Actors and Channels in
Core A-calculi

Simon Fowler
Joint work with Sam Lindley and Philip Wadler

ABCD Meetlng’ January 201 6 EPSRC Centre for Doctoral Training in

Pervasive Parallelism

3 ’1 THE UNIVERSITY of EDINBURGH

i pEid B s

. informatics
by

ey
NeY

Actors and Channels

| v

ERLANG

&

elixir

A akka

Actors and Channels

Process

Process Process

Actors and Channels

| v

ERLANG

!]\

elixir

A akka

Why?

 Concise formalisations of transformations between actors
and channels

» Explore design issues with (session) type-parameterised
actor calculi

* Influence design of session-typed actors for Links

Ach: A channel-based A-calculus

Types A, B:=0|1|AxB|A+B|A— B|List(A) | Chan(4)
Terms L,M,N:=z|Xz.M |MN
| (M,N)|let (z,y) =M in N
| recf(z:A):B.M
| inlM |inr M | case M {inlz — N;inrz — N}
Ly IMI M 4 N [case L{[], Nifa] 4y > V')
| ()| M;N | fork M | give M N | take M | newCh 4

Acn. Channel Typing Rules

GIVE TAKE

I'-M:A T'FN:Chan(A) ' M : Chan(4)
['Fgive MN :1 I'Ftake M : A
FOoRK
NEWCH THM:1

[' = newCh 4 : Chan(A) 'k fork M : 1

Acn s COMmunNication Semantics

Configurations C,D:=C ||C'| (vz)C | Af|aﬂi?)

FORK

Glfork M| — G[()] || M

Actor-based Functional Languages

« Based on the actor model (Agha, 1985), not the same

— Actors represented as lightweight processes, scheduled by RTS
— No explicit notion of behaviour / become

— Computation modelled directly

Primitives
— spawn

— send

— receive
— (wait)

-module(stack).
-compile(export_all).
loop(State) ->
receive
{pOp, Pid} ->
[Hd|T1] = State,
Pid ! Hd,
loop(T1l);
{push, Item} ->
loop([Item] ++ State)
end.

spawn_stack() ->
spawn(stack, loop, [[]]).

The Type Pollution Problem

Client

joinOk /
joinFailed

ChatServer

joinSuccessful /
roomFull

joinRequest ‘

ChatServer has type

Pid(joinRequest + joinSuccessful +
roomFull)

...wherever we use it!

userJoinRequest ‘

ChatRoom

Aact. A core actor-based A-

calculus

Types A,B,C:=0|1|AxB|A+B|A—=% B|List(4) | Pid(4, B)
Terms L, M,N:=z|Xx.M|MN

(M,N)|let(z,y) =M in N

recf(z:A):B.M

inl M | inr M | case M {inlz — Njinrz — N}

[| IM1] M 4 N | case L{[], = Nifa] 4+ y > N'}
spawn M | send M N | receive | wait M

Aacr. Selected Typing Rules

["CHM:A

WAIT SPAWN

I'; C+ M :Pid(4, B) I';A- M :Pid(A,B) -+ B
I''CHwaitM : B I'; C = spawn M : Pid(4, B)

(An alternative formulation of wait)

spawnWait construct: combination of spawn and wait

SPAWN WAIT
;AR M :Pid(A) -* B

I') C'FspawnWait M : B

Aycr. Configurations

Actors are a three-tuple:

—>
Process ID Term being Mailbox
evaluated

Configurations C,D::=C || C" | (vz)C | (z; M,7>

A, COmmunication Semantics

SPAWN
y is a fresh name

(w; Elspawn MJ; V) — (vy)((z; Ely); V) || {y: M y;¢))

SEND

(x; Elsend V' y]; V) || (y; B'[M]; W) —> (z; E[Q; V) || (y; B'[M]; W V")

RECEIVE

(z; Ereceivel; W?) — (z; E[W],v)

WAIT

(z; Elwait yl; W) || (53 Vs W) — (a3 B[V]; W)

Translations: Desired Properties

* Translation function [-]: Actors in terms of channels

» Type Preservation:
— Terms:
If0;C .., M: A, then [I'], c: Chan([C]) Fx.,, [M]c: [A]

— Configurations
IfI° F)\act C, then [[F]] F,\Ch [[C]] .

