
Actors and Channels in

Core λ-calculi

Simon Fowler
Joint work with Sam Lindley and Philip Wadler

ABCD Meeting, January 2016

Actors and Channels

Hopac

Actors and Channels

Hopac

Actor

Process

Process Process

Actors and Channels

Hopac

?

Why?

• Concise formalisations of transformations between actors

and channels

• Explore design issues with (session) type-parameterised

actor calculi

• Influence design of session-typed actors for Links

𝜆ch: A channel-based 𝜆-calculus

𝜆ch: Channel Typing Rules

𝜆𝑐ℎ: Communication Semantics

Actor-based Functional Languages

• Based on the actor model (Agha, 1985), not the same

– Actors represented as lightweight processes, scheduled by RTS

– No explicit notion of behaviour / become

– Computation modelled directly

• Primitives

– spawn

– send

– receive

– (wait)

-module(stack).
-compile(export_all).
loop(State) ->

receive
{pop, Pid} ->

[Hd|Tl] = State,
Pid ! Hd,
loop(Tl);

{push, Item} ->
loop([Item] ++ State)

end.

spawn_stack() ->

spawn(stack, loop, [[]]).

Client

The Type Pollution Problem

ChatServer

ChatRoom

joinRequest

userJoinRequest

joinOk /
joinFailed

joinSuccessful /
roomFull

ChatServer has type

Pid(joinRequest + joinSuccessful +
roomFull)

…wherever we use it!

𝜆act: A core actor-based 𝜆-

calculus

𝜆act: Selected Typing Rules

(An alternative formulation of wait)

spawnWait construct: combination of spawn and wait

𝜆act: Configurations

Actors are a three-tuple:

Process ID Term being

evaluated
Mailbox

𝜆act: Communication Semantics

Translations: Desired Properties

• Translation function : Actors in terms of channels

• Type Preservation:

– Terms:

– Configurations

• Semantics Preservation

– Terms

– Configurations

Actors implemented using channels

Idea (based on Cooper et al., 2006): create a channel and

use it as a mailbox, “threaded through” the translation

Mailbox

Channel
Result

Channel

Pass mailbox

channel as an

argument to

the function

𝜆𝑎𝑐𝑡 in 𝜆𝑐ℎ: Translation on Terms

Top-level term: create mailbox channel, pass as

parameter to translation

Extra parameter c’ to pass mailbox

channel to the function

c applied to translated function M

𝜆act in 𝜆ch: Translation on Terms

Create a mailbox and result channel;

fork a new process; evaluate result;

and give to result channel

Translate PID; give to mailbox channel

Translate PID; take from result

channel

Translations: Desired Properties

• Translation function : Channels in terms of actors

• Type Preservation:

– Terms:

– Configurations

• Semantics Preservation

– Terms

– Configurations

Channels implemented using

Actors
• Idea: represent channels as processes; emulate give

and take using internal state

Channels: pair of take and give
functions

C can be any type, as

translated functions don’t

have the ability to receive

from mailboxes

Translations on Terms (the easy

ones)

Translation of newCh…

let drainBufferFn =
rec drainBuffer(runningState: List(C) * List(C ->C 1)): (List(C), * List(C ->C 1)) .
let (vals, readers) = runningState in
case vals of
[] |-> (vals, readers)
[v] ++ vs |->
case readers of
[] |-> (vals, readers)
[rFn] ++ rs |-> rFn v; drainBuffer (vs, rs) in

let stepFn = rec step(state: (List(C) * List(C ->C 1)): 1.
let (vals, readers) = drainBufferFn state in
let msg = receive in
case msg of

inl v |-> step (vals ++ [v], readers)
inr sendFn |-> step (vals, readers ++ [sendFn]) in

let chanPid = spawn(stepFn([], [])) in
let giveFn = λx. send (inl x) chanPid in
let takeFn = λx.
let newPid =
spawn (λnewPid -> send chanPid (inr (λval -> send val newPid)); receive) in

wait newPid in
(takeFn, giveFn)

Seriously though:

1. Define a function to ensure that either the buffer or list

of blocked readers is empty at each step.

let drainBufferFn =
rec drainBuffer(runningState: List(C) * List(C ->C 1)):

(List(C) * List(C ->C 1)) .
let (vals, readers) = runningState in
case vals of

[] |-> (vals, readers)
[v] ++ vs |->
case readers of

[] |-> (vals, readers)
[rFn] ++ rs |-> rFn v; drainBuffer (vs, rs) in …

State: list of buffered values, and list

of send callbacks

If buffer is empty, stop

If buffer is nonempty, but

list of readers is, stop

Otherwise, send the top value and recurse

Seriously though:

2. Define a loop function stepFn which calls

drainBufferFn, then receives a message and modifies

the state

let stepFn = rec step(state: (List(C) * List(C ->C 1)): 1.
let (vals, readers) = drainBufferFn state in
let msg = receive in
case msg of

inl v |-> step (vals ++ [v], readers)
inr sendFn |-> step (vals, readers ++ [sendFn]) in ...

Message can either be inl value or

inr callbackIf a value, add to buffer
If a callback, add to callback

list

let chanPid = spawn(stepFn([], [])) in
let giveFn = λx. send (inl x) chanPid in
let takeFn = λx.
let newPid =
spawn (λnewPid ->
send (inr (λval -> send val newPid) chanPid);
receive) in

wait newPid in
(takeFn, giveFn)

Seriously though:

3. Spawn a new actor with empty state; define functions

for give and take
Spawn a new actor, executing stepFn

give implemented by

sending inl value to the

channel process

take: spawn new actor which sends

callback to channel process, then receives

result.

wait for result from spawned actor.

Still to do / the future

• Goal: A minimal behaviourally typed actor calculus
– Conjecture: there exists a minimal session-typed actor calculus

• …which we can do analogous translations to / from asynchronous
GV

• …not needing recursion for the channel -> actor translation

• …with simpler session types (no ! / ? required?)

– Influence a design for session-typed actors in Links

• A better solution to type pollution
– Subtyping?

• Lots of proving to do!

Extra slides

Actor Configuration Typing

Session Actor Calculus Sketch

Actor-based Functional Languages vs. the

Actor Model

• A word of caution regarding terminology!

• Actors: a minimal concurrency model

– Unforgeable PID, message queue (mailbox)

– Behaviour

A

B

C

hello

Привет

1. Send a finite set of messages

to another actor

Actor-based Functional Languages vs. the

Actor Model

• A word of caution regarding terminology!

• Actors: a minimal concurrency model

– Unforgeable PID, message queue (mailbox)

– Behaviour

A

D

2. Spawn a finite set of new

actors

E

Actor-based Functional Languages vs. the

Actor Model

• A word of caution regarding terminology!

• Actors: a minimal concurrency model

– Unforgeable PID, message queue (mailbox)

– Behaviour

A

3. Change behaviour: react

differently when processing

next message
A

Actor-based Functional Languages vs. the

Actor Model

• Agha (1985) introduces minimal actor languages SAL and

Act, which stay very true to the core actor model:

Acquaintance List

Communication List

Send Message

Spawn new actor

Change Behaviour

