪ Ξ2 and a solution of ∅, as required.

Case 𝐴1 = !𝐸[1 , 𝐴2 = ?(𝐸 ⊙ 𝐹)[2

Assumption:

!𝐸 ⊲ ?(𝐸 ⊙ 𝐹) = ?𝐹

!𝐸[1 ⊲ ?(𝐸 ⊙ 𝐹)[2 = 𝐹[1⊲[2

Since the domains of Ξ1,Ξ2 are disjoint, let Ξ = Ξ1 ∪ Ξ2.

In order for !𝐸 ≤ Ξ1 (𝜏1) to hold, it must be the case that 𝜏1 = !𝛾 with Ξ1 (𝛾) ⊑ 𝐸.
Similarly, for ?(𝐸 ⊙ 𝐹) ≤ Ξ2 (𝜏2) to hold, it must be the case that 𝜏2 = ?𝛿 with (𝐸 ⊙ 𝐹) ⊑ Ξ2 (𝛿).
In this case we can construct a derivation: Using algorithmic type joining, we can construct the

following derivation:

𝛼 fresh

!𝛾 # ?𝛿 ▶ ?𝛼 ; {𝛿 ⊙ 𝛼 <:𝛿}
!𝛾[1 # ?𝛿[2 ▶ ?𝛼[1⊲[2

; {𝛾 ⊙ 𝛼 <:𝛿}
At this point we know that the domains of Ξ1 and Ξ2 are disjoint. Let us construct Ξ = Ξ1 ∪Ξ2 ∪

𝛼 ↦→ 𝐹 .

It remains to be shown that Ξ is a solution; it suffices to show that (Ξ(𝛾) ⊙ 𝐹) ⊑ Ξ(𝛿).
By the transitivity of pattern inclusion we have that

(Ξ(𝛾) ⊙ 𝐹) ⊑ (𝐸 ⊙ 𝐹) ⊑ Ξ(𝛿)
We have that Ξ(?𝛼) = ?𝐹
and therefore we have that (trivially) ?𝐹 ≤ ?𝐹
with Ξ ⊃ Ξ1 ∪ Ξ2 a solution for the constraint set, as required.

62

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

Special Delivery , ,

Case 𝐴1 = ?𝐸 ⊙ 𝐹[1 , 𝐴2 = !𝐸[2

Similar to the above case.

□

Lemma E.44 (Completeness of environment join). If:
• Γ1 ⊲ Γ2 = Γ,
• Γ1 ≼ Ξ1 (Θ1),
• Γ2 ≼ Ξ2 (Θ2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist Θ,Φ such that Θ1 # Θ2 ▶ Θ;Φ, and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ
such that Γ ≤ Ξ(Θ).

Proof. By induction on the derivation of Γ1 ⊲ Γ2, with appeal to Lemma E.43. □

Lemma E.45 (Completeness of disjoint environment combination). If:
• Γ1 + Γ2 = Γ,
• Γ1 ≼ Ξ1 (Θ1),
• Γ2 ≼ Ξ2 (Θ2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist Θ,Φ such that Θ1 + Θ2 ▶ Θ;Φ, and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ
such that Γ ≤ Ξ(Θ).

Proof. By induction on the derivation of Γ1 + Γ2 = Γ.

Case Γ1 = · and Γ2 = ·

· + · = ·
By the definition of environment subtyping, the only environment that can be a supertype of

the empty environment is ·. Therefore, we can immediately conclude with the corresponding base

case in algorithmic type environment combination:

· + · ▶ ·; ∅
Case 𝑥 ∉ dom(Γ2)

Assumption:

𝑥 ∉ dom(Γ2) Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐴 + Γ2 = Γ, 𝑥 : 𝐴

where:

• Γ1, 𝑥 : 𝐴 ≼ Ξ1 (Θ1)
• Γ2 ≼ Ξ2 (Θ2)
• pv(Ξ1) ∩ pv(Ξ2) = ∅
Since we are considering strict subtyping on environments rather than general subtyping, we

can assume that 𝑥 : 𝐴 ∈ dom(Θ1). Therefore, let Θ1 = Θ′
1
, 𝑥 : 𝜏 with 𝐴 ≤ Ξ1 (𝜏).

By the IH, Θ′
1
+Θ2 ▶ Θ;Φ for some Θ,Φ and there exists some usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ

such that Γ1 + Γ2 ≤ Ξ(Θ).
Since 𝐴 ≤ Ξ1 (𝜏) and Ξ1 ⊆ Ξ, it follows that 𝐴 ≤ Ξ(𝜏).
Therefore it follows that Γ1 + Γ2, 𝑥 : 𝐴 ≤ Ξ(Θ, 𝑥 : 𝜏) as required.

63

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Case 𝑥 ∉ dom(Γ1)

𝑥 ∉ dom(Γ1) Γ1 + Γ2 = Γ

Γ1 + Γ2, 𝑥 : 𝐴 = Γ, 𝑥 : 𝐴

Symmetric to the above case.

Case 𝑥 ∈ dom(Γ1) ∩ dom(Γ2)

un(𝐴) Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐴 + Γ2, 𝑥 : 𝐴 = Γ, 𝑥 : 𝐴

In this case, we have that:

• Θ1,= Θ′
1
, 𝑥 : 𝜎1

• Θ2 = Θ′
2
, 𝑥 : 𝜎2

By the IH, there exist Θ,Φ such that Θ′
1
+ Θ′

2
▶ Θ;Φ and some usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ

such that Γ ≤ Ξ(Θ).
By algorithmic environment combination we have:

Θ′
1
+ Θ′

2
▶ Θ;Φ1 𝜎1 ∼ 𝜎2 ▶ Φ2 unr(𝜎1) ▶ Φ3 unr(𝜎2) ▶ Φ4

Θ′
1
, 𝑥 : 𝜎1 + Θ′2, 𝑥 : 𝜎2 ▶ Θ, 𝑥 : 𝐵1;Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4

From un(𝐴), we have two subcases based on whether 𝐴 is a base type 𝐶 , or a mailbox type !1◦.

Subcase 𝐴 = 𝐶

In this case, by the definition of subtyping we have that 𝐵1 = 𝐵2 = 𝐶 and therefore:

Θ′
1
+ Θ′

2
▶ Θ;Φ 𝐶 ∼ 𝐶 ▶ ∅ unr(𝐶) ▶ ∅ unr(𝐶) ▶ ∅

Θ′
1
, 𝑥 : 𝐶 + Θ′

2
, 𝑥 : 𝐶 ▶ Θ, 𝑥 : 𝐶;Φ

with Ξ remaining a usable solution of Φ.
It follows that Θ′

1
, 𝑥 : 𝐶 + Θ′

2
, 𝑥 : 𝐶 ≤ Ξ(Θ), 𝑥 : 𝐶 , as required.