« Semantics Preservation

— Terms
If M —,,,, M’ then let ¢ = newChp¢gy in [M] ¢ —3 [M’] ¢ for some type
C.

— Configurations
If C —a,. C', then [C] —3 [C']

Actors implemented using channels

Idea (based on Cooper et al,, 2006): create a channel and
use it as a mailbox, “threaded through” the translation

Mailbox Result
Channel Channel
' '
[Pid(A, B)] = (Chan([A]) x Chan([B]))
[1] = 1

[A x B] — [A] x [B] Pass mailbox
[A+B] = [A] + [B] rument 1o
[[List A]] = List [[A]] the function

[A —C¢ B]

[A] — Chan([C]) — [B]

Agee IN Aqp: Translation on Terms

Top-level term: create mailbox channel, pass as
parameter to translation

[M]

l
= let chMb = newCh 4 in [M] chMb

[Az.M] c
[M NJ c

Extra parameter c’ to pass mailbox
channel to the function

Az \c'.[M] ¢

e

([M] C)T([[N]] c) C

c applied to translated function M

Aact IN Aeny: Translation on Terms

Create a mailbox and result channel;
fork a new process; evaluate result;
and give to result channel

[spawn M| ¢ = |let chMb = newCh 4 in
let chRes = newChpgin

fork(let res = [M] chj‘/f;_w i rlr:"cmPTE)n ok D;n\. L
(chMb, chRes) ranslate PID; give to mailbox channe

[send M NJ¢ = let (chMb,)= [N] cin give ([M] ¢) chMb
Translate PID; take from result
[receive] ¢ = takec channel

. —
[wait M ¢ = |let (_,chRes) = [M] c in take chRes

Translations: Desired Properties

* Translation function [-]: Channels in terms of actors

» Type Preservation:

— Terms:
IfTFx, M: A, then (T');CFx._, (M) :(A) for some type C.

— Configurations
IfIr F)\Ch C, then qu) FAact GCD

« Semantics Preservation

— Terms
If M —,_, M’, then (M) Him (M).

— Configurations
If C —s,, C', then (C) —%_ (C').

Channels implemented using
Actors

 |dea: represent channels as processes; emulate give
and take using internal state

Channels: pair of take and give

functions
}
(Chan(4)) = (1 =10 (A4]) x ((4) =14 1))
(1) = 1

(AxB) = (A)x(4)
(A+B) = (A)4+B) ~ Combeanyypes

- C ranslated functions don
(]A__>B) B GAD% (]BD have the ability to receive
(ListA) = List(A) from mailboxes

Translations on Terms (the easy
ones)

(fork M) = let =spawn (M) in ()

: et (_,qgiveFn) = (N in
(gveM N) =~ dgMD

(take M) = let (takeFn,) = (M) in

takeFn ()

(newChp|) = ..

Translation of newCh...

(]neWChAl) =

let drainBufferFn =
rec drainBuffer(runningState: List(C) * List(C ->¢ 1)): (List(C), * List(C ->¢ 1)) .
let (vals, readers) = runningState in
case vals of
[1 |-> (vals, readers)
[V] ++ vs |->
case readers of
[1 |-> (vals, readers)
[rFn] ++ rs |-> rFn v; drainBuffer (vs, rs) in

let stepFn = rec step(state: (List(C) * List(C ->¢1)): 1.
let (vals, readers) = drainBufferFn state in
let msg = receive in
case msg of
inl v |-> step (vals ++ [v], readers)
inr sendFn |-> step (vals, readers ++ [sendFn]) in

let chanPid = spawn(stepFn([], [])) in
let giveFn = Ax. send (inl x) chanPid in
let takeFn = Ax.
let newPid =
spawn (AnewPid -> send chanPid (inr (Aval -> send val newPid)); receive) in
wait newPid in
(takeFn, giveFn)

Seriously thougn:

1. Define a function to ensure that either the buffer or list
of blocked readers is empty at each step.

State: list of buffered values, and list
of send callbacks

let drainBufferFn = |
rec drainBuffer(runningState: List(C) * List(C ->¢ 1)):
(List(C) * List(C ->¢ 1)) .
let (vals, readers) = runningState in

case vals of .— lf buffer is empty, stop
[1 |-> (vals, readers)

Otherwise, send the top value and recurse

[V] ++ vs |[-> |
case readers of L If buff onempty, but
[1 |-> (vals, readers) ist of readers is, stop

[PFn] ++ rs |-> rFn v; drainBuffer (vs, rs) in..

Seriously thougn:

2. Define a loop function stepFn which calls
drainBufferFn, then receives a message and modifies
the state

let stepFn = rec step(state: (List(C) * List(C ->¢1)): 1.

— . . /IA,.,.-,..A PG 1] S S | .._1
let (vals, readers) = drainBy Ifa callback, add to callback He or

let msg = receive in ‘//////;7 list
case msg of

inl v |-> step (vals ++ £§], readers)
inr sendFn |[-> step (vals, readers ++ [sendFn]) in ...

Seriously thougn:

3. Spawn a new actor with empty state; define functions
for give and take

/ Spawn a new actor, executing stepFn

let chanPid = spawn (step n([l, [1)) in give implemented by
let giveFn = Ax. send (inl x) chanPid in +—— sending inl value to the
let takeFn = Ax. channel process

let newPid =
spawn (AnewPid ->
send (inr (Aval -> send val newPid) chanPid);
receive) in
wait newPid in take: spawn new actor which sends

(takeFn, giveFn) T callback to channel prcl)cess, then receives
result.

wait for result from spawned actor.

Still to do / the future

* Goal: A minimal behaviourally typed actor calculus

— Conjecture: there exists a minimal session-typed actor calculus

 ...which we can do analogous translations to / from asynchronous
GV

« ...not needing recursion for the channel -> actor translation
* ...with simpler session types (no ! / ? required?)
— Influence a design for session-typed actors in Links

A better solution to type pollution
— Subtyping?

 Lots of proving to do!

Extra slides

Actor Configuration Typing

Mailbox typing
MaiLBOX
Empry I:BFW:4 T:B-V:4
I‘I—e:j F;BI-W?:X
Configuration typing
Par Pip
r=c e Iyz:Pid(A,B)EC
r=c|c 'k (vz)C
ACTOR
IiDFa:Pid(A,B) T;AFM:B T;AFV:4
Uk (z; M; V)

Figure 1: Configuration typing

Session Actor Calculus Sketch

SEND
Ty b M:B Ts s N:Pd(BE, C) Recv

T /T{l_Ig’ send M N : Pid(B, C) [' b= receive: A

SPAWN WArr
'k M:C FXI—Z;M:Pid(e,B)

T 4+ M:Pid(B,C) P ok wait M 2 B

Figure 1: Possible typing rules for session actor calculus communication prim-
itives

Actor-based Functional Languages vs. the
Actor Model

« A word of caution regarding terminology!

 Actors: a minimal concurrency model
— Unforgeable PID, message queue (mailbox)

— Behaviour
hello/g 1. Send a finite set of messages
to another actor
MNpw

B@

Actor-based Functional Languages vs. the
Actor Model

« A word of caution regarding terminology!

 Actors: a minimal concurrency model
— Unforgeable PID, message queue (mailbox)
— Behaviour

2. Spawn a finite set of new
actors

Actor-based Functional Languages vs. the
Actor Model

« A word of caution regarding terminology!

 Actors: a minimal concurrency model
— Unforgeable PID, message queue (mailbox)
— Behaviour

3. Change behaviour: react
- = differently when processing
next message

Actor-based Functional Languages vs. the

Actor Model

« Agha (1985) introduces minimal actor languages SAL and
Act, which stay very true to the core actor model:

def stack-node|(content, link) |

[case operation of

push : (new-content)
end case]

if operation = pop N content # NIL then

become link |«

/

send content to customer |«

fi
if operation = push then

let P = new stack-node (content,link)

{ become new stack-node (new-content , P)f

fi end def

Acquaintance List

) Communication List
pop : (customer) /

Change Behaviour
Send Message

Spawn new actor

