
Event-Driven Multiparty Session Actors
Simon Fowler

simon.fowler@glasgow.ac.uk
University of Glasgow

United Kingdom

Raymond Hu

r.hu@qmul.ac.uk
Queen Mary University of London

United Kingdom

Abstract
Actor languages such as Erlang and Elixir have emerged as

popular tools for designing reliable, fault-tolerant distributed

applications, but communication patterns used by actors are

often informally specified. Multiparty session types (MP-

STs) are a type discipline for communication protocols: if

a program typechecks according to its session type, then

it is guaranteed to fulfil its role in a communication proto-

col, but the unidirectional communication mechanism used

by actors makes it difficult to apply session types to actor

languages directly. By combining a flow-sensitive effect sys-

tem with an event-driven programming model, we show the

first statically-typed session type system for actors that can

participate in multiple sessions.

1 Introduction
Actor languages and frameworks are a mainstay of reliable

distributed software development: an actor is an addressable

process that can spawn and send messages to other actors,

and react to incoming messages. Actor languages support

powerful idioms such as supervision hierarchies [1], which
have helped companies such as Ericsson develop systems

with “nine nines” reliability; Erlang is also used as the back-

bone of WhatsApp, with billions of users worldwide.

Alas, message passing introduces the threats of deadlocks

and communication mismatches.Multiparty session types [9]
encode communication patterns as types; successful type-

checking ensures communication safety. To date, session

typing for actors has either been checked dynamically [14],

or has restricted each actor to a single session [7]. Restricting

an actor to a single session is disadvantageous as it is often

useful for an actor to have some common state (e.g., the stock
of a warehouse) common to multiple sessions.

Problem statement. Multiparty session types can

rule out communication errors, and actor languages

support robust distributed programming. However,

due to the mailbox-oriented communication model

supported by actors, applying session types to actors

is challenging.

How can we support static checking of multiparty

session types in actors which can take part in multiple
sessions?

In this extended abstract, we detail ongoing work show-

ing how combining a flow-sensitive effect system (i.e., an

a

b

c

(a) Channels

A B

C

(b) Actors

Figure 1. Channels and actors (taken from [4])

effect system with pre- and post-conditions) with event-

driven programming supports flexible actor programming

with statically-checked MPSTs. Although we do not intro-

duce any novel effects machinery, the relevance of this work

to HOPE is how effect typing and event-driven programming

can address a pressing open problem in the session types

community.

2 Preliminaries
We begin by introducing some preliminary concepts.

(Multiparty) session types. Session types [8] are a type

discipline that enforce conformance to communication proto-

cols: if a program typechecks against its session type, then it

is guaranteed to implement the protocol. Originally, session

types described communication between two participants.

Multiparty session types [9] allow communication patterns

to be described between more than two participants: a global
type describes the interactions between all participants, and

can be projected to a local type for each participant.

Actor- and channel-based communication. A channel
is a shared name or buffer that allows two or more pro-

cesses to communicate. An actor is a process which can react

to incoming messages; typically actor languages associate

processes with a mailbox. Figure 1 (taken from [4], which

provides a detailed formal comparison) shows the difference

between the two models.

Whereas it is straightforward to give types to session

channel endpoints, the unidirectional nature of mailboxes

makes it difficult to apply session types to mailboxes directly.

Therefore, session types are typically used to govern the

actions that an actor performs, rather than the mailbox itself.

Event-driven programming. In the event-driven program-
ming programming model, computation is triggered by an

1

Conference’17, July 2017, Washington, DC, USA Simon Fowler and Raymond Hu

event (for example, a mouse click, or an incoming message).

Each event is handled by an event handler ; after the handler
has completed, the thread reverts to being idle.

Flow-sensitive effect systems. StandardGifford-style type-
and-effect systems [12] record the effects performed by an ex-

pression (e.g., writing to a reference cell or opening a file han-

dle). These type-and-effect systems are typically set-based

and do not reason about ordering of effects. In contrast, flow-

sensitive [13] (also known as sequential [6]) effect systems

reason about the ordering of effects, and their typing judge-

ments typically express effects as pre- and post-conditions.

Our functional formulation is reminiscent of Atkey’s param-

eterised monads [2].