Subcase 𝐴 = !1◦

In this case, we have that 𝐵1 = !𝛿◦
1
and 𝐵2 = !𝛿◦

2
.

and:

Θ′
1
+ Θ′

2
▶ Θ;Φ

!𝛿◦
1
∼ !𝛿◦

2
▶ {𝛿1 <:𝛿2, 𝛿2 <:𝛿1} unr(𝛿1) ▶ {𝛿1 <: 1} unr(𝛿2) ▶ {𝛿2 <: 1}

Θ′
1
, !𝛿◦

1
+ Θ′

2
, !𝛿◦

2
▶ Θ, 𝑥 : !𝛿◦

1
;Φ ∪ {𝛿1 <:𝛿2, 𝛿2 <:𝛿1, 𝛿1 <: 1, 𝛿2 <: 1}

Let Ξ′ = Ξ[𝛿1 ↦→ 1, 𝛿2 ↦→ 1], which is now a usable solution for the additional constraints.

Finally, we have that Γ, 𝑥 : !1◦ ≤ Ξ′ (Θ, 𝑥 : !𝛿◦
1
) ≤ Ξ′ (Θ), 𝑥 : !1◦, as required. □

As a corollary we can show the completeness of combining nullable environments:

Corollary E.46. If:
• Γ1 + Γ2 = Γ,
• Γ1 ≤ Ξ1 (Ψ1),
• Γ2 ≤ Ξ2 (Ψ2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist Θ,Φ such that Ψ1 + Ψ2 ▶ Θ;Φ, and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ
such that Γ ≤ Ξ(Θ).

64

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

Special Delivery , ,

Next, we need to show completeness of merging.

Lemma E.47. If:
• 𝐴 ≤ Ξ1 (𝜏1),
• 𝐴 ≤ Ξ2 (𝜏2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist 𝜏,Φ such that 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ

such that 𝐴 ≤ Ξ(𝜎).

Proof. By case analysis on the structure of 𝐴.

Base types follow directly, so we need instead to examine mailbox types.

Case 𝐴 = !𝐸[

In this case, by the definition of subtyping, we have that:

• !𝐸[≤ Ξ1 (!𝛾[1)
• !𝐸[≤ Ξ2 (!𝛿[2)
We first show that [≤ max([1, [2). If [= ◦ then it must be the case that [1, [2 = ◦ and

max([1, [2) = ◦. If [= • then we have that [≤ max([1, [2).
Using algorithmic type merging, we can construct:

!𝛾 ⊓ !𝛿 ▶ !(𝛾 ⊕ 𝛿); ∅
!𝛾[1 ⊓ !𝛿[2 ▶ !(𝛾 ⊕ 𝛿)max([1,[2)

; ∅
Since dom(Ξ1) ∩ dom(Ξ2) = ∅, we can set Ξ = Ξ1 ∪ Ξ2 (which is trivially a solution of ∅).
It remains to be shown that !𝐸[≤ !(Ξ(𝛾 ⊕ 𝛿))max([1,[2)

.

First we note that: Ξ(!(𝛾 ⊕ 𝛿)) = !(Ξ(𝛾) ⊕ Ξ(𝛿))
Now since !𝐸 ≤ !Ξ(𝛾) and !𝐸 ≤ !Ξ(𝛿), it follows by the definition of subtyping that Ξ(𝛾) ⊑ 𝐸

and Ξ(𝛿) ⊑ 𝐸. Therefore it follows by the definition of pattern semantics that Ξ(𝛾) ⊕ Ξ(𝛿) ⊑ 𝐸 and

therefore that !𝐸[≤ !(Ξ(𝛾 ⊕ 𝛿))max([1,[2)
as required.

Case 𝐴 = ?𝐸[

In this case, by the definition of subtyping, we have that:

• !𝐸[≤ Ξ1 (!𝛾[1)
• !𝐸[≤ Ξ2 (!𝛿[2)
The reasoning for usage subtyping follows from the previous case, so we take for given that

[≤ max([1, [2).
Next, we construct the following derivation using algorithmic type merging:

𝛼 fresh

?𝛾 ⊓ ?𝛿 ▶ ?𝛼 ; {𝛼 <:𝛾, 𝛼 <:𝛿}
[
[

1
?𝛾 ⊓ [[

2
?𝛿 ▶ max([1, [2)[?𝛼 ; {𝛼 <:𝛾, 𝛼 <:𝛿}

Since dom(Ξ1) ∩ dom(Ξ2) = ∅, we can set Ξ = Ξ1 ∪ Ξ2 ∪ {𝛼 ↦→ 𝐸}.
To show that Ξ is a usable solution of the constraint set, it remains to be shown that:

• 𝐸 ⊑ Ξ(𝛾)
• 𝐸 ⊑ Ξ(𝛿)

65

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Since ?𝐸 ≤ ?Ξ1 (𝛾) it follows that 𝐸 ⊑ Ξ1 (𝛾) and likewise for Ξ2 (𝛿); since dom(Ξ1) ∩dom(Ξ2) =
∅ it follows that ?𝐸 ⊑ Ξ(𝛾) and likewise for 𝛿 , as required.

□

Lemma E.48. If:
• Γ ≼ Ξ1 (Θ1),
• Γ ≼ Ξ2 (Θ2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist Θ,Φ such that Θ1 ⊓ Θ2 ▶ Θ;Φ and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ
such that Γ ≤ Ξ(Θ).

Proof. By induction on the size of Γ and inspection ofΘ1 andΘ2, noting that due to the definition

of ≼, all must be of the same length; merging of types relies on Lemma E.47. □

Corollary E.49 (Completeness of merging (nullable environments)). If:
• Γ ≼ Ξ1 (Ψ1),
• Γ ≼ Ξ2 (Ψ2); and
• pv(Ξ1) ∩ pv(Ξ2) = ∅
then there exist Θ,Φ such that Θ1 ⊓ Θ2 ▶ Ψ;Φ and there exists a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ
such that Γ ≤ Ξ(Ψ).

Lemma E.50 (Completeness of subtyping). If Ξ(𝜏) ≤ Ξ(𝜎) then 𝜏 ≤ 𝜎 ▶ Φ where Ξ is a usable
solution of Φ.

Proof. By case analysis on Ξ(𝜏) ≤ Ξ(𝜏).

Case 𝐶 ≤ 𝐶

Here we can show 𝐶 ≤ 𝐶 ▶ ∅, where Ξ is trivially a usable solution of ∅, as required.

