Actors and Channels in Core λ -calculi

Simon Fowler Joint work with Sam Lindley and Philip Wadler

ABCD Meeting, January 2016

EPSRC Centre for Doctoral Training in Pervasive Parallelism

Actors and Channels

elixir

Hopac

Actors and Channels

Actors and Channels

informatives

 Concise formalisations of transformations between actors and channels

• Explore design issues with (session) type-parameterised actor calculi

• Influence design of session-typed actors for Links

λ_{ch} : A channel-based λ -calculus

λ_{ch} : Channel Typing Rules

λ_{ch} : Communication Semantics

Actor-based Functional Languages

- Based on the actor model (Agha, 1985), **not the same**
 - Actors represented as **lightweight processes**, scheduled by RTS
 - No explicit notion of behaviour / become
 - Computation modelled directly
- Primitives
 - spawn
 - send
 - receive
 - (wait)

```
-module(stack).
-compile(export_all).
loop(State) ->
  receive
    {pop, Pid} ->
    [Hd|T1] = State,
    Pid ! Hd,
    loop(T1);
    {push, Item} ->
    loop([Item] ++ State)
    end.
spawn stack() ->
```

```
spawn(stack, loop, [[]]).
```

The Type Pollution Problem

λ_{act} : A core actor-based λ calculus

 $\begin{array}{ll} \text{Types} & A, B, C ::= \mathbf{0} \mid \mathbf{1} \mid A \times B \mid A + B \mid A \rightarrow^{C} B \mid \text{List}(A) \mid \text{Pid}(A, B) \\ \text{Terms} & L, M, N ::= x \mid \lambda x.M \mid M N \\ & \mid & (M, N) \mid \text{let} \ (x, y) = M \text{ in } N \\ & \mid & \text{rec} \ f(x : A) : B . M \\ & \mid & \text{inl} \ M \mid \text{inr} \ M \mid \text{case} \ M \ \{\text{inl} \ x \mapsto N; \text{inr} \ x \mapsto N\} \\ & \mid & [1]_{A} \mid [M] \mid M + N \mid \text{case} \ L \left\{ [1]_{A} \mapsto N; [x] + y \mapsto N' \right\} \\ & \mid & \text{spawn} \ M \mid \text{send} \ M \ N \mid \text{receive} \mid \text{wait} \ M \end{array}$

λ_{act} : Selected Typing Rules

$$\Gamma; C \vdash M : A$$

(An alternative formulation of wait)

spawnWait construct: combination of spawn and wait

$$\frac{\Gamma; A \vdash M : \mathsf{Pid}(A) \to^{A} B}{\Gamma; C \vdash \mathsf{spawnWait} M : B}$$

λ_{act} : Configurations

Actors are a three-tuple:

Configurations $\mathcal{C}, \mathcal{D} ::= \mathcal{C} \parallel \mathcal{C}' \mid (\nu x)\mathcal{C} \mid \langle x; M; \overrightarrow{V} \rangle$

λ_{act} : Communication Semantics

Translations: Desired Properties

- Translation function [-]: Actors in terms of channels
- Type Preservation:
 - Terms: If Γ ; $C \vdash_{\lambda_{\operatorname{act}}} M : A$, then $\llbracket \Gamma \rrbracket$, $c : \operatorname{Chan}(\llbracket C \rrbracket) \vdash_{\lambda_{\operatorname{ch}}} \llbracket M \rrbracket c : \llbracket A \rrbracket$
 - Configurations If $\Gamma \vdash_{\lambda_{act}} C$, then $\llbracket \Gamma \rrbracket \vdash_{\lambda_{ch}} \llbracket C \rrbracket$.
- Semantics Preservation
 - Terms

If $M \longrightarrow_{\lambda_{\operatorname{act}}} M'$, then let $c = \operatorname{\mathsf{newCh}}_{\llbracket C \rrbracket}$ in $\llbracket M \rrbracket c \longrightarrow^*_{\lambda_{\operatorname{ch}}} \llbracket M' \rrbracket c$ for some type C.