Putting them together. Since it is difficult to attach ses-

sion types to mailboxes, previous work has used session

types to govern the communication actions performed by

an actor, either using runtime monitoring [3, 14], or static

typechecking for a single session using session types as pre-

and post-conditions in a flow-sensitive effect system [7].

In short, our programming model combines the benefits of

actor style programming (e.g., data locality) with statically-

checked multiparty session types. Session typing is enforced

by a type-and-effect system, and event-driven programming

allows an actor to take part in more than one session.

3 Programming model by example
We introduce our model using the two-buyer protocol [9],

intended as an abstraction of financial protocols. Two buyers

(Buyer1 and Buyer2) interact with a Seller to buy a book:

Buyer1 sends a title to Seller, who responds with a price.

At this point, Buyer1 sends Buyer2 their share of the price.
Buyer2 can then either accept the offer, sending their address
to Seller and receiving a delivery date, or reject the offer.

The global type for the protocol is described on the left; by

projecting the global type, we obtain a local type for each
role. The local type for Buyer2, B2, is shown on the right; &

denotes branching and ⊕ denotes making a choice.

Buyer1 → Seller : title(String) .
Seller → Buyer1 : quote(Int) .
Buyer1 → Buyer2 : share(Int) .
Buyer2 → Seller : {

address(String) .
Seller → Buyer2 : date(Date) . end,

quit(Unit) . end
}

B2 ≜
Buyer1& share(Int) .
Seller ⊕{

address(String) .
Seller& date(Date)
. end,

quit(Unit) . end
}

Although our core calculus is in the style of fine-grain

call-by-value [11], we allow ourselves nested expressions in

examples. We wish to allow a single seller to interact with an

arbitrary number of requests. We include the main process

used to set up the sessions, and the implementation of the

Seller role below; the implementations and local types for

the other roles can be found in Appendix A.

The program creates a new access point [5]—a name with

which actors can register in order to take part in a session—

and spawns a seller actor, and two sets of buyers.

main ≜
let ap ⇐ newAP(Seller:S,Buyer1:B1,Buyer2:B2) in
spawn (seller(ap) ()) ;
spawnBuyers(ap, “Types and Programming Languages”) ;
spawnBuyers(ap, “Compiling with Continuations”)

spawnBuyers(ap, title) ≜
spawn buyer1(ap, title) ; spawn buyer2(ap)

The seller is defined as a recursive function that registers

with ap to play role Seller. The register construct is given a

callback to be evaluated once a session is established: here

it will re-register to take part in another instance of the

session before awaiting a title message from Buyer1. To
await a message, the actor invokes suspend with a (first-

class) message handler titleHandler; this installs the given
message handler and reverts the actor to being idle until a

message arrives and an installed handler can be invoked.

Note: Our use of the term “handler” refers to a message
handler; since our proposal does not include algebraic effects,

our message handlers are not effect handlers.
seller(ap) ≜

register ap Seller ©«©«
rec install (_) .

register ap Seller (install ()) ;
suspend titleHandler

ª®¬ ()ª®¬titleHandler ≜
handler Buyer1 {

title(𝑥) ↦→
Buyer1 ! quote(lookupPrice(x)) ; suspend decisionHandler }

Once the titleHandler has been invoked with the title, it

sends the price to Buyer1, and awaits a decision from Buyer2:

decisionHandler ≜
handler Buyer2 {

address(addr) ↦→ Buyer2 ! date (shippingDate(addr)),
quit(_) ↦→ return () }

If Buyer2 agrees and sends their address, then Seller will
send the date; otherwise, the Seller instance will finish.
Although an actor can be involved in multiple sessions

simultaneously, it will only evaluate a term in the context of

one session at a time; after an actor suspends, it may invoke

a handler from a different session. In our case, this allows

the same seller actor to participate in both sessions.

4 Calculus
Syntax. Our core language is a standard fine-grain call-by-

value 𝜆-calculus extended with constructs for event-based

concurrency and session communication; we will describe

the typing rules for each shortly.

Types include base types 𝐶 , function types 𝐴
𝑆,𝑇−−→ 𝐵 (a

function from 𝐴 to 𝐵 with session precondition 𝑆 and post-

condition 𝑇), and access point types AP((p : 𝑆𝑖)𝑖).
Local session types 𝑆,𝑇 consist of input session types

p&{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }𝑖∈𝐼 (ranged over by 𝑆?) and output session

2

Event-Driven Multiparty Session Actors Conference’17, July 2017, Washington, DC, USA

types p ⊕{ℓ𝑖 (𝐴𝑖) . 𝑆𝑖 }, recursive session types 𝜇𝑋 .𝑆 and re-

cursion variables 𝑋 , and the completed session type end. We

omit the braces for unary branches and selections.

Typing. The value typing judgement Γ ⊢ 𝑉 : 𝐴 is

standard; following [7] the computation typing judgement

Γ | 𝑆 ⊲𝑀 :𝐴 ⊳𝑇 can be read “under type environment Γ, with
session type 𝑆 , term𝑀 has type 𝐴 and updates the session

type to 𝑇 ”. We concentrate on the session- and event-based

rules here; full typing rules can be found in Appendix B.

The newAP(p𝑖 :𝑆𝑖)𝑖 construct creates a new access point

for the specified roles and session types; following Scalas and

Yoshida [15], we require that the session types satisfy a base

safety property 𝜑 that precludes communication mismatches.

𝜑 is a safety property 𝜑 ((p𝑖 : 𝑇𝑖)𝑖∈𝐼)
Γ | 𝑆 ⊲ newAP(p𝑖 :𝑇𝑖)𝑖∈𝐼 :AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) ⊳ 𝑆

The register 𝑉 p𝑗 𝑀 term is well typed if 𝑉 is an access

point supporting p𝑗 of type 𝑇𝑗 , and the continuation is ty-

pable with session type 𝑇𝑗 . Note that evaluating register
does not affect the current evaluation context, so does not

modify the session type and has return type 1.

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) Γ | 𝑇𝑗 ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ register 𝑉 p𝑗 𝑀 : 1 ⊳ 𝑆

A message handler handler p {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖 } has type
Handler(p&{ℓ𝑖 (𝐴𝑖).𝑆𝑖 }𝑖) if, given an environment extended

with the parameter name 𝑥𝑖 and payload type 𝐴𝑖 , each con-

tinuation𝑀𝑖 has type 1 and final session type end, denoting
that the session type has completed.

(Γ, 𝑥 : 𝐴𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end)𝑖
Γ ⊢ handler p {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖 }𝑖 : Handler(p&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖)

An actor can only send a message if it is permitted by the

current session type; the rule requires that the payload type

matches the one described in the session type, and updates

the session type to the relevant continuation.

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : 𝐴𝑗

Γ | p ⊕{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 ⊲ p ! ℓ𝑗 (𝑉) : 1 ⊳ 𝑆 𝑗

Finally, we can type suspend 𝑉 if the current session type

matches the session type of the message handler 𝑉 . Note

that suspend has an arbitrary return type and postcondition,

since it will abort the current evaluation context.

Γ ⊢ 𝑉 : Handler(𝑆?)
Γ | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑇

Semantics. For space, we give an informal overview of

the semantics: we model an actor as a triple ⟨T , 𝜎, 𝜌⟩ where
T is either idle, or a term (𝑀)𝑠 [p] denoting evaluating 𝑀

in the context of role p in session 𝑠 , or a term𝑀 evaluating

outwith the context of a session (i.e. when an actor has just

been created). Environment 𝜎 maps session-role pairs 𝑠 [p]
to message handlers; and 𝜌 stores initialisation callbacks.

Access points establish a session if there are idle registered

actors for each role. Suspending aborts the current evaluation

context and adds the given handler to 𝜎 . We model asyn-

chronous communication through the use of a session-level

queue (which, due to message reordering rules, is isomorphic

to individual role-level queues). Sending appends a message

to the queue. If an actor is idle and has a stored event handler

𝑠 [p] ↦→ handler q {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀 𝑗 }𝑖∈𝐼 and the head of the

queue contains a message (q, p, ℓ𝑗 (𝑉𝑗)) (where 𝑗 ∈ 𝐼), then

the thread state will become (𝑀 𝑗 {𝑉𝑗/𝑥 𝑗 })𝑠 [p] .

Metatheory. We have proved a type preservation theorem

using the generalised approach introduced by Scalas and

Yoshida [15]. We conjecture that the event-driven nature of

the system will also permit a global progress result like that

of Viering et al. [16], although this is a work-in-progress.