Case Ξ(!𝛾[1) ≤ Ξ(!𝛿[2)

Since Ξ(!𝛾[2) = !Ξ(𝛾)[2
we can assume:

[1 ≤ [2 Ξ(𝛿) ⊑ Ξ(𝛾)
!Ξ(𝛾)[1 ≤ !Ξ(𝛿)[2

Using algorithmic subtyping we can derive:

[1 ≤ [2 !𝛾 ≤ !𝛿 ▶ 𝛿 <:𝛾

!𝛾[1 ≤ !𝛿[2 ▶ 𝛿 <:𝛾

And since Ξ(𝛾) ⊑ 𝐸 it follows that Ξ is a usable solution of 𝛿 <:𝛾 , as required.

Case ?𝛾[1 ≤ Ξ(?𝛿[2)

Since Ξ(?𝛿[2) = ?Ξ(𝛿)[2
we can assume:

[1 ≤ [2 Ξ(𝛾) ⊑ Ξ(𝛾)
?Ξ(𝛾)[1 ≤ ?Ξ(𝛿)[2

66

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

Special Delivery , ,

Using algorithmic subtyping we can derive:

[1 ≤ [2 ?𝛾 ≤ ?𝛿 ▶ 𝛾 <:𝛿

?𝛾[1 ≤ ?𝛿[2 ▶ 𝛾 <:𝛿

And since Ξ(𝛾) ⊑ Ξ(𝛿) it follows that Ξ is a usable solution of 𝛾 <:𝛿 , as required. □

LemmaE.51 (Completeness of checkmeta-function). IfΞ(Θ, 𝑥 : 𝜏) ≼ Ξ(Θ′) then check(Θ′, 𝑥, 𝜏) =
Φ where Ξ is a usable solution of Φ.

Proof. A direct consequence of Lemma E.50. □

The 𝑛-ary version of Lemma E.51 follows as a corollary:

Corollary E.52 (Completeness of n-ary check meta-function). If Ξ(Θ,−→𝑥 :
−→𝜏) ≼ Ξ(Θ′)

then check(Θ′,−→𝑥 ,−→𝜏) = Φ where Ξ is a usable solution of Φ.

E.4.3 Supertype checkability. In order to show the completeness of T-Subs, we must show that if a

term is checkable at a subtype, then it is also checkable at a supertype.

To do this we require several intermediate results.

We firstly define closed and satisfiable constraint sets.

Definition E.53 (Closed constraint set). A constraint set Φ is closed if pv(Φ) = ∅.

Definition E.54 (Satisfiable constraint set). A closed constraint set Φ is satisfiable if the empty

solution is a solution for Φ (i.e., Φ = (𝐸𝑖 <: 𝐹𝑖)𝑖 and (𝐸𝑖 ⊑ 𝐹𝑖)𝑖).

If we have two types which do not contain pattern variables, algorithmic subtyping does not

introduce any pattern variables into the constraint set.

Lemma E.55 (Subtyping introduces no fresh variables). If 𝐴 ≤ 𝐵 ▶ Φ, then pv(Φ) = ∅.

Proof. A straightforward case analysis on the derivation of 𝜏 ≤ 𝜎 ▶ Φ. □

Next, if we have an algorithmic subtyping judgement which produces a satisfiable constraint

set, and a subtyping relation with a supertype, then we can show that the algorithmic subtyping

judgement instantiated with the supertype will produce a satisfiable constraint set.

Lemma E.56 (Widening of algorithmic subtyping). If 𝐴 ≤ 𝐴′ ▶ Φ where Φ is satisfiable, and
𝐴′ ≤ 𝐵, then 𝐴 ≤ 𝐵 ▶ Φ′ and Φ′ is satisfiable.

Proof. By case analysis on the derivation of 𝐴 ≤ 𝐴′ ▶ Φ.
Base types hold trivially, so we need only consider two cases:

Case !𝐸 ≤ !𝐹

Assumption:

[1 ≤ [2

!𝐸[1 ≤ !𝐹[2 ▶ {𝐹 <:𝐸}
also we know that 𝐹 <:𝐸 is satisfiable (therefore that 𝐹 ⊑ 𝐸), and !𝐹 ≤ 𝐵.
By the definition of subtyping we have that 𝐵 = !𝐹 ′ for some pattern 𝐹 ′, and therefore that

𝐹 ′ ⊑ 𝐹 .
By transitivity we have that

𝐹 ′ ⊑ 𝐹 ⊑ 𝐸 and therefore

67

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

[1 ≤ [2

!𝐸[1 ≤ !𝐹 ′[2 ▶ {𝐹 ′ <:𝐸}
where 𝐹 ′ <:𝐸 is satisfiable, as required.

Case ?𝐸 ≤ ?𝐹

Assumption:

[1 ≤ [2

?𝐸[1 ≤ ?𝐹[2 ▶ {𝐸 <: 𝐹 }
also we know that 𝐸 <: 𝐹 is satisfiable (therefore that 𝐸 ⊑ 𝐹), and ?𝐹 ≤ 𝐵.
By the definition of subtyping we have that 𝐵 = ?𝐹 ′ for some pattern 𝐹 ′ and therefore that

𝐹 ⊑ 𝐹 ′.
Thus by transitivity we have that 𝐸 ⊑ 𝐹 ⊑ 𝐹 ′ and therefore that:

[1 ≤ [2

?𝐸[1 ≤ ?𝐹 ′[2 ▶ {𝐸 <: 𝐹 ′}
where 𝐸 <: 𝐹 ′ is satisfiable, as required.

□

We also need to show that environment joining respects subtyping, which we do by firstly

showing that type joining respects subtyping.

Lemma E.57 (Algorithmic type join respects subtyping). If:
• 𝜏1 # 𝜏2 ▶ Θ;Φ
• Ξ is some usable solution of Φ such that Ξ(𝜏2) ≤ Ξ(𝜏3) for some 𝜏3

then 𝜏1 # 𝜏3 ▶ 𝜏
′
;Φ′ for some 𝜏 ′, Φ′ such that Ξ(𝜏) ≤ Ξ(𝜏 ′) and Ξ is a usable solution of Ξ(Φ′).

Proof. Base type combination follows straightforwardly, so we have:

𝜍1 # 𝜍2 ▶ 𝜍 ;Φ

𝜍
[1

1
𝜍[2

2
▶ 𝜍[1⊲[2Φ;

so it suffices to proceed by case analysis on the derivation of 𝜍1 # 𝜍2 ▶ 𝜍 ;Φ.

Case 𝜍1 = !𝛾 and 𝜍2 = !𝛿

Assumption:

!𝛾 # !𝛿 ▶ !(𝛾 ⊙ 𝛿); ∅
We also assume that Ξ(!𝛿) ≤ Ξ(𝜏) for some 𝜏 , which by the definition of subtyping means that

𝜏 = !𝛿 ′ for some 𝛿 ′, where Ξ(𝛿 ′) ⊑ Ξ(𝛿).
It follows by the compositionality of pattern semantics that 𝛾 ⊙ 𝛿 ′ ⊑ 𝛾 ⊙ 𝛿 and thus !(𝛾 ⊙ 𝛿) ≤

!(𝛾 ⊙ 𝛿 ′), and we have that

68

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

Special Delivery , ,

!𝛾 # !𝛿 ′ ▶ !(𝛾 ⊙ 𝛿 ′); ∅
as required.

Case 𝜍1 = !𝛾 and 𝜍2 = ?𝛿

Assumption:

𝛼 fresh

!𝛾 # ?𝛿 ▶ ?𝛼 ; {(𝛾 ⊙ 𝛼) <:𝛿}
By the assumptions we know that Ξ is a usable solution of Φ such that Ξ(?𝛿) ≤ Ξ(𝜏) for some 𝜏 .

By the definition of subtyping it must be the case that 𝜏 = ?𝛿 ′ for some pattern 𝛿 ′.
Since Ξ(?𝛿) ≤ Ξ(?𝛿 ′) it follows that Ξ(𝛿) ⊑ Ξ(𝛿 ′).
Since Ξ is a usable solution of Φ we have that Ξ(𝛾 ⊙ 𝛼) ⊑ Ξ(𝛿).
Therefore by transitivity of subtyping we have that Ξ(𝛾 ⊙ 𝛼) ⊑ Ξ(𝛿 ′) and thus know that Ξ is a

usable solution of {(𝛾 ⊙ 𝛼) <:𝛿 ′}.
Recomposing:

𝛼 fresh

!𝛾 # ?𝛿 ′ ▶ ?𝛼 ; {(𝛾 ⊙ 𝛼) <:𝛿 ′}

Case 𝜍1 = ?𝛾 and 𝜍2 = !𝛿

Similar to the previous case.

□

The desired result falls out as a corollary:

Corollary E.58 (Algorithmic environment join respects subtyping). If:
• Θ1 # Θ2 ▶ Θ;Φ
• Ξ is some usable solution of Φ such that Ξ(Θ1) ≤ Ξ(Θ3) for some Θ3

then Θ1 # Θ3 ▶ Θ′;Φ′ for some Θ′, Φ′ such that Ξ(Θ) ≤ Ξ(Θ′) and Ξ is a usable solution of Ξ(Φ′).

Finally we want to see that algorithmic environment combination respects subtyping.

Lemma E.59 (Algorithmic combination respects subtyping). If:
• Θ1 + Θ2 ▶ Θ;Φ
• Ξ is some usable solution of Φ such that Ξ(Θ1) ≤ Ξ(Θ3) for some Θ3

then Θ1 + Θ3 ▶ Θ′;Φ′ for some Θ′, Φ′ such that Ξ(Θ) ≤ Ξ(Θ′) and Ξ is a usable solution of Ξ(Φ′).

Proof. By induction on the derivation of Θ1 + Θ2 ▶ Θ;Φ. □

Corollary E.60 (Algorithmic combination respects subtyping (nullable environments)).

If:
• Ψ1 + Ψ2 ▶ Ψ;Φ
• Ξ is some usable solution of Φ such that Ξ(Ψ1) ≤ Ξ(Ψ3) for some Ψ3

then Ψ1 + Ψ3 ▶ Ψ′;Φ′ for some Ψ′, Φ′ such that Ξ(Ψ) ≤ Ξ(Ψ′) and Ξ is a usable solution of Ξ(Φ′).

Relying on the previous results, we can now show the supertype checkability lemma.

69

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Lemma E.61 (Supertype checkability).

Suppose P is closed.

• If:
– 𝑀 ⇐P 𝐴 ▶ Θ; Φ
– Ξ is a usable solution of Φ
– 𝐴 ≤ 𝐵
then𝑀 ⇐P 𝐵 ▶ Θ′; Φ′, where Ξ is a usable solution of Φ′ and Ξ(Θ) ≼ Ξ(Θ′).
• If:
– {𝐸} −→𝐺 ⇐P 𝐴 ▶ Θ; Φ; 𝐹

– Ξ is a usable solution of Φ
– 𝐴 ≤ 𝐵
then {𝐸} −→𝐺 ⇐P 𝐵 ▶ Θ′; Φ′; 𝐹 where Ξ is a usable solution of Φ′ and Ξ(Θ) ≼ Ξ(Θ′).
• If:
– {𝐸} 𝐺⇐P 𝐴 ▶ Θ; Φ; 𝐹

– Ξ is a usable solution of Φ
– 𝐴 ≤ 𝐵
then {𝐸} 𝐺⇐P 𝐵 ▶ Θ′; Φ′; 𝐹 where Ξ is a usable solution of Φ′ and Ξ(Θ) ≼ Ξ(Θ′).

Proof. By mutual induction on the three premises. We concentrate on proving premise 1 in

detail, and TCG-Recv for premise 3; premise 2 follows from premise 3, and the remaining guard

cases are straightforward.

By induction on the derivation of𝑀 ⇐ 𝐴 ▶ Θ; Φ.

Case TC-Var

Assumption:

𝑥 ⇐ 𝐴 ▶ 𝑥 : 𝐴; ∅

Now given that we have 𝐴 ≤ 𝐵, we can construct:

𝑥 ⇐ 𝐵 ▶ 𝑥 : 𝐵; ∅

As Φ = · it straightforwardly follows that Ξ is a usable solution, and since 𝐴 ≤ 𝐵 we have that

𝑥 : 𝐴 ≤ 𝑥 : 𝐵 as required.

Case TC-Let

Assumption:

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝐴 ▶ Θ2; Φ2

check(Θ2, 𝑥, ⌊𝑇 ⌋) = Φ3 Θ1 # Θ2 ▶ Θ;Φ4

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝐴 ▶ Θ; Φ1 ∪ · · · ∪ Φ4

By the IH we have that:

• 𝑁 ⇐ 𝐵 ▶ Θ3; Φ5 for some Θ3, Φ5

• Ξ(Θ2) ≤ Ξ(Θ3)
• Ξ is a usable solution of Θ3

70

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

Special Delivery , ,

By Corollary E.58 we have that Θ1 #Θ3 ▶ Θ′;Φ6, where Ξ(Θ) ≤ Ξ(Θ′) and Ξ is a usable solution

of Φ6.

By Lemma E.51, we have that check(Θ3, 𝑥, ⌊𝑇 ⌋) = Φ5 where Ξ is a usable solution of Φ5.

Therefore we can show that:

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝐵 ▶ Θ3; Φ4

check(Θ3, 𝑥, ⌊𝑇 ⌋) = Φ5 Θ1 # Θ3 ▶ Θ′;Φ6

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝐵 ▶ Θ′; Φ1 ∪ Φ4 ∪ Φ5 ∪ Φ6

as required.

Case TC-Guard

{𝐸} −→𝐺 ⇐𝐴 ▶ Ψ; Φ1; 𝐹

𝑉 ⇐ ?𝐹 • ▶ Θ′; Φ2 Ψ + Θ′ ▶ Θ;Φ3

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝐴 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

By the IH:

• {𝐸} −→𝐺 ⇐ 𝐵 ▶ Ψ′; Φ′
1
; 𝐹 with Ξ a usable solution of Φ′

1
and Ξ(𝐸) ⊑ Ξ(𝐹) and Ξ(Ψ) ≤ Ξ(Ψ′)

• 𝑉 ⇐ ?𝐹 • ▶ Θ′′; Φ′
2
with Ξ a usable solution of Φ′

2
and Ξ(Θ) ≤ Ξ(Θ′′)

By Corollary E.60 Ψ′ + Θ′′ ▶ Θ′′′;Φ′
3
.

Recomposing:

{𝐸} −→𝐺 ⇐ 𝐵 ▶ Ψ′; Φ′
1
; 𝐹

𝑉 ⇐ ?𝐹 • ▶ Θ′′; Φ′
2

Ψ′ + Θ′′ ▶ Θ′′′;Φ′
3

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝐵 ▶ Θ′′′; Φ′
1
∪ Φ′

2
∪ Φ′

3

with Ξ a usable solution of Φ′
1
∪ Φ′

2
∪ Φ′

3
and Ξ(Θ) ≤ Ξ(Θ′′′) as required.

Case TC-Sub

Assumptions:

𝑀 ⇒ 𝐴 ▶ Θ; Φ1 𝐴 ≤ 𝐴′ ▶ Φ2

𝑀 ⇐ 𝐴′ ▶ Θ; Φ1 ∪ Φ2

and:

• Ξ is a usable solution of Φ1 ∪ Φ2

• 𝐴′ ≤ 𝐵
Since𝐴,𝐴′, and 𝐵 contain no pattern variables, by Lemma E.55 we have that pv(Φ2) = ∅ (however,

since Ξ is a usable solution of Φ1 ∪ Φ2, it follows that Φ2 is satisfiable).

By Lemma E.56, we have that 𝐴 ≤ 𝐵 ▶ Φ3, where Φ3 is satisfiable.

Since Φ3 is satisfiable and (again by Lemma E.55) pv(Φ3) = ∅, it follows that Ξ is a usable solution

of Φ1 ∪ Φ3.

Thus by TC-Sub we have that:

71

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

𝑀 ⇒ 𝐴 ▶ Θ; Φ1 𝐴 ≤ 𝐵 ▶ Φ3

𝑀 ⇐ 𝐵′ ▶ Θ; Φ1 ∪ Φ3

where Ξ is a usable solution of Φ1 ∪ Φ3, as required.

Case TCG-Recv

Assumption:

𝑀 ⇐ 𝐴 ▶ Θ′, 𝑦 : ?𝛾•; Φ1

P(m) = −→𝜋 Θ = Θ′ −−→𝑥 base(−→𝜋) ∨ base(Θ) check(Θ′,−→𝑥 ,
−−→
⌈𝜋⌉) = Φ2

{𝐸} receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐𝐴 ▶ Θ; Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾}; m ⊙ (𝐸 / m)
Also we have that:

• Ξ is a usable solution of Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾}
• Ξ(𝜏) ≤ Ξ(𝜎)
By the IH we have that𝑀 ⇐ 𝐵 ▶ Θ′′, 𝑦 : 𝛿•; Φ′

1

where Ξ(Θ′, 𝑦 : ?𝛾•) ≼ Ξ(Θ′′, 𝑦 : ?𝛿•) and where Ξ is a usable solution of Φ′
1
.

By the definition of strict environment subtyping we have that ?𝛾 ≤ ?𝛿 and therefore 𝛾 ⊑ 𝛿 .
Let Θ′′′ = Θ′′ −−→𝑥 . It follows by the definition of environment subtyping that Ξ(Θ) ≼ Ξ(Θ′′′).
Due to the definition of the subtyping relation it remains the case that base(−→𝑇) ∨ base(Θ′′′).
By Lemma E.51 we have that check(Θ′′,−→𝑥 , ⌈−→𝑇 ⌉) = Φ′

2
where Ξ is a usable solution of Φ′

2
.

Recomposing:

𝑀 ⇐ 𝜏 ▶ Θ′′, 𝑦 : ?𝛿•; Φ′
1

P(m) = −→𝑇 Θ′′′ = Θ′′ −−→𝑥 base(−→𝑇) ∨ base(Θ) check(Θ′,−→𝑥 ,
−−→
⌈𝑇 ⌉) = Φ′

2

{𝐸} receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐ 𝐵 ▶ Θ; Φ′
1
∪ Φ′

2
∪ {𝐸 / m<:𝛿}; m ⊙ 𝛿

whereΞ(m⊙𝛾) ⊑ Ξ(m⊙𝛿) andΞ is a usable solution ofΦ′
1
∪ Φ′

2
∪ {𝐸 / m<:𝛿} andΞ(Θ′′′) ≼ Ξ(Θ),

as required. □

The following specific result, used within the completeness result, is a corollary.

Corollary E.62 (Supertype checkability). If:
• 𝑀 ⇐P 𝐴 ▶ Θ; Φ
• P is closed
• Ξ is a usable solution of Φ
• 𝐴 ≤ 𝐵

then there exist Θ′,Φ′ such that𝑀 ⇐P 𝐵 ▶ Θ′; Φ′ where Ξ is a usable solution of Φ′ and Ξ′ (Θ) ≼
Ξ′ (Θ′).

E.4.4 Freshness of type variables. It is convenient to reason about fresh variables.

Definition E.63 (Created fresh). A pattern variable 𝛼 is created fresh in a derivation D if there

exists some subderivation D′ of D which is of the form:

𝛼 fresh

D′

72

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

Special Delivery , ,

Lemma E.64 (Pattern variable freshness). If D = 𝑀 ⇐P 𝐴 ▶ Θ; Φ or D = 𝑀 ⇒P 𝐴 ▶ Θ; Φ
where P is closed, then all pattern variables in pv(Θ) ∪ pv(Φ) are created fresh in D.

Proof. By induction on the respective derivation, noting that since the signature and types

are closed, pattern variables are only introduced through the type join and type merge operators,

where they are created fresh. □

E.4.5 Completeness proof. Finally, we can tie the above results together to show algorithmic

completeness.

Theorem 4.5 (Algorithmic Completeness). If ⊢ P where P is closed, and Γ ⊢P 𝑀 :𝐴, then there
exist some Θ,Φ and usable solution Ξ of Φ such that𝑀 ⇐P 𝐴 ▶ Θ; Φ where Γ ≤ Ξ(Θ).

Proof. A direct consequence of Lemma E.65. □

Lemma E.65 (Algorithmic Completeness (Generalised)).

• If Γ ⊢P 𝑀 :𝐴 where P is closed, then there exist some Θ,Φ and usable solution Ξ of Φ such that
𝑀 ⇐ 𝐴 ▶ Θ; Φ where dom(Ξ) = pv(Θ) ∪ pv(Φ) and Γ ≼ Ξ(Θ).
• If Γ ⊢P

−→
𝐺 :𝐴 :: 𝐹 where 𝐸 ⊨lit 𝐹 for some pattern 𝐸 and P is closed, then there exist some Θ,Φ

and usable solution Ξ of Φ such that {𝐸} −→𝐺 ⇐𝐴 ▶ Θ; Φ; 𝐹 where dom(Ξ) = pv(Θ) ∪ pv(Φ) and
Γ ≼ Ξ(Θ).
• If Γ ⊢P 𝐺 :𝐴 :: 𝐹 where 𝐸 ⊨lit 𝐹 for some pattern 𝐸 and P is closed, then there exist some Θ,Φ
and usable solution Ξ of Φ such that {𝐸} 𝐺⇐𝐴 ▶ Θ; Φ; 𝐹 where dom(Ξ) = pv(Θ) ∪ pv(Φ) and
Γ ≼ Ξ(Θ).

Proof. By mutual induction on both premises.

Premise 1:

Case T-Var

Assumption:

𝑥 : 𝐴 ⊢ 𝑥 :𝐴

Recomposing via TC-Var:

𝑥 ⇐ 𝐴 ▶ 𝑥 : 𝐴; ∅
with Ξ = ·.

Case T-Const

Assumption:

𝑐 has base type 𝐶

· ⊢ 𝑐 :𝐶

By TS-Const:

𝑐 has base type 𝐶

𝑐 ⇒ 𝐶 ▶ ·; ∅

73

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

By Lemma E.42 we have that 𝑐 ⇐ 𝐶 ▶ ·; ∅
with Ξ = ·, as required.

Case T-App

Assumption:

P(𝑓) = −→𝐴 −→ 𝐵 (Γ𝑖 ⊢ 𝑉𝑖 :𝐴𝑖)𝑖∈1..𝑛

Γ1 + · · · + Γ𝑛 ⊢ 𝑓 (
−→
𝑉) :𝐵

By (repeated) use of Lemma E.41, we have that there exist some Γ′𝑖 such that Γ𝑖 ≤ Γ′𝑖 and

𝑉𝑖 ⇐ 𝐴𝑖 ▶ Γ′𝑖 ; ∅ for 𝑖 ∈ 1..𝑛.

By repeated use of Lemma E.45, we have that there Γ′
1
+ . . . + Γ′𝑛 ▶ Θ;Φ for some Θ,Φ and that

there exists some usable solution Ξ of Γ ≤ Ξ(Θ).
Thus by TS-App we can show

P(𝑓) = −→𝐴 −→ 𝐵 (𝑉𝑖 ⇐ 𝐴𝑖 ▶ Γ′𝑖 ; ∅)𝑖∈1..𝑛 Γ′
1
+ . . . + Γ′𝑛 ▶ Θ;Φ

𝑓 (−→𝑉) ⇒ 𝐵 ▶ Θ; Φ

and by Lemma E.42 we have that 𝑓 (−→𝑉) ⇐ 𝐵 ▶ Θ; Φ as required.

Case T-Let

Assumption:

Γ1 ⊢ 𝑀 : ⌊𝑇 ⌋ Γ2, 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :𝐵

Γ1 ⊲ Γ2 ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :𝐵

By the IH we have that:

• There exist some Θ1,Φ1 and usable solution Ξ1 of Φ1 such that 𝑀 ⇐ 𝐴 ▶ Θ1; Φ1 where Γ1 ≼
Ξ1 (Θ1)
• There exist some Θ2,Φ2 and usable solution Ξ2 of Φ2 such that 𝑁 ⇐ 𝐵 ▶ Θ2, 𝑥 : ⌊𝑇 ′⌋; Φ2 where

Γ2, 𝑥 : ⌊𝑇 ⌋ ≼ Ξ2 (Θ2)
By Lemma E.44, we have that Θ1 #Θ2 ▶ Θ;Φ3 and a usable solution Ξ ⊇ Ξ1 ∪ Ξ2 of Φ3 such that

Γ1 ⊲ Γ2 ≼ Ξ(Θ).
By Lemma E.51, we have that check(Θ2, 𝑥, ⌊𝑇 ⌋) = Φ4 and Ξ is a usable solution of Φ4.

Since Ξ ⊇ Ξ1 ∪ Ξ2 and pattern variables in these subderivations are only introduced fresh

(Lemma E.64), we have that Ξ is also a usable solution of Φ1 and Φ2.

Therefore, we have that Ξ is a usable solution of Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4.

Recomposing using TC-Let:

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝐴 ▶ Θ2; Φ2

check(Θ2, 𝑥, ⌊𝑇 ⌋) = Φ4 Θ1 # Θ2 ▶ Θ;Φ3

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝐴 ▶ Θ; Φ1 ∪ · · · ∪ Φ4

where Ξ(Θ) ≼ Γ1 ⊲ Γ2 and Ξ is a usable solution of Φ1 ∪ Φ2 ∪ Φ3 ∪ Φ4, as required.

Case T-Spawn

74

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

Special Delivery , ,

Γ ⊢ 𝑀 : 1

⌈Γ⌉ ⊢ spawn 𝑀 : 1

By the IH𝑀 ⇐ 1 ▶ Θ; Φ for some Θ,Φ, and a usable solution Ξ such that Γ ≤ Ξ(Φ).
Thus by TS-Spawn:

𝑀 ⇐ 1 ▶ Θ; Φ

spawn 𝑀 ⇒ 1 ▶ ⌈Θ⌉; Φ

where Γ ≤ Ξ(Θ) and therefore ⌈Γ⌉ ≤ ⌈Ξ(Θ)⌉.
Finally, by Lemma E.42, we have that spawn 𝑀 ⇐ 1 ▶ ⌈Θ⌉; Φ with usable solution Ξ of Φ as

required.

Case T-New

Assumption:

· ⊢ new : ?1•

ByTS-Newwehave thatnew⇒ ?1• ▶ ·; ∅ and by LemmaE.42 it follows thatnew⇐ ?1• ▶ ·; ∅;
we can set solution Ξ = ·, as required.

Case T-Send

Assumption:

P(m) = −→𝑇 Γtarget ⊢ 𝑉 : !m◦ (Γ′𝑖 ⊢𝑊𝑖 : ⌈𝑇𝑖⌉)𝑖∈1..𝑛

Γtarget + Γ′1 + . . . + Γ′𝑛 ⊢ 𝑉 ! m[
−→
𝑊] : 1

By the IH we have that:

• 𝑉 ⇐ !m◦ ▶ Θtarget; Φtarget for some Θtarget, Φtarget and some usable solution Ξtarget of Φtarget such

that Γtarget ≤ Ξ(Θtarget).
• (𝑊𝑖 ⇐ ⌈𝑇𝑖⌉ ▶ Θ𝑖 ; Φ𝑖)𝑖∈1..𝑛 for Θ𝑖 , Φ𝑖 and usable solutions Ξ𝑖 of Φ𝑖 such that Γ′𝑖 ≤ Ξ𝑖 (Θ𝑖)

By repeated use of Lemma E.45 we have that Θtarget + Θ1 + . . . + Θ𝑛 ▶ Θ;Φenv, with some usable

solution Ξenv of Φenv such that Γ + Γ′
1
+ . . . + Γ′𝑛 ≤ Ξenv (Θ).

Since pattern variables are always chosen fresh (Lemma E.64) we have that Ξtarget ∪ Ξenv ∪⋃
𝑖∈1..𝑛 Ξ

′
𝑖 is a solution of Φtarget ∪ Φenv ∪

⋃
𝑖∈1..𝑛 Φ

′
𝑖 .

Thus we can show by TS-Send and Lemma E.42:

P(m) = −→𝑇 𝑉 ⇐ !m◦ ▶ Θtarget; Φtarget
(𝑊𝑖 ⇐ ⌈𝑇𝑖⌉ ▶ Θ𝑖 ; Φ𝑖)𝑖∈1..𝑛 Θtarget + Θ1 + . . . + Θ𝑛 ▶ Θ;Φenv

𝑉 ! m[
−→
𝑊]⇒ 1 ▶ Θ; Φtarget ∪ Φ1 ∪ · · · ∪ Φ𝑛 ∪ Φenv

𝑉 ! m[
−→
𝑊]⇐ 1 ▶ Θ; Φtarget ∪ Φ1 ∪ · · · ∪ Φ𝑛 ∪ Φenv

where Ξ is a usable solution of Φtarget ∪ Φ1 ∪ · · · ∪ Φ𝑛 ∪ Φenv and Γ ≤ Ξ(Θ), as required.

Case T-Guard

75

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Assumption:

Γ1 ⊢ 𝑉 : ?𝐹 • Γ2 ⊢
−→
𝐺 :𝐴 :: 𝐹 𝐸 ⊑ 𝐹 ⊨ 𝐹

Γ1 + Γ2 ⊢ guard𝑉 :𝐸 {−→𝐺 } :𝐴

By Lemma E.41 we have that 𝑉 ⇐ ?𝐹 • ▶ Γ′
1
; ∅ where Γ1 ≤ Γ′

1
.

By the IH we have that {𝐸} −→𝐺 ⇐𝐴 ▶ Θ; Φ; 𝐹 where Ξ is a usable solution of Φ and Γ2 ≤ Ψ.
By Corollary E.46 we have that Θ′ + Ψ ▶ Θ;Φ2 with Γ1 + Γ2 ≤ Ξ(Θ) and where Ξ is a solution of

Φ2.

Recomposing:

{𝐸} −→𝐺 ⇐𝐴 ▶ Ψ; ∅; 𝐹
𝑉 ⇐ ?𝐹 ▶ Θ′; ∅ Θ′ + Ψ ▶ Θ;Φ

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝐴 ▶ Θ; Φ ∪ {𝐸 <: 𝐹 }
where Ξ is a usable solution of Φ1 ∪ Φ2 and 𝐸 ⊑ Ξ(𝛾), as required.

Case T-Subs

Γ ≤ Γ′ 𝐴 ≤ 𝐵 Γ′ ⊢ 𝑀 :𝐴

Γ ⊢ 𝑀 :𝐵

By the IH, we have that there exist Θ,Φ and some usable solution Ξ of Φ such that Γ′ ≤ Ξ(Θ)
and𝑀 ⇐ 𝐴 ▶ Θ; Φ.
By Lemma E.62 we have that𝑀 ⇐ 𝐵 ▶ Θ′; Φ′ where Ξ is a usable solution of Φ′ and Ξ(Θ) ≤

Ξ(Θ′).
Recalling that Γ ≤ Γ′, and Γ′ ≤ Ξ(Θ), and noting that Ξ(Θ) ≤ Ξ(Θ′) and that Ξ(Θ) ≤ Ξ(Θ′),

by the transitivity of subtyping we have that Γ ≤ Ξ(Θ′).
Therefore we have that:

• 𝑀 ⇐ 𝐵 ▶ Θ′; Φ′

• Ξ is a usable solution of Φ′

• Γ ≤ Ξ(Θ′)
as required.

Premise 2:

Case TG-GuardSeq

(Γ ⊢ 𝐺𝑖 :𝐴 :: 𝐸𝑖)𝑖∈𝐼
Γ ⊢ −→𝐺 :𝐴 :: 𝐸1 ⊕ . . . ⊕ 𝐸𝑛

By repeated use of the IH (2) we have that {𝐸𝑖 } 𝐺𝑖⇐𝐴 ▶ Ψ𝑖 ; Φ𝑖 ; 𝛾𝑖 for some Ψ𝑖 ,Ξ𝑖 , 𝛾𝑖 such that

Γ ≤ Ξ𝑖 (Ψ𝑖) and 𝐸 ⊑ Ξ𝑖 (𝛾𝑖) for each 𝑖 ∈ 𝐼 .
By Corollary E.49 we have that Ψ1 ⊓ . . . ⊓ Ψ𝑛 ▶ Ψenv;Φenv and some solution Ξenv of Φenv such

that Γ ≤ (Ξ1 ∪ · · · ∪ Ξ𝑛 ∪ Ξenv) (Ψenv).
Recomposing by TCG-Guards:

({𝐸𝑖 } 𝐺𝑖⇐𝐴 ▶ Ψ𝑖 ; Φ𝑖 ; 𝛾𝑖)𝑖∈1..𝑛 𝛾 = 𝛾1 ⊕ · · · ⊕ 𝛾𝑛 Ψ1 ⊓ . . . ⊓ Ψ𝑛 ▶ Ψenv;Φenv

{𝐸} −→𝐺 ⇐ Ψenv ▶ Φenv ∪ Φ1 ∪ · · · ∪ Φ𝑛 ; 𝛾 ;

76

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

Special Delivery , ,

Since pattern variables are generated fresh, we have that the pattern variables for each Ξ𝑖 are
disjoint. Therefore, we have that:

• Ξ =
⋃
𝑖∈1..𝑛 Ξ𝑖 ∪ Ξenv is a usable solution of Φ =

⋃
𝑖∈1..𝑛 Φ𝑛 ∪ Φenv

• Γ ≤ Ξ(Ψenv)
• 𝐸 ⊑ Ξ(𝛾1 ⊕ · · · ⊕ 𝛾𝑛)
as required.

Premise 3:

Case TG-Fail

Assumption:

Γ ⊢ fail :𝐴 :: 0

By TCG-Fail:

{0} fail⇐𝐴 ▶ ⊤; ∅; 0

Where 0 ⊑ 0 and Γ ≤ ⊤ as required.

Case TG-Free

Γ ⊢ 𝑀 :𝐴

Γ ⊢ free ↦→ 𝑀 :𝐴 :: 1

By the IH (1) we have that there exist Θ,Φ and usable solution Ξ of Φ such that𝑀 ⇐ 𝐴 ▶ Θ; Φ
with Γ ≤ Ξ(Θ).

Recomposing by TCG-Free:

𝑀 ⇐ 𝐴 ▶ Θ; Φ

{1} free ↦→ 𝑀⇐𝐴 ▶ Θ; Φ; 1

with Γ ≤ Ξ(Θ) and 1 ⊑ 1 as required.

Case TG-Recv

Assumption:

P(m) = −→𝑇 base(−→𝑇) ∨ base(Γ) Γ, 𝑦 : ?𝐹 •,−→𝑥 :

−−→
⌈𝑇 ⌉ ⊢ 𝑀 :𝐵

Γ ⊢ receive m[−→𝑥] from 𝑦 ↦→ 𝑀 :𝐵 :: m ⊙ 𝐹
We also assume that there is some 𝐸 such that 𝐸 ⊨lit m ⊙ 𝐹 .
Let Γ′ = Γ, 𝑦 : ?𝐹 •,−→𝑥 :

−−→
⌈𝑇 ⌉.

By the IH we have that there exist Θ,Φ and usable solution Ξ of Φ s.t. 𝑀 ⇐ 𝐴 ▶ Θ, 𝑦 : ?𝛾•; Φ
where dom(Ξ) = pv(Θ) ∪ pv(Φ) and Γ′ ≼ Ξ(Θ, 𝑦 : ?𝛾•).

We next need to show that if base(−→𝑇) ∨ base(Γ) implies that base(−→𝑇) ∨ base(Θ). It suffices

to show that base(Γ) implies base(Θ). Since Γ ≼ Ξ(Θ), by the definition of strict environment

subtyping it follows that if base(Γ) and Γ ≼ Ξ(Θ), then Γ = Θ.

77

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

, , Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Next, since Γ, 𝑦 : ?𝐹 •,−→𝑥 : ⌈−→𝑇 ⌉ ≼ Ξ(Θ′), 𝑦 : ?𝛾• it follows that Γ,−→𝑥 : ⌈−→𝑇 ⌉ ≼ Ξ(Θ′) and thus by

Corollary E.52 we have that check(Θ,−→𝑥 ,
−−→
⌈𝑇 ⌉) = Φ2 where Ξ is a usable solution of Φ2.

Next, since Γ, 𝑦 : ?𝐹 • ≼ Ξ(Θ), 𝑦 : ?𝛾• it follows by the definition of subtyping that 𝐹 ⊑ Ξ(𝛾).
We have one final proof obligation: showing that Ξ solves (𝐸 / m) <:𝛾 .

Since 𝐸 ⊨lit m ⊙ 𝐹 we have that 𝐹 ≃ 𝐸 / m and therefore both 𝐹 ⊑ (𝐸 / m) and (𝐸 / m) ⊑ 𝐹 .
Since ?𝐹 ≤ ?Ξ(𝛾) we have that 𝐹 ⊑ Ξ(𝛾). Thus by transitivity we have that 𝐸 / m ⊑ 𝐹 ⊑ Ξ(𝛾)

and therefore that Ξ solves (𝐸 / m) <:𝛾 as necessary.

Thus, recomposing, we have:

𝑀 ⇐ 𝐵 ▶ Θ′, 𝑦 : ?𝛾•; Φ1

P(m) = −→𝑇 Θ = Θ′ −−→𝑥 base(−→𝑇) ∨ base(Θ) check(Θ′,−→𝑥 ,
−−→
⌈𝑇 ⌉) = Φ2

{𝐸} receive m[−→𝑥] from 𝑦 ↦→ 𝑀⇐ 𝐵 ▶ Θ; Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾}; m ⊙ (𝐸 / m)
as required.

□

78

	Abstract
	1 Introduction
	1.1 Channel-based vs Actor Communication
	1.2 Mailbox types

	2 Mailbox Types in a Programming Language: what are the issues?
	2.1 Controlling Mailbox Aliasing
	2.2 Quasi-linear typing

	3 Pat: A Core Language with Mailbox Types
	3.1 Syntax
	3.2 Type system
	3.3 Operational Semantics
	3.4 Metatheory

	4 Algorithmic Typing
	4.1 Algorithmic Type System
	4.2 Metatheory

	5 Extensions
	5.1 Product and Sum Types
	5.2 Using Contextual Type Information

	6 Implementation and Expressiveness
	6.1 Implementation Overview
	6.2 Expressiveness and Typechecking Time

	7 Related work
	8 Conclusion and Future Work
	References
	A Omitted Definitions
	A.1 Algorithmic environment combination operators

	B Constraint Solving Overview
	C Details of Extensions
	C.1 Product and sum types
	C.2 Contextual Type Information

	D Supplementary Implementation and Evaluation Material
	D.1 Experimental Conditions
	D.2 Case Study

	E Proofs
	E.1 Preservation
	E.2 Progress
	E.3 Algorithmic Soundness
	E.4 Algorithmic Completeness