- Configurations If $\mathcal{C} \longrightarrow_{\lambda_{\mathrm{act}}} \mathcal{C}'$, then $\llbracket \mathcal{C} \rrbracket \longrightarrow^*_{\lambda_{\mathrm{ch}}} \llbracket \mathcal{C}' \rrbracket$

Actors implemented using channels

Idea (based on Cooper et al., 2006): create a channel and use it as a mailbox, "threaded through" the translation

λ_{act} in λ_{ch} : Translation on Terms

Top-level term: create mailbox channel, pass as
parameter to translation
$$\begin{bmatrix} M \end{bmatrix} = \text{let } chMb = \text{newCh}_A \text{ in } \llbracket M \rrbracket chMb$$
Extra parameter c' to pass mailbox
channel to the function
$$\begin{bmatrix} \lambda x.M \rrbracket c = \lambda x.\lambda c'.\llbracket M \rrbracket c'$$

$$\llbracket M N \rrbracket c = (\llbracket M \rrbracket c) (\llbracket N \rrbracket c) c$$

$$\downarrow$$
c applied to translated function M

λ_{act} in λ_{ch} : Translation on Terms

Translations: Desired Properties

- Translation function [-]: Channels in terms of actors
- Type Preservation:
 - Terms:

If $\Gamma \vdash_{\lambda_{\mathrm{ch}}} M : A$, then $(\!(\Gamma)\!); C \vdash_{\lambda_{\mathrm{act}}} (\!(M)\!): (\!(A)\!)$ for some type C.

- Configurations If $\Gamma \vdash_{\lambda_{ch}} C$, then $(\!(\Gamma)\!) \vdash_{\lambda_{act}} (\!(C)\!)$.
- Semantics Preservation
 - Terms

If $M \longrightarrow_{\lambda_{\mathrm{ch}}} M'$, then $(M) \longrightarrow_{\lambda_{\mathrm{act}}}^* (M)$.

- Configurations If $\mathcal{C} \longrightarrow_{\lambda_{ch}} \mathcal{C}'$, then $(\mathcal{C}) \longrightarrow^*_{\lambda_{act}} (\mathcal{C}')$.

Channels implemented using Actors

 Idea: represent channels as processes; emulate give and take using internal state

Channels: pair of take and give
functions
$$(Chan(A)) = ((1 \rightarrow (A) (A)) \times ((A) \rightarrow (A) 1)))$$

$$(1) = 1$$

$$(A \times B) = (A) \times (A)$$

$$(A + B) = (A) + (B)$$

$$(A \rightarrow B) = (A) \rightarrow (A) + (B)$$

$$(List A) = List (A)$$
C can be **any type**, as
translated functions don't
have the ability to receive
from mailboxes

Translations on Terms (the easy ones)

$$(\operatorname{fork} M) = \operatorname{let} _ = \operatorname{spawn} (M) \operatorname{in} ()$$

$$(\operatorname{give} M N) = \operatorname{let} (_, \operatorname{giveFn}) = (N) \operatorname{in}$$

$$\operatorname{giveFn} (M)$$

$$(\operatorname{take} M) = \operatorname{let} (\operatorname{takeFn}, _) = (M) \operatorname{in}$$

$$\operatorname{takeFn} ()$$

Translation of **newCh**...

```
(|\mathsf{newCh}_A|) =
                 let drainBufferFn =
                     rec drainBuffer(runningState: List(C) * List(C -><sup>c</sup> 1)): (List(C), * List(C -><sup>c</sup> 1)) .
                       let (vals, readers) = runningState in
                       case vals of
                         [] |-> (vals, readers)
                         [v] ++ vs |->
                           case readers of
                              [] |-> (vals, readers)
                              [rFn] ++ rs |-> rFn v; drainBuffer (vs, rs) in
                 let stepFn = rec step(state: (List(C) * List(C \rightarrow C 1)): 1.
                   let (vals, readers) = drainBufferFn state in
                   let msg = receive in
                   case msg of
                       inl v |-> step (vals ++ [v], readers)
                       inr sendFn |-> step (vals, readers ++ [sendFn]) in
                 let chanPid = spawn(stepFn([], [])) in
                 let giveFn = \lambda x. send (inl x) chanPid in
                 let takeFn = \lambda x.
                   let newPid =
                     spawn (\lambdanewPid -> send chanPid (inr (\lambdaval -> send val newPid)); receive) in
                   wait newPid in
                 (takeFn, giveFn)
```