5 Conclusion
We have shown how the combination of a flow-sensitive

effect system and event-driven programming allows static

typing of actors that participate inmultiple sessions.We have

also implemented a typechecker and small-step interpreter

for the calculus; we further plan to build on the code genera-

tion approach introduced by Hu and Yoshida [10] to allow

the programming model to be used in mainstream program-

ming languages such as Scala. Our next steps are to prove

a global progress theorem and to investigate how to switch

between sessions while maintaining progress guarantees.

Acknowledgments
Thanks to Matthew Alan Le Brun and Alceste Scalas for

discussion of the theory of asynchronous generalised multi-

party session types. Thanks also to the HOPE’23 reviewers

for their valuable comments; hopefully the abstract is more

accessible as a result. Fowler was funded by EPSRC grant

EP/T014628/1 (STARDUST).

References
[1] Joe Armstrong. 2003. Making reliable distributed systems in the presence

of software errors. Ph. D. Dissertation. Royal Institute of Technology,
Stockholm, Sweden.

[2] Robert Atkey. 2009. Parameterised notions of computation. J. Funct.
Program. 19, 3-4 (2009), 335–376.

[3] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session

Actors. In ICE (EPTCS, Vol. 223). 36–50.
[4] Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing

Metaphors: Actors as Channels and Channels as Actors. In ECOOP
(LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

11:1–11:28.

[5] Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type

theory for asynchronous session types. J. Funct. Program. 20, 1 (2010),
19–50.

[6] Colin S. Gordon. 2021. Polymorphic Iterable Sequential Effect Systems.

ACM Trans. Program. Lang. Syst. 43, 1 (2021), 4:1–4:79.
[7] Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021.

Multiparty Session Types for Safe Runtime Adaptation in an Actor

3

Conference’17, July 2017, Washington, DC, USA Simon Fowler and Raymond Hu

Language. In ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 10:1–10:30.

[8] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (Lecture
Notes in Computer Science, Vol. 715). Springer, 509–523.

[9] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

asynchronous session types. In POPL. ACM, 273–284.

[10] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification

Through Endpoint API Generation. In FASE (Lecture Notes in Computer
Science, Vol. 9633). Springer, 401–418.

[11] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling

environments in call-by-value programming languages. Inf. Comput.
185, 2 (2003), 182–210.

[12] John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect

Systems. In POPL. ACM Press, 47–57.

[13] Daniel Marino and Todd D. Millstein. 2009. A generic type-and-effect

system. In TLDI. ACM, 39–50.

[14] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session

Actors. Log. Methods Comput. Sci. 13, 1 (2017).
[15] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty

session types revisited. Proc. ACM Program. Lang. 3, POPL (2019),

30:1–30:29.

[16] Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. 2021.

A multiparty session typing discipline for fault-tolerant event-driven

distributed programming. Proc. ACM Program. Lang. 5, OOPSLA (2021),

1–30.

A Full two-buyer example
Local types.

B1 ≜ Seller ⊕ title(String) . Seller& quote(String) .
Buyer2 ⊕ share(Int) . end

B2 ≜ Buyer1& share(Int) . Seller ⊕{
address(String) . Seller& date(Date) . end
quit(Unit) . end }

S ≜ Buyer1& title(String) .Buyer1 ⊕ quote(Int) .
Buyer2&{

address(String) .Buyer2 ⊕ date(Date) . end
quit(Unit) . end }

Main function.
main ≜

let ap ⇐ newAP(Seller:S,Buyer1:B1,Buyer2:B2) in
spawn (seller(ap) ());
spawnBuyers(ap, “Types and Programming Languages”);
spawnBuyers(ap, “Compiling with Continuations”)

spawnBuyers(ap, title) ≜
spawn buyer1(ap, title); spawn buyer2(ap)

Seller.
seller(ap) ≜

rec install(_) .

register ap Seller
(
install ();
suspend titleHandler

)
titleHandler ≜

handler Buyer1 {
title(𝑥) ↦→

Buyer1 ! quote(lookupPrice(x));
suspend decisionHandler

}

decisionHandler ≜
handler Buyer2 {

address(addr) ↦→
Buyer2 ! date(shippingDate(addr))

quit(_) ↦→ return ()
}

Here, shippingDate is left abstract and calculates a shipping date
given an address.

Buyer 1.

buyer1(ap, title) ≜
register ap Buyer1(

Seller ! title(title);
suspend quoteHandler

)
quoteHandler ≜

handler Seller {
quote(amount) ↦→

Buyer2 ! share(amount/2)
}

Buyer 2.

buyer2(ap) ≜
register ap Buyer2 (suspend shareHandler)

shareHandler ≜
handler Buyer {

share(amount) ↦→
if (amount > 100) then
Seller ! quit(())

else
Seller ! address("18 Lilybank Gardens");
suspend dateHandler

}

dateHandler ≜
handler Seller {

date(date) ↦→ log(date)
}

Here, log is left abstract, and logs the received date.

4

Event-Driven Multiparty Session Actors Conference’17, July 2017, Washington, DC, USA

B Full typing rules
Value typing Γ ⊢ 𝑉 : 𝐴

TV-Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

TV-Lam

Γ, 𝑥 : 𝐴 | 𝑆 ⊲ 𝑀 :𝐵 ⊳ 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴
𝑆,𝑇−−→ 𝐵

TV-Rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴
𝑆,𝑇−−→ 𝐵 | 𝑆 ⊲ 𝑀 :𝐴

𝑆,𝑇−−→ 𝐵 ⊳ 𝑇

Γ ⊢ rec 𝑓 (𝑥) .𝑀 : 𝐴
𝑆,𝑇−−→ 𝐵

TV-Const

𝑐 has base type𝐶

Γ ⊢ 𝑐 : 𝐶

TV-Handler

(Γ, 𝑥 : 𝐴𝑖 | 𝑆𝑖 ⊲ 𝑀𝑖 : 1 ⊳ end)𝑖
Γ ⊢ handler p {ℓ𝑖 (𝑥𝑖) ↦→ 𝑀𝑖 }𝑖 : Handler(p&{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖)

Computation typing Γ | 𝑆 ⊲ 𝑀 :𝐴 ⊳ 𝑇

T-Return

Γ ⊢ 𝑉 : 𝐴

Γ | 𝑆 ⊲ return 𝑉 :𝐴 ⊳ 𝑆

T-Let

Γ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2

Γ, 𝑥 : 𝐴 | 𝑆2 ⊲ 𝑁 :𝐵 ⊳ 𝑆3

Γ | 𝑆1 ⊲ let 𝑥 ⇐ 𝑀 in 𝑁 :𝐵 ⊳ 𝑆3

T-App

Γ ⊢ 𝑉 : 𝐴
𝑆,𝑇−−→ 𝐵 Γ ⊢𝑊 : 𝐴

Γ | 𝑆 ⊲ 𝑉 𝑊 :𝐵 ⊳ 𝑇

T-If

Γ ⊢ 𝑉 : Bool Γ | 𝑆1 ⊲ 𝑀 :𝐴 ⊳ 𝑆2 Γ | 𝑆1 ⊲ 𝑁 :𝐴 ⊳ 𝑆2

Γ | 𝑆1 ⊲ if 𝑉 then𝑀 else 𝑁 :𝐴 ⊳ 𝑆2

T-Spawn

Γ | end ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ spawn 𝑀 : 1 ⊳ 𝑆

T-Send

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : 𝐴𝑗

Γ | p ⊕{ℓ𝑖 (𝐴𝑖) .𝑆𝑖 }𝑖∈𝐼 ⊲ p ! ℓ𝑗 (𝑉) : 1 ⊳ 𝑆 𝑗

T-Suspend

Γ ⊢ 𝑉 : Handler(𝑆?)
Γ | 𝑆? ⊲ suspend 𝑉 :𝐴 ⊳ 𝑇

T-NewAP

𝜑 is a safety property 𝜑 ((p𝑖 : 𝑇𝑖)𝑖∈𝐼)
Γ | 𝑆 ⊲ newAP(p𝑖 :𝑇𝑖)𝑖∈𝐼 :AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) ⊳ 𝑆

T-Register

𝑗 ∈ 𝐼 Γ ⊢ 𝑉 : AP((p𝑖 : 𝑇𝑖)𝑖∈𝐼) Γ | 𝑇𝑗 ⊲ 𝑀 : 1 ⊳ end

Γ | 𝑆 ⊲ register 𝑉 p𝑗 𝑀 : 1 ⊳ 𝑆

5

	Abstract
	1 Introduction
	2 Preliminaries
	3 Programming model by example
	4 Calculus
	5 Conclusion
	Acknowledgments
	References
	A Full two-buyer example
	B Full typing rules