Seriously though:

1. Define a function to ensure that either the buffer or list of blocked readers is empty at each step.

Seriously though:

2. Define a loop function stepFn which calls drainBufferFn, then receives a message and modifies the state

Seriously though:

3. Spawn a new actor with empty state; define functions for give and take

Spawn a new actor, executing stepFn

let chanPid = spawn(stepFn([], [])) in give implemented by sending inl value to the let giveFn = λx . send (inl x) chanPid in channel process let takeEn = λx . let newPid = spawn (λ newPid -> send (inr (λ val -> send val newPid) chanPid); receive) in take: spawn new actor which sends wait newPid in callback to channel process, then receives (takeFn, giveFn) result wait for result from spawned actor.

Still to do / the future

- Goal: A minimal behaviourally typed actor calculus
 - Conjecture: there exists a minimal session-typed actor calculus
 - ...which we can do analogous translations to / from asynchronous GV
 - ...not needing recursion for the channel -> actor translation
 - ...with simpler session types (no ! / ? required?)
 - Influence a design for session-typed actors in Links
- A better solution to type pollution

 Subtyping?
- Lots of proving to do!

Extra slides

Actor Configuration Typing

Figure 1: Configuration typing

Session Actor Calculus Sketch

$$\frac{\sum_{\substack{\Gamma_{1} \ \overrightarrow{A_{1}}} \vdash_{\overrightarrow{A_{2}}} M : B \quad \Gamma_{2} \ \overrightarrow{A_{2}} \vdash_{\overrightarrow{A_{3}}} N : \operatorname{Pid}(B\overrightarrow{B}, C)}{\Gamma_{1}, \Gamma_{2} \ \overrightarrow{A_{1}} \vdash_{\overrightarrow{A_{3}}} \operatorname{send} M N : \operatorname{Pid}(B, C)} \qquad \frac{\operatorname{Recv}}{\Gamma_{A\overrightarrow{A}} \vdash_{\overrightarrow{A}} \operatorname{receive} : A} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{B}} \vdash_{\epsilon}} M : C}{\prod_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\overrightarrow{B}, C)} \qquad \frac{\operatorname{Wairr}}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{B}} \vdash_{\epsilon}} M : C}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\overrightarrow{B}, C)} \qquad \frac{\operatorname{Wairr}}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\overrightarrow{B}, C)}}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} M : \operatorname{Pid}(\epsilon, B)}}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, B)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\substack{\Gamma \ \overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A}} \vdash_{\overrightarrow{A}} H = \operatorname{Pid}(\epsilon, E)} } \\
\frac{\sum_{\overrightarrow{A}} \vdash_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}{\Gamma_{\overrightarrow{A} H = \operatorname{Pid}(\epsilon, E)}$$

Figure 1: Possible typing rules for session actor calculus communication primitives

- A word of caution regarding terminology!
- Actors: a minimal concurrency model
 - Unforgeable PID, message queue (mailbox)
 - Behaviour

 Send a finite set of messages to another actor

- A word of caution regarding terminology!
- Actors: a minimal concurrency model
 - Unforgeable PID, message queue (mailbox)
 - Behaviour

2. Spawn a finite set of new actors

- A word of caution regarding terminology!
- Actors: a minimal concurrency model
 - Unforgeable PID, message queue (mailbox)
 - Behaviour

 Change behaviour: react differently when processing next message

• Agha (1985) introduces minimal actor languages SAL and Act, which stay very true to the core actor model:

