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Abstract. Replication is an alternative construct to recursion for de-
scribing infinite behaviours in the π-calculus. In this paper we explore
the implications of including type-level replication in Multiparty Session
Types (MPST), a behavioural type theory for message-passing programs.
We introduce MPST!, a session-typed multiparty process calculus with
replication and first-class roles. We show that replication is not an equiva-
lent alternative to recursion in MPST, and that using both replication and
recursion in one type system in fact allows us to express both context-free
protocols and protocols that support mutual exclusion and races. We
demonstrate the expressiveness of MPST! on examples including binary
tree serialisation, dining philosophers, and a model of an auction, and
explore the implications of replication on the decidability of typechecking.
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1 Introduction

Our world is powered by a multitude of computer systems working together by
communicating, i.e., sending and receiving messages according to some protocol.
It is therefore vital to verify the correctness of both communication protocols
and their implementations, to ensure our programs behave according to their
specifications, and to guarantee that specifications are indeed safe.

Session types [9,14,15,31] provide a lightweight method by which a developer
can ensure safety of, and conformance to, communication protocols. Session types
can be thought of as types for protocols which can be attached to a communication
channel to specify how it should be used, and can be used to detect issues such
as communication mismatches and deadlocks early in the development process.
Multiparty session types (MPST) [7,16,25] generalise binary session types to allow
reasoning about communication between two or more participants, and have
been shown to be expressive enough to capture a range of practical protocols
such as the OAuth 2 authentication protocol [27].

Example 1 (Client-Server-Worker). Using generalised MPST [27], we describe
the types for three participants in a simple work-offloading system.

Sc := s⊕req(int) . w&ans(str)

Ss := c&req(int) . w⊕fw(int) Sw := s&fw(int) . c⊕ans(str)
(1)
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The above describes types for a client, server, and worker respectively. The
client, having type Sc, sends (⊕) a request to the server with payload type int,
then (.) waits to receive (&) an answer from the worker with payload type str.
The server, upon receiving the request from the client, forwards it to the worker.
Lastly the worker, after receiving the forwarded request from the server, sends
the answer to the client. A MPST system verifies that any written program code
conforms to this specification (known as session fidelity), and that this protocol
is safe—i.e., that processes send and receive messages of compatible types.

Despite the potential of MPST for safe distributed programming, there remain
limitations to the theory that impede their adoption for practical systems. For
instance, generalising Example 1 to multiple workers in the style of a load-
balancer is non-trivial and has inspired a series of work on the generalisation
of direction of choice [28]. Further, generalising the number of clients is also
non-trivial—typically, MPST theories assume a global view of all participants
in a session. Lastly, the objects of actions in MPST (e.g., the recipient of a sent
message) are hard coded because role names are constants.

Example 2 (Load Balancer for n clients). We introduce replication and first-
class roles, combined with undirected choice in sends, to generalise Example 1 to
support two workers and any number of clients.

Ss := !α&req(int) . ⊕
{
w1fw(int,α) . α⊕wrk(w1)
w2fw(int,α) . α⊕wrk(w2)

Swi := !s&fw(int,γ) . γ⊕ans(str) for i ∈ {1, 2}
(2)

The first difference is the use of the bang (!) operator to denote a replicated
action, i.e., one which may occur any number of times. This makes the server
agnostic to the number of requests. Second, a server now waits for requests—not
from a specific client—but from any participant, binding the name of the sender
to role variable α. This makes the server agnostic to the source of the requests.
The server then makes a choice to forward the request to one of two workers,
notably whilst passing the name of the client as one of the payloads. Finally,
the server informs the client of the choice it made by sending the name of the
worker in that branch. The worker type is also updated to be replicated, as it is
dependent on the number of requests forwarded by the server. Notably, it receives
the name of the client in the forward message, binding it to γ, and uses it to
send the final answer. A client may now be defined as:

Scj := s⊕req(int) . s&wrk(ω) . ω&ans(str) for any j ∈ N (3)

As a result of the replicated types and first-class role names on the server-side,
we may instantiate any number of clients and have them make any number of
requests—all without changing the server-side protocol. Conversely, updating the
number of workers has no impact on the types of clients. Thus, this extension
promotes modular design of components in multiparty systems.

In fact, as we will see in Section 3, the addition of replication—especially
when it is used in tandem with recursion—has several surprising consequences,
in particular allowing us to describe context-free protocols as well as protocols
that deal with races and mutual exclusion.



c ::= s[q]
∣∣ x (session w/ role, channel variable)

ρ ::= q
∣∣ α (role name value, role name variable )

a ::= c
∣∣ α V ::= c

∣∣ ρ (names, values)

b ::= x
∣∣ α d ::= s[q]

∣∣ q (binders, concrete values)

P,Q ::= P |Q
∣∣ (νs)P

∣∣ 0 (composition, restriction, termination)∣∣ ∑
i∈Ici[ρi] ⊕ mi⟨Ṽi⟩ . Pi (choice of sends)∣∣ [!] c[ρ] &i∈I mi(b̃i) . Pi ( [replicated ] branching receive)∣∣ def D in Q

∣∣ X⟨c̃⟩ (process definition, process call)

D ::= X(x̃) = P (process declaration)

Fig. 1. Syntax of MPST!

Contributions. The overarching contribution of this paper is the first integration
of replication and first-class roles into a generalised MPST calculus, and an
exploration of the impacts of these extensions on expressiveness and decidability.
Our specific contributions are as follows:

1. We present MPST!, the first multiparty session-typed language with replica-
tion and first-class roles (Section 2), and prove its metatheory in the form of
subject reduction and session fidelity properties (Section 2.4).

2. We show several expressiveness results through a series of representative
examples (Section 3.1): in particular, replication lifts the expressive power
of types and thus we give the first account of context-free MPST. We show
that combining both replication and recursion allows us to model races and
mutual exclusion; we demonstrate nontrivial examples including binary tree
serialisation, the dining philosophers problem, and an auction service.

3. We demonstrate the impacts of replication on the decidability of typecheck-
ing (Section 3.2). We show that the decidability of typechecking is contingent
on the decidability of a given safety property, and demonstrate conditions
guaranteeing a property to be decidable. Finally we show two syntactic
approximations to allow us to verify that a property is decidable.

Section 4 gives an account of related work and Section 5 concludes. Detailed
proofs of all our presented theorems can be found in the technical report [20].

2 Multiparty Session Types with a Bang!

In this section we introduceMPST!, a conservative extension of existing multiparty
session calculi [7,25,27] with support for replication and first-class roles.

2.1 Language

Figure 1 shows the syntax of MPST!.



Names, values, and binders. A session name, ranged over by s, s′, . . . , represents
a collection of interconnected participants. A role is a participant in a multiparty
communication protocol, and each communication endpoint s[q] is obtained by
indexing a session name with a role. In contrast to existing MPST calculi, MPST!
supports first-class roles, meaning that a role may be communicated as part of a
message. To this end, a role ρ may either be a concrete role p (e.g., s or w in our
load balancing example) or a role variable α. A name a is either an endpoint,
a variable, or a role variable, whereas a value V is either a channel or a role.
Binders b are used when receiving a message and can either be a variable binder
or a role variable binder. Concrete values d are used when sending a message (at
runtime) and are either an endpoint or a role name value.

Processes. Processes are ranged over by P,Q,R, . . . : process P |Q denotes P and
Q running in parallel; session restriction (νs)P binds session name s in process
P ; and 0 is the inactive process.

As in the π-calculus, but unlike other MPST calculi, MPST! supports output-
guarded choice

∑
i∈I ci[ρi] ⊕ mi⟨Ṽi⟩ . Pi, allowing a nondeterministic send along

any ci to role ρi with label mi and payload Ṽi, with the process continuing as
Pi. Branching receive c[ρ]&i∈I mi(b̃i) . Pi denotes a process waiting on channel
c for one of a set of messages from role ρ with label mi, binding the received
data to b̃i before continuing according to Pi. It is key to note that the object of a
communication action is indicated via ρ (for both sending and receiving), which
can either be a concrete value, or a role variable. The second key difference is the
optional use of the bang ! with a branching receive, marking it as replicated—i.e.,
it may be used 0 or more times, modelling infinitely available servers.

Definition 1 (Reduction context). A reduction context C is given as: C ::=
C |P

∣∣ (νs)C
∣∣ def D in C

∣∣ [ ].

A reduction context allows us to evaluate processes under parallel composition
and name restrictions. With this, reduction rules on processes are given in Figure 2.
The rules make use of a standard structural congruence ≡ [20, Appendix A] that
allows us to treat parallel composition as commutative and associative, as well
as including the usual π-calculus scope extrusion rule.

Rule [R-C] shows synchronous communication between two processes in
session s. The first process, playing role p, offers role q a choice of message labels
and associated process continuations. The second process, playing role q, sends a
message with label mk and transmits payloads d̃. The first process reduces to the
selected continuation with the transmitted payloads substituted for the binders
in the selected branch, and the second process reduces to the continuation Q.

Rules [R-!C1] and [R-!C2] describe communication with a replicated process
R. Rule [R-!C1] is similar to R-C but the replicated process remains unchanged
and the continuation Qk is evaluated in parallel. Rule [R-!C2] handles the case
where the replicated process does not need to receive from a specific role, but
instead allows communication with an arbitrary role: the rule binds the sending
role to α in the replicated continuation. We refer to this as a universal receive.



Process reduction P1 → P2

R-C
s[p][q] &i∈I mi(b̃i) . Pi | s[q][p] ⊕ mk⟨d̃⟩ . Q → Pk{d̃/b̃k} | Q if k ∈ I

R-!C1

R = !s[p][q] &i∈I mi(b̃i) . Qi

s[q][p] ⊕ mk⟨d̃⟩ . P | R → P | R | Qk{d̃/b̃k}
if k ∈ I

R-!C2

R = !s[p][α] &i∈I mi(b̃i) . Qi

s[q][p] ⊕ mk⟨d̃⟩ . P | R → P | R | Qk{d̃/b̃k}{q/α}
if k ∈ I

R-+∑
i∈I si[qi][pi] ⊕ mi⟨d̃i⟩ . Pi → sj [qj ][pj ] ⊕ mj⟨d̃j⟩ . Pj for j ∈ I

R-X

def X(x̃) = P in (X⟨s̃′[r]⟩ |Q) → def X(x̃) = P in (P{s̃′[r]/x̃} |Q)

R-≡
P ≡ P ′ P → Q Q ≡ Q′

P ′ → Q′

R-C
P → P ′

C[P ]→ C[P ′]

Fig. 2. Operational semantics for the extended multiparty session π-calculus.

The [R-+] rule evaluates a branching output by nondeterministically evaluat-
ing to one of the sending branches; rule [R-X] handles a recursive call. Finally,
rules [R-≡] and [R-C] are administrative, allowing reduction modulo structural
congruence and under contexts respectively.

Example 3 (Load Balancer: Process Reduction). We recall the load balancer
example from Section 1, but this time, we present processes for each role (Figure 3)
to demonstrate how our operational semantics handles communication. Consider
a single client Pc in parallel with three server-side processes:

Pc | Ps | Pw1 | Pw2

= s[c][s] ⊕ req⟨42⟩ . Pc
′ | !s[s][α] & req(x) . Ps

′ | Pw1 | Pw2

Using [R-!C2], the client and server reduce. The reduction advances the client
to its continuation Pc

′, and pulls out a copy of the server’s continuation as a
new process. It is key to note that α is acting as a binder in Ps, therefore, in the
continuation we observe a role variable substitution:

→ Pc
′ | Ps |

(
2∑

i=1

s[s][wi] ⊕ fw⟨x,α⟩ . Psi
′′

)
{42/x}{c/α} | Pw1 | Pw2

= Pc
′ | Ps |

2∑
i=1

s[s][wi] ⊕ fw⟨42, c⟩ .
(
Psi

′′ {42/x}{c/α}
)

| Pw1 | Pw2



Pc := s[c][s] ⊕ req⟨42⟩ . s[c][s] & wrk(ω) . s[c][ω] & ans(z) . 0

Ps := !s[s][α] & req(x) .
2∑

i=1

s[s][wi] ⊕ fw⟨x,α⟩ . s[s][α] ⊕ wrk⟨wi⟩ . 0

Pwi := !s[wi][s] & fw(y,γ) . s[wi][γ] ⊕ ans⟨“life”⟩ . 0

Fig. 3. Process definitions for load balancer example

The spawned server process will then non-deterministically choose a worker to
send to via rule [R-+]; suppose w1 is picked.

→ Pc
′ | Ps | s[s][w1] ⊕ fw⟨42, c⟩ . Ps1

′′ | !s[w1][s] & fw(y,γ) . Pw1

′ | Pw2

Communication is now possible between the spawned server process and worker
w1, using rule [R-!C1]. As before, this communication advances the sender process
and pulls out a copy of the worker’s continuation:

→ Pc
′ | Ps | Ps1

′′ | Pw1 | Pw1

′ {42/y}{c/γ} | Pw2

The client can now learn which worker was chosen, terminating the spawned
server process, then the answer is exchanged between the worker and client:

→ s[c][w1] & ans(z) . 0 | Ps | 0 | Pw1 | s[w1][c] ⊕ ans⟨“life”⟩ . 0 | Pw2

→ 0 | Ps | 0 | Pw1 | 0 | Pw2

≡ Ps | Pw1 | Pw2

2.2 Types

Figure 4 shows the syntax of MPST! types.

Syntax of types. Session types S type communication endpoints. They consist
of branching types S&, replicated branching types !(S&), selection types S⊕,
recursive types µt.S and variables t, and the end type.

Branching session types have the form ρ&i∈Imi(T̃i).Si indicating that role

ρ offers a choice of message labels mi with payload types T̃i and continuations
Si. Similarly, selection session types ⊕i∈Iρi mi(T̃i).Si indicate an internal choice
towards one of a set of roles ρi, with a message label, given payload types and
continues as the corresponding continuation type. A replicated branching type
!ρ&i∈Imi(T̃i).Si types a replicated channel. As with processes, role ρ can either
be a concrete role, or a role variable in binding position.

Our type system supports singleton types for roles: role ρ has singleton type ρ,
used to pattern-match specific roles in payloads. Static types T are used for
protocol specification, whereas runtime types U are used by the type semantics
to include a notion of parallel composition at type level: originally introduced by
Le Brun and Dardha [4], a type U1 |U2 allows a channel to be associated with
multiple “active” session types.



Session types S ::= S&
∣∣ !(S&)

∣∣ S⊕ ∣∣ µt.S
∣∣ t

∣∣ end

Branching/Selection Types S& ::= ρ&i∈Imi(T̃i).Si S⊕ ::= ⊕i∈Iρi mi(T̃i).Si

Role singletons ρ ::= q
∣∣ α

Static types T ::= S
∣∣ ρ

Runtime types U ::= S
∣∣ (U1 |U2)

Fig. 4. Syntax of Types

We assume that branching and selection types include a non-empty set of
messages with pairwise distinct message names mi (per role for ⊕). We further
take an equi-recursive view of types, identifying a recursive type with its unfolding
(i.e., µt.S = S{µt.S/t}) and require that recursion variables are guarded.

Definition 2 (Subtyping). The subtyping relation ⩽ is co-inductively de-
fined on types by the following inference rules:

(T̃i ⩽ T̃ ′
i )i∈I (Si ⩽S′

i)i∈I

ρ&i∈Imi(T̃i).Si ⩽ρ&i∈I∪Jmi(T̃ ′
i ).S

′
i

===================================
(T̃i ⩾ T̃ ′

i )i∈I (Si ⩽S′
i)i∈I

⊕i∈I∪Jρi mi(T̃i).Si ⩽ ⊕i∈I ρi mi(T̃ ′
i ).S

′
i

======================================

S&
1 ⩽S&

2

!S&
1 ⩽ !S&

2

=========
U ⩽U ′ S⩽S′

U |S⩽U ′ |S′
=================

S{µt.S/t} ⩽S′

µt.S⩽S′
===============

S⩽S′{µt.S′/t}

S⩽µt.S′
===============

T ⩽T
=====

Our definition of subtyping (Definition 2) is mostly standard. We adopt the
convention of smaller types being ones with less external choice and more internal
choice (à la Gay and Hole [13]). Subtyping of replication is based on regular
branching; and parallel types are related iff their session types are subtypes.
Subtypes are related up-to their recursive unfolding, and subtyping is reflexive.

Definition 3 (Type Congruence). Type congruence allows us to treat parallel
runtime types as commutative and associative with identity element end.

U1 |U2 ≡ U2 |U1 (U1 |U2) |U3 ≡ U1 | (U2 |U3) U | end ≡ U

Figure 5 shows the definition of typing contexts and their operations. Context
Θ is used to type recursive process definitions, mapping process variables X to
tuples of parameter types. Context Γ maps channels to types, and role variable
singletons. Context composition Γ , Γ ′ is defined iff Γ and Γ ′ have disjoint domains.
We lift subtyping and type congruence to contexts in the usual way.

As inspired by (e.g.) [31], linearity is enforced through the use of a context
split operation Γ = Γ 1 ·Γ 2 that splits a context Γ into two environments Γ 1 and
Γ 2. These environments may share variables with unrestricted types and role
variables. Additionally, a channel c with runtime type U1 |U2 may be split such
that Γ 1 contains c : U1 and Γ 2 contains c : U2; this allows us to type endpoints
used by different replicated processes. The inverse operation is context addition



Typing contexts

Θ ::= ∅
∣∣ Θ,X : S̃ Γ ::= ∅

∣∣ Γ , c :U
∣∣ Γ ,α :α

Context splitting Γ = Γ 1 ·Γ 2

∅ = ∅ · ∅
Γ = Γ 1 ·Γ 2

Γ , c :U = Γ 1, c :U ·Γ 2

Γ = Γ 1 ·Γ 2

Γ , c :U = Γ 1 ·Γ 2, c :U

Γ = Γ 1 ·Γ 2

Γ ,α :α = Γ 1,α :α ·Γ 2,α :α

Γ = Γ 1 ·Γ 2

Γ , c :U1 |U2 = Γ 1, c :U1 ·Γ 2, c :U2

Context addition Γ 1 + Γ 2 = Γ

Γ + ∅ = Γ

Γ 1 + Γ 2 = Γ a ̸∈ dom(Γ 2)

Γ 1, a :T + Γ 2 = Γ , a :T

Γ 1 + Γ 2 = Γ a ̸∈ dom(Γ 1)

Γ 1 + Γ 2, a :T = Γ , a :T

Γ 1 + Γ 2 = Γ

Γ 1,α :α+ Γ 2,α :α = Γ ,α :α

Γ 1 + Γ 2 = Γ

Γ 1, c : U1 + Γ 2, c : U2 = Γ , c : U1 |U2

Context role insertion Γ ←↩ ρ

Γ ←↩ q = Γ Γ ←↩ α = Γ +α : α

Fig. 5. Typing contexts and context operations.

Γ 1 + Γ 2 = Γ that combines Γ 1 and Γ 2 into an environment Γ ; again roles may
be shared across environments. In the case that we have Γ 1, c : U1 + Γ 2, c : U2

(i.e., a linear variable used in two different contexts), context addition results in
c having the combined runtime type U1 |U2. The role insertion operation Γ ←↩ ρ
is used when typing replicated receives and extends a context with a mapping
α : α in the case that ρ is a role variable, and leaves Γ unchanged otherwise.

Before presenting the typing rules, we introduce the notion of a session
protocol, mapping role names to session types. The assocs(Ψ) function associates
a session protocol Ψ to a concrete session s to form a typing context.

Definition 4 (Session Protocol). A session protocol Ψ is attached to a session
through the restriction operation in the form of (νs : Ψ) P , dictating the protocol
for s in P . A protocol Ψ is a partial mapping from role to session type, given as:

Ψ ::= ∅
∣∣ Ψ, q : S

A protocol Ψ is well-formed iff it does not contain parallel types. We obtain a
typing context by associating roles in a protocol with a session name. Formally:

assocs(q : S, Ψ) := s[q] :S, assocs(Ψ) assocs(∅) := ∅



Typing Rules for Values and Recursive Definitions Γ ⊢ V :T Θ ⊢ X : S̃

T-Wkn
Γ 1 + Γ 2 = Γ

Γ 1 ⊢ V :T end(Γ 2)

Γ ⊢ V :T

T-q

∅ ⊢ q:q

T-Sub
S⩽S′

c:S ⊢ c:S′

T-α

α:α ⊢ α:α

T-X
Θ(X)=(Si)i∈1..n

Θ ⊢ X:(Si)i∈1..n

Typing Rules for Processes Θ;Γ ⊢ P

T-0
end(Γ )

Θ ;Γ ⊢ 0

T-|
Θ ;Γ 1 ⊢ P1 Θ ;Γ 2 ⊢ P2

Θ ;Γ 1 ·Γ 2 ⊢ P1 |P2

T-+

(Θ ;Γ ⊢ ci[ρi] ⊕ mi⟨d̃i⟩ . Pi)i∈I

Θ ;Γ ⊢
∑

i∈I ci[ρi] ⊕ mi⟨d̃i⟩ . Pi

T-!
Γ ! ⊢ c : !ρ&i∈Imi(T̃i).S

′
i end(Γ )

(Θ ;Γ + c :S′
i + b̃i : T̃i ←↩ ρ ⊢ Pi)i∈I

Θ ;Γ ·Γ ! ⊢ !c[ρ] &i∈I mi(b̃i) . Pi

T-&
Γ& ⊢ c :ρ&i∈Imi(T̃i).S

′
i Γ r ⊢ ρ :ρ

(Θ ;Γ + c :S′
i + b̃i : T̃i ⊢ Pi)i∈I

Θ ;Γ ·Γ& ·Γ r ⊢ c[ρ] &i∈I mi(b̃i) . Pi

T-ν
φ(assocs(Ψ))

φ is a safety property
s ̸∈ Γ Θ ;Γ + assocs(Ψ) ⊢ P

Θ ;Γ ⊢ (νs : Ψ) P

T-⊕
Γ⊕ ⊢ c :ρ⊕m(T̃ ).S′ Γ r ⊢ ρ :ρ

(Γ i ⊢ Vi :Ti)i∈1..n Θ ;Γ + c :S′ ⊢ P

Θ ;Γ ·Γ⊕ ·Γ r(·Γ i)i∈1..n ⊢ c[ρ]⊕m⟨(Vi)i∈1..n⟩ . P

T-Def
Θ,X : S̃ ;Γ , x̃ :S ⊢ P end(Γ )

Θ,X : S̃ ;Γ ′ ⊢ Q

Θ ;Γ ·Γ ′ ⊢ def X(x̃ :S) = P in Q

T-Call
Θ ⊢ X : (Si)i∈1..n end(Γ 0)
∀i ∈ 1..n : Γ i ⊢ ci :Si

Θ ;Γ 0( ·Γ i)i∈1..n ⊢ X⟨(ci)i∈1..n⟩

Fig. 6. Typing rules.

Next, we introduce predicate end on type contexts. This ensures that an
environment is end-typed : that is, its session types are congruent to type end.

Definition 5 (End-typed environment). A context is end-typed, written
end(Γ ), iff it only maps channels to session type end.

end(∅)
end(Γ )

end(c : end, Γ )

end(Γ )

end(α :α, Γ )

Γ≡Γ ′ end(Γ )

end(Γ ′)

Figure 6 shows the typing rules for MPST!. There are three judgements: the
value typing judgement Γ ⊢ V : T assigns type T to value V under context Γ
and consists of four rules. Rule [T-Wkn] allows weakening: if value V has type T
under some environment Γ 1, and we have an end-typed environment Γ 2 such
that Γ 1+Γ 2 = Γ , then the rule allows us to conclude that V has type T under Γ .
Rule [T-q] types concrete roles as singleton types under the empty environment,
whereas [T-α] types a role variable provided that it is contained within the type



environment. Finally, rule [T-Sub] types a linear variable, allowing for subtyping.

Judgement Θ ⊢ X : S̃ simply looks up process variable X in process environment
Θ, returning its parameter types; this is achieved by rule [T-X].

The final judgement Θ ;Γ ⊢ P states that process P is typable under recursion
environment Θ and type environment Γ . Rule [T-0] types the inactive process
under an end-typed environment. Rule [T-|] types parallel processes under a split
environment. Rule [T-+] types an output-directed choice; since this operation uses
branching control flow, each choice must be typable under the same environment.

Rules [T-!] and [T-&] type replicated and non-replicated receives respectively.
In both cases the rules check that the channel has a receiving session type. Both
rules check that each branch is typable by extending a common typing context
with the variables bound by the receives, along with the continuation type for
the session channel. In the case of a replicated receive there are two differences:
first, the context used to type each branch must be end-typed (in order to avoid
duplicating linear resources). Second, since the role ρ may be a binding occurrence
of a role variable α, the context used to type each branch must be extended with
the role variable (if applicable) using the insertion operator.

Rule [T-ν] types a session name restriction (νs : Ψ)P . As is standard in
generalised MPST [27], the session protocol must satisfy a safety property φ. We
discuss specifics of this property in Section 2.3, and how it is used in Section 2.4.
Informally, the property ensures that all process communication is “compatible”,
and is the weakest property required to prove subject reduction. We then prove
our metatheory parametric on the largest safety property, allowing it to be
customised to verify more precise properties (e.g., to ensure deadlock-freedom or
termination), based on the requirements of a specific protocol.

Rule [T-⊕] types an output if the sending channel can be mapped to a selection
type with payload types that match the values being sent. The rule ensures that
role ρ is either a value, or it exists in the type context—i.e., messages cannot be
sent to unbound role variables. The selection type continuation should be used,
along with the common context, to type the continuation process.

Lastly, rules [T-Def] and [T-Call] type recursive processes. The former pop-
ulates the recursion environment whilst ensuring that process declarations are
well typed under the variables they bind. The latter checks that types of values
used in a process call match what was specified in the declaration.

Example 4 (Load Balancer: Type Checking). By introducing a name restriction
for session s that includes the types from Example 2, we can type the processes
from Example 3 under empty typing contexts:

∅; ∅ ⊢ (νs : {s :Ss,w1 :Sw1 ,w2 :Sw2 , c :Sc}) Ps |Pw1 |Pw2 |Pc

2.3 Type Semantics

To reason about the interactions between session types, following Scalas &
Yoshida [27], we endow typing contexts Γ with LTS semantics as shown in
Figure 7. Each action γ denotes an output, input, and synchronising communica-

tion respectively. Context reduction Γ→Γ ′ is defined iff Γ
s:p,q:m−−−−−→ Γ ′ for some



Actions γ ::= s:q⊕r:m(T̃ )
∣∣ s:q&ρ:m(T̃ )

∣∣ s:q,r:m

Context Reduction Γ→Γ ′

Γ -&
S = q&i∈I mi(T̃i).S

′
i k ∈ I

s[p] :S
s:p&q:mk(T̃k)−−−−−−−−−→ s[p] :S′

k

Γ -⊕
S = ⊕i∈Iqimi(T̃i).S

′
i k ∈ I

s[p] :S
s:p⊕qk:mk(T̃k)−−−−−−−−−−→ s[p] :S′

k

Γ -ρ

Γ
γ−→ Γ ′

Γ ,ρ :ρ
γ−→ Γ ′,ρ :ρ

Γ -!
R = !ρ&i∈I mi(T̃i).Si k ∈ I

s[q] :R
s:q&ρ:mk(T̃k)−−−−−−−−−→ s[q] :R |Sk

Γ -Cong
Γ

γ−→ Γ ′

Γ ·Γ ′′ γ−→ Γ ′+Γ ′′

Γ -µ

Γ · c :S{µt.S/t} γ−→ Γ ′

Γ · c :µt.S γ−→ Γ ′

Γ -Com1

Γ = Γ 1 ·Γ 2 Γ 1
s:p⊕q:m(S̃,r̃)−−−−−−−−→ Γ ′

1 Γ 2
s:q&p:m(S̃′,α̃)−−−−−−−−−→ Γ ′

2 S̃⩽S̃′

Γ
s:p,q:m−−−−→ Γ ′

1 + Γ ′
2{r̃/α̃}

Γ -Com2

Γ = Γ 1 ·Γ 2 Γ 1
s:p⊕q:m(S̃,r̃)−−−−−−−−→ Γ ′

1 Γ 2
s:q&α0:m(S̃′,α̃)−−−−−−−−−−→ Γ ′

2 S̃⩽S̃′

Γ
s:p,q:m−−−−→ Γ ′

1 + Γ ′
2{p/α0}{r̃/α̃}

Fig. 7. Type semantics.

s,p, q,m, and we write→∗ for the transitive and reflexive closure of→. We write
Γ→ iff Γ→Γ ′ for some Γ ′.

Transitions [Γ -&] and [Γ -⊕] are standard: a context can fire an input label
(resp. output label) matching any of the labels in the top-level branch type (resp.
selection type). This transitions the entry to the continuation of the chosen type.

Transition [Γ -!] models the receipt of a message by a replicated input. The
two main differences to the linear receive are: (i) the role ρ used in the transition
label is allowed to be a role variable name; and (ii) firing an input does not
advance the type, but instead pulls out a copy of the continuation and places it
in parallel. Role ρ is considered bound in R and its continuations, but is free in
pulled out copies of the continuations composed in parallel (Sk).

Transition rules [Γ -ρ], [Γ -Cong], [Γ -µ] allow contexts to reduce under a larger
context, or when types are guarded by recursive binders. Concretely, [Γ -ρ] allows
transitions to ignore role singletons; [Γ -Cong] allows a context to perform a
transition when split from a larger context (the transition result must be added
back in); and [Γ -µ] allows recursive binders to be treated equal to their unfolding.

Transitions [Γ -Com1] and [Γ -Com2] model type-level communication; for
simplicity and without loss of generality we assume a convention wherein session-
typed payloads precede role-typed payloads. Both rules state that if a context can
be split such that one part fires an output label, and the other fires an input with
matching roles, message label and payloads, then the entire context can transition



via a communication action. We note that payloads will consist of either session
types or role singletons. For the former, sender payloads must be subtypes of the
receiver payloads; for the latter, role substitution occurs after communication.
[Γ -Com2] caters for universal receives, where the input label consists of a role
variable in binding position—this is reflected in the role substitution. We say
that a context reduces iff it can transition via communication actions.

Example 5 (Load Balancer: Context Reduction). We now use the protocol from
Example 4 to demonstrate context reduction in action. Initially, the only com-
munication action possible is between the client and server, via [Γ -Com2].

s[c] :Sc, s[s] :Ss, s[w1] :Sw1 , s[w2] :Sw2

=
(s[c] :Sc · s[s] :Ss) · (s[w1] :Sw1 , s[w2] :Sw2)

→

s[c] : s&wrk(ω).ω&ans(str) +

(
s[s] :Ss

∣∣∣∣ ⊕{w1fw(int,α).α⊕wrk(w1)
w2fw(int,α).α⊕wrk(w2)

)
{c/α}

+ s[w1] :Sw1 , s[w2] :Sw2

=
s[c] : s&wrk(ω).ω&ans(str),

s[s] :Ss

∣∣∣∣ ⊕{w1fw(int, c). c⊕wrk(w1)
w2fw(int, c). c⊕wrk(w2)

, s[w1] :Sw1 , s[w2] :Sw2

It is key to note the role substitution for the type of s[s] above; specifically, how
the substitution affects the parallel type extracted through communication, but
does not affect the replicated type Ss. From here, there are multiple reduction
paths, but let us observe the reduction path in which s communicates with w1.

=
s[c] : s&wrk(ω).ω&ans(str), s[w2] :Sw2 , s[s] :Ss

·
(
s[s] :⊕

{
w1fw(int, c). c⊕wrk(w1)
w2fw(int, c). c⊕wrk(w2)

· s[w1] :Sw1

)
→

s[c] : s&wrk(ω).ω&ans(str), s[w2] :Sw2 , s[s] :Ss

+(s[s] : c⊕wrk(w1) + (s[w1] :Sw1 | γ⊕ans(str)){c/γ})
=

s[c] : s&wrk(ω).ω&ans(str), s[w2] :Sw2 ,
s[s] :Ss | c⊕wrk(w1), s[w1] :Sw1 | c⊕ans(str)

Note how reduction is possible because the context split allows the server’s parallel
type to be extracted into its own context. Then, reduction occurs via [Γ -Cong]
and [Γ -Com1]. From here, the context reduces in a similar fashion: first the server
communicates a role with the client; followed by the final communication between
the client and worker.

→
s[c] :w1&ans(str), s[s] :Ss | end, s[w2] :Sw2 , s[w1] :Sw1 | c⊕ans(str)

→
s[c] : end, s[s] :Ss | end, s[w2] :Sw2 , s[w1] :Sw1 | end

≡
s[c] : end, s[s] :Ss, s[w2] :Sw2 , s[w1] :Sw1



Safety. In order to type a session restriction, rule [T-ν] in Figure 6 requires that
the session’s protocol of the session must obey a safety property φ. Informally, a
safety property requires that processes exchange values of compatible types and
that a sender only ever selects available branches. Safety is the weakest typing
context property required in order to prove subject reduction.

Definition 6 (Safety). φ is a safety property on type environment Γ iff:

S-⊕&
φ
(
Γ · s[p] : ⊕i∈I ρi mi(S̃i, r̃i).S

′
i · s[q] : p &j∈J mj(S̃′′

j , α̃j).S
′′′
j

)
and ∃K ⊆ I s.t. ∀k ∈ K : ρk = q

implies K ⊆ J and ∀i ∈ K : S̃i⩽S̃′′
i and |r̃i| = |α̃i|

S-!⊕&
φ
(
Γ · s[p] : ⊕i∈I ρi mi(S̃i, r̃i).S

′
i · s[q] : !ρ0 &j∈J mj(S̃′′

j , α̃j).S
′′′
j

)
and ∃K ⊆ I s.t. ∀k ∈ K : ρk = q and ρ0 is either a variable or p

implies K ⊆ J and ∀i ∈ K : S̃i⩽S̃′′
i and |r̃i| = |α̃i|

S-µ

φ(Γ · s[q] :µt.S) implies φ(Γ · s[q] :S{µt.S/t})

S-α
φ(Γ ) implies frv(Γ ) = ∅

S-→
φ(Γ ) and Γ → Γ ′ implies φ(Γ ′)

A property φ is considered safe iff it conforms to all conditions specified in
Definition 6. Conditions [S-⊕&] and [S-!⊕&] are concerned with communication.
They state that if two roles in the same session have an output and input type
respectively which point at each other, then: (i) they should have at least one
common message label; (ii) for each common label, their payloads should be
equal in length; and (iii) for each common label, all session types in the payload
of the sender should be subtypes of what is expected by the receiver.

Condition [S-µ] requires safety to hold after the unfolding of recursive binders;
[S-α] requires all role variables used in a context to be bound by that same
context; and [S-→] requires safety to hold after context reduction.

Users of the type system can re-instantiate φ with custom properties (e.g.,
termination), as long as the property used meets the safety requirements.

2.4 Metatheory

Unlike most session type theories, generalised MPST do not syntactically guaran-
tee any properties on the processes they type. Rather, they provide a framework
for verifying runtime properties on the type context, from which process-level
properties may be inferred—the benefit being that these properties are unde-
cidable to check on processes, yet decidable in the realm of the type system.
Furthermore, its generalised nature allows for fine-tuning based on specific re-
quirements of its applications. Informally, generalisation of the type system works
by proving the metatheory parametric of the largest safety property captured



by φ in Definition 6; i.e., all theorems proved and presented which involve a
type context Γ , assume that φ(Γ ) holds, or “Γ is safe”. Essentially, φ describes
the minimum (and most general) safety requirements made for subject reduction
to hold. This proof technique allows φ to be re-instantiated with more specific
properties without having to reprove any of the base metatheory. (We occasionally
reference properties other than safety in examples.)

2.5 Subject Reduction and Session Fidelity

The main results of a generalised MPST system are subject reduction (Theorem 1)
and session fidelity (Theorem 2). These theorems allow the type system to be used
as a framework for verifying custom properties by re-instantiating φ. We note that
discussing how the generalised type system can be used as a verification framework
is not the focus of this paper (to this end, we address the interested reader to
Scalas and Yoshida [27, Section 5]); rather, we build on generalised MPST theory
as a means of investigating the expressiveness of replication and first-class roles
in MPST. Hence, the following presents the two theorems—highlighting key
differences with what is standard—but we do not demonstrate the verification of
runtime properties (which is standard). Proofs are in the technical report [20].

Theorem 1 (Subject Reduction). If Θ ;Γ ⊢ P with φ(Γ ) and P → P ′, then
∃Γ ′ s.t. Γ→∗Γ ′ and Θ ;Γ ′ ⊢ P ′ with φ(Γ ′).

Intuitively, subject reduction states that any safe and well-typed process
remains safe and well-typed after process reduction. More formally, the theorem
asserts that if a process is typed under a safe context, then the context can match
any process reduction to type its continuation whilst retaining safety.

Session fidelity states that if a context can reduce, then a process it types can
observe at least one of its reductions. By virtue of subtyping, a context is allowed
to specify paths which need not be followed by a process it types; the key point is
that session fidelity requires that there is at least one observable reduction. Using
session fidelity, one can prove properties about communication occurring within a
single session. It does not, however, provide grounds for showing such properties
on interleaved session communication. Hence, as is standard in generalised MPST,
we define additional assumptions on processes required for session fidelity to hold.

Definition 7 (Only plays one role). (The following is a slight adaptation of
[27, definition 5.3].) Assuming ∅ ;Γ ⊢ P , we say P :

1. has guarded definitions iff each subterm of P with the form

def X((xi :Si)i∈1..n) = Q in P ′

we have: ∀i ∈ 1..n : Si ̸⩽ end implies a process call Y⟨. . . , xi, . . . ⟩ can only
occur in Q as a subterm of a communication action over channel xi.

2. only plays role p in s, by Γ iff (i) Item 1 holds for P; (ii) fv(P ) =
∅; (iii) Γ = Γ 0, s[p] :U with U ̸⩽ end and end(Γ 0); (iv) in all subterms
(νs : Γ ′) P ′ of P , we have end(Γ ′).



The purpose of Item 1 is to prevent processes from infinitely reducing via
[R-X] without communicating, and Item 2 identifies a typical application of
MPST where a number of processes Pp communicate over a multiparty session s,
with each process playing a single role. The difference in our definition to the
standard is that processes Pp should play a single role and not a unique role.
This is due to the introduction of replication in our language; note how reduction
with a replicated process is guaranteed to produce multiple processes playing the
same role and is reflected in our definition in condition (iii) of Item 2, where a
channel is mapped to runtime type U , allowing for parallel composition.

Informally, the session fidelity theorem states that, given a safe context that
types a process of a particular structure—i.e., one governed by the session fidelity
assumptions of Definition 7—then if the context can reduce, the typed process
can match at least one reduction. Furthermore, after the process matches the
context reduction, it remains within the session fidelity assumption structure.

Theorem 2 (Session Fidelity). Assume ∅ ;Γ ⊢ P with φ(Γ ) and P ≡
∣∣
p∈I

Pp

where each Pp is either 0 (up-to ≡), or only plays role p in s. Then, Γ→ implies
∃Γ ′, P ′ s.t. Γ→Γ ′, P →∗ P ′ and Γ ′ ⊢ P ′, where P ′ ≡

∣∣
p∈I

Pp
′ and each Pp

′ is

either 0 (up-to ≡), or only plays role p in s.

We now turn our attention to the main focus of this paper, i.e., exploring
the expressiveness and decidability of replication and first-class roles in MPST.

3 Expressivity and Decidability

This section discusses, and shows by example, the benefits and limitations of
MPST!. Section 3.1 demonstrates the exressivity gained by using replication and
first-class roles in MPST, whilst Section 3.2 presents our decidability results.

3.1 Expressivity

We begin by demonstrating a common design pattern used for describing protocols,
which we call services. We build a number of services to showcase language features,
and to describe protocols which—to the best of our knowledge—were previously
untypable in any MPST theory. Specifically, using the increased expressiveness
of replication and first-class roles, we define types for binary trees, the dining
philosophers problem, and an auction. Importantly, all examples shown adhere to
the decidability requirements discussed later (cf. Section 3.2).

Services. A service is a building-block of a protocol, involving some universal
receive, with the aim of offering a specific interaction. A client interacts with a
service to achieve the communication pattern it offers. Importantly, services may
be clients of other services, promoting a modular design of protocols in MPST!.

Example 6 (Ping). The ping service simply responds to a ping with a pong.

P : !α&ping .α⊕pong . end



A basic yet useful service is given in Example 6, where role P offers a ping
service. As a convention, we will use capitals for naming services. We highlight the
importance of both replication and free role names in types to be able to design
modular components of a protocol—both are integral to designing a sub-protocol
agnostic of the larger scope in which it is used.

Context-Free MPST. Context-free session types [29,1,22] are a formalism
that replace prefix-style session types with individual actions, along with a
sequencing operator ; with neutral element skip. The goal of this line of work is
to express communication protocols that are not possible under tail-recursive
session types, given their restriction to regular languages. The classic example is
that of communicating a serialised binary tree.

Example 7 (Binary tree in standard context-free STs). Consider a binary tree
data type described by the following context-free grammar.

tree ::= (node, tree, tree)
∣∣ leaf

We could attempt to represent a protocol that serialises this data type as follows:

µt.⊕ {leaf : skip, node : t}

However, this type is not precise enough—it does not guarantee that the correct
structure of a binary tree is maintained. Work on context-free session types solves
this by proposing type systems allowing the following specification:

µt.⊕ {leaf : skip, node : skip; t; t}

Selecting the node label now guarantees that two sub-trees will follow.

The parallel types presented in Section 2.2, although not exposed directly to
users, lift expressiveness of types in MPST!. In fact, since replicated branches
are permanently available (by composing continuation types in parallel), we can
simulate the sequencing operator ; using type-level parallel composition.

Example 8 (Binary Tree Service). Recall the ping service P from Example 6.
We build a binary tree service T using P as shown below:

T : !β&tree .P⊕ping . !P&pong .β& {leaf . end, node .P⊕ping .P⊕ping . end}

The service begins by receiving a request for a tree from a client. It then sends
a ping to the ping service, exposing a replicated branch waiting to receive the
pong reply. The client is now free to build the binary tree. It is key to note that
any node sent to the service will subsequently forward two ping requests to P .
In turn, this communication will pull out two copies of the type continuation
β&{leaf . end, node .P⊕ping .P⊕ping . end}, forcing the client to maintain the
appropriate binary tree structure. For example, if a client t wishes to build a tree
consisting of one root node and two leaf nodes, its type would be defined as:

t :T⊕tree .T⊕node .T⊕leaf .T⊕leaf . end

The metatheoretic framework can be used to determine that any protocol failing to
abide by the binary tree structure will result in a deadlock ; whilst any safe protocol
that obeys the correct structure is terminating, e.g. the protocol {t,T ,P }.



An obscure limitation of the tree service in Example 8 is that it can only be
used by a single client. Consider, for example, two separate clients sending a
node message to T . Since both tree service types communicate with P to unroll
the replicated branch !P&pong, the protocol becomes non-deterministic in a
non-confluent manner and can result in deadlocked behaviour. To resolve this
issue, we amend the tree service to accept a payload role which should act as
a personal ping service for the client; this guarantees that the tree type is only
unrolled by the client that made the initial request.

Example 9 (Multi-Client Binary Tree). We now redesign the binary tree service,
this time capable of concurrently building multiple trees for different clients. The
key difference here being that the new service, M , accepts a role as a payload
on the initial request to which it will issue its pings.

M : !α&tree(β) .β⊕ping . !β&pong .α& {leaf . end, node .β⊕ping .β⊕ping . end}

Sp = !M&ping .M⊕pong . end

Multiple clients can now issue concurrent requests to the tree service whilst
maintaining safety. A sample (terminating) protocol is that of {t1, t2,p1,p2,M},
where p1,p2 :Sp, and the types for t1, t2 are given by:

t1 :M⊕tree(p1) .M⊕node .M⊕leaf .M⊕leaf . end
t2 :M⊕tree(p2) .M⊕node .M⊕leaf .M⊕node .M⊕leaf .M⊕leaf . end

Replication vs. Recursion. We have seen that replication and parallel com-
position increases the expressive power of MPST beyond that of tail-recursion.
Naturally, one might ask, “is recursion still needed?” We find replication and
recursion in MPST to be mutually non-inclusive—i.e., both can produce protocols
which cannot be typed under the other construct. We have already demonstrated
this in one direction with the binary tree examples; below we showcase how
recursion cannot be replaced by replication.

Example 10 (Lock Service). The lock service provides clients with a mutex lock.

L : !θ&lock . µt.θ& {acquire .θ&release . t, done . end}

When a client requests a lock from L, a copy of the recursive continuation is
exposed. The recursive definition allows sequences of acquire and release messages
to be received. It is key to note that, whilst replication maintains a top-level
branch that is permanently available to receive a message, the top-level action in
a recursive definition is not fixed.

Copies of the continuation type of a replicated receive are executed concur-
rently. Example 10 provides a service for roles to enter race-sensitive portions of
a protocol, as if it were an atomic action. We demonstrate its use by typing the
dining philosophers problem.



Example 11 (Dining Philosophers). A number of philosophers gather to eat on a
round table. Each plate is separated by a single chopstick, and a philosopher needs
two chopsticks to eat. The dining philosophers problem requires the philosophers
to employ an algorithm to ensure the table does not get deadlocked. In such a
setting, we can view chopsticks as services and philosophers as clients. Assuming
a size of n-philosophers, we define the type for a chopstick as:

(Ci)1..n :L⊕lock . !η&
{
take? .L⊕acquire .η⊕ok .η&give .L⊕release . end
done .L⊕done . end

}
Before offering its service, a chopstick requests a lock from L. This ensures that
every chopstick has its own lock that it may acquire and release. The lock is used
to guarantee that a chopstick is only ever taken by a single philosopher at a time.
A chopstick then waits for a take? request from a philosopher; receiving one will
result in it attempting to acquire the lock. This acquisition is only successful if
the same role has not already requested it in some other parallel composition.
If the lock was already acquired, then the L⊕acquire will block until the lock is
released. Acquiring the lock sends an ok back to the philosopher, symbolising
that they have successfully obtained the chopstick. When done from eating, the
philosopher may then send back a give message, which in turn releases the lock,
as the chopstick is now available to be taken by a different philosopher.

We can now write an algorithm for philosophers. First, a naive approach:

(pi)i∈1..n :Ci⊕take?.Ci+1⊕take?.Ci&ok.Ci+1&ok.Ci⊕give.Ci+1⊕give. q⊕fin. end
q :p1&fin. · · · .pn&fin.C1⊕done. · · · .Cn⊕done. end

Every philosopher pi has a similar type. They begin by requesting to take the
chopsticks to their left and right—note that this results in every chopstick receiv-
ing two take? requests. Receiving both ok messages means the philosopher can
eat, and subsequently give back the chopsticks. Finally, when finished, philoso-
phers send a fin to role q, acting as a clean-up for the protocol. The protocol
{pi, q,Ci,L}i∈1..n is safe, but fails typechecking for φ = terminating. In fact, the
näıve protocol allows for scenarios in which all philosophers take a single chop-
stick, resulting in a deadlock. This problem has many solutions; we present the
simplest in which philosophers take turns to eat. (Key changes are underlined.)

S1 =C1⊕take?.C2⊕take?.C1&ok.C2&ok.C1⊕give.C2⊕give.p2⊕fin. end
S2 =pi−1&fin.Ci⊕take?.Ci+1⊕take?.Ci&ok.Ci+1&ok.Ci⊕give.Ci+1⊕give.pi+1⊕fin.end

S3 =pn−1&fin.Cn⊕take?.C1⊕take?.Cn&ok.C1&ok.Cn⊕give.C1⊕give.q⊕fin.end

q′ : pn&fin.C1⊕done. · · · .Cn⊕done. end

Here, all philosophers other than the first must wait for the previous to finish
eating before they can request to take their chopsticks. The updated protocol

{p1 :S1,pi :S2,pn :S3, q
′,Cj ,L}i∈2..n−1

j∈1..n now typechecks for φ = terminating.

The previous examples demonstrate how recursion hidden by a universal
receive can be used to mimic changes in state. Our final example does the inverse,
i.e., we show how a universal receive hidden by a recursive binder can be used to



model resources which eventually reach some permanent state. In addition, we
show that universal receives model fair races, since they do not impose an order
on how communication is handled.

Example 12 (Auction). A merchant m sets up an auction A to accept bids from
some buyers b. A merchant can employ different mechanisms for choosing who
to sell to (e.g., first come first served, highest bid, biased selling, etc.); but must
always respond to buyers with either a yes, no, or not-avail message.

A : !α&bid(int).m⊕bid(int,α). end

m :µt.A&bid(int,β).β⊕
{
yes. !A&bid(int,κ).κ⊕not-avail. end
no. t

}
(bi)i∈1..n :µt.A⊕bid(int).m& {yes. end, no. t, not-avail. end}

Buyers bi race to send bids to the auction service. In turn, the auction forwards
bids and buyer role identifiers to the merchant, who processes bids sequentially
(but still in an arbitrary order). If the merchant declines a bid, then the client is
offered another chance; if the merchant accepts a bid, then it exposes a replicated
receive which informs any further buyers that the product is no longer available.
It is key to note that, unlike in Example 11 where we used locks to avoid race
conditions, races here are not only allowed but are integral to the protocol.
Additionally, by uncovering a replicated receive, the merchant enters a permanent
state. These two characteristics guarantee that, no matter the selling algorithm
employed by the merchant: (i) bids always arrive in a fair arbitrary order; and
(ii) the product can only be sold once.

Discussion. We have now shown that replication and recursion are mutually
non-inclusive, and that our extension increases the expressiveness of MPST. It
is important to understand the dependencies between added features and the
expressiveness gained. Since MPST! is a conservative extension, it is guaranteed
that the increase of expressiveness derives from our two extensions: 1. the addition
of replication; and 2. the addition of first-class roles.

Replication alone is enough to increase the expressiveness of MPSTs w.r.t.
the Chomsky hierarchy. We note that, e.g., Example 8 could be easily re-written
without the universal receive, especially since it should not be used by multiple
clients to uphold deadlock-freedom—thus, replication in MPSTs increases their
expressiveness to that of context-free languages.

First-class roles in our formalism refers to: (i) universal receives acting
as binders on role variables; and (ii) the ability to pass roles as payloads in
messages. Universal receives allow protocols to be designed agnostic of the client
pool (consider Examples 2, 6, 9 and 10); and also act as a fair way of introducing
races—e.g. Example 2 describes a load balancer that responds to requests in no
particular order. Role passing allows for safe distributed choice. In a load balancer
(in general), it is impossible for a client to know which worker will service its
request. In Example 2, role passing allows the server to inform clients of its
choice, and also informs the worker of the identity of the client. Role passing



increases expressiveness by introducing dependencies into a protocol. For instance,
Example 12 uses role passing to ensure the merchant correctly services the right
buyers; without it, a merchant could not respond to requests without bias.

As a final note, first-class roles are different to, e.g., delegation or multiple
sessions (both supported in MPST!) since they act inside a session. Therefore
our system can still be used to check for properties such as deadlock-freedom,
which is not possible with interleaved sessions without other mechanisms such as
an interaction typing system [3] or priorities [8].

3.2 Decidability

As one may expect, the added expressiveness of replication and first-class roles into
types does not come without a cost. Unlike the base theory that this work extends,
even though our language models synchronous communication, typechecking may
be undecidable in the general case. In the following, we discuss decidability of
typechecking in detail. We show that typechecking is only as decidable as the
safety property; we provide examples of types that make typechecking problematic;
and we provide strategies for determining whether a protocol is captured by a
decidable subset of MPST!.

Theorem 3 (Decidablility of type checking). If φ is decidable, then type-
checking is decidable.

Proof. Since typing rules in Figure 6 can be deterministically applied based on
the structure of a process P , and a typing context need only be split a finite
number of times to separate all linear types, there are a finite number of contexts
that can be tried for each rule that requires a context split. Lastly, subtyping is
decidable [13] (decidability of subtyping replicated types is equivalent to regular
branching types, and of parallel types is equivalent to checking multiple session
types); and φ is decidable by assumption. ⊓⊔

Theorem 3 states that decidability of type checking is only as decidable as
property φ. In Example 14, we will demonstrate why φ may not necessarily be
decidable in the general case for the type semantics presented in Figure 7. To do
this, we first define behavioural sets of type contexts (as in [26, appendix K]).

Definition 8 (Behavioural set). The behavioural set of a type context, written
beh(Γ ), is given by beh(Γ ) = unf∗({Γ ′ |Γ→∗Γ ′}); where unf∗ is the closure of
unf—a function that unfolds all top-level recursive binders in a set of contexts.
(Full definitions of unf and unf∗ are standard [20, Appendix D].)

Informally, the behavioural set of a context Γ is the set of (i) its reductions;
and (ii) its reductions’ unfoldings. The benefit of beh is that it mechanically
abides by conditions [S-µ] and [S-→] from Definition 6. Therefore, to determine
whether beh(Γ ) is a safety property, all that is required is to exhaustively check
the contexts that inhabit beh(Γ ) against the remaining conditions of Definition 6.



Example 13. Consider a context Γ = {s[p] :µt.q⊕m.t, s[q] :µt′.p&m.t′}. The
behavioural set of Γ is given by:

beh(Γ ) =

{{
s[p] :µt.q⊕m.t,
s[q] :µt′.p&m.t′

}
,

{
s[p] : q⊕m.µt.q⊕m.t,
s[q] :p&m.µt′.p&m.t′

}}
Notice that the left element is the original context after 0 reduction steps, whereas
the right element is the unfolding of Γ . Moreover, any further reductions only
yield contexts (and unfoldings) already captured by these two elements.

The next example context is problematic for typechecking.

Example 14. Consider a context Γ = {s[p] :µt.q⊕m.t, s[q] : !p&m.r⊕m}. The
behavioural set of Γ is given by:

beh(Γ ) =


{
s[p] :µt.q⊕m.t,
s[q] : !p&m.r⊕m

}
,

{
s[p] : q⊕m.µt.q⊕m.t,
s[q] : !p&m.r⊕m

}
,{

s[p] :µt.q⊕m.t,
s[q] : !p&m.r⊕m | r⊕m

}
,

{
s[p] : q⊕m.µt.q⊕m.t,
s[q] : !p&m.r⊕m | r⊕m

}
, · · ·


Indeed, beh(Γ ) is infinite. This is a result of how replication and parallel com-
position are modelled in Figure 7. In fact, the type semantics for replicated
communication allows for context reduction to yield larger types. Note how in
this example, the contexts that inhabit beh(Γ ) get infinitely larger by pulling
out infinitely many copies of type r⊕m.

Furthermore, we point out that infinite behavioural sets are not only a result
of recursive communication with replicated branches. Consider, e.g. a Γ ′ =
{s[p] : !α&m.α⊕m′.r⊕m, s[q] :p⊕m.!β&m′.β⊕m}. Such a context will also pull
out infinitely many copies of type r⊕m, because the replicated communication
forms an infinite loop. Lastly, it is key to note that beh(Γ ′′) is finite for any
Γ ′′ that does not contain replicated branches, since there is no other way for a
context reduction to yield a larger type.

Knowing whether beh(Γ ) is (in-)finite is key for our main decidability result.

Theorem 4 (Decidability of beh). Let φ = beh(Γ ). If beh(Γ ) is finite, then
φ is decidable.

Proof. Since beh(Γ ) contains all possible reductums and unfoldings of Γ , then
conditions [S-→] and [S-µ] are satisfied immediately. Therefore, to determine
whether beh(Γ ) is a safety property, we may exhaustively check all inhabitants of
beh(Γ ) against conditions [S-⊕&], [S-!⊕&], [S-α], which is decidable since beh(Γ )
is finite (by assumption); and since subtyping and frv are decidable. ⊓⊔

Theorem 4 states that φ is decidable for any φ = beh(Γ ) where beh(Γ ) is a
finite set. In other words, if a protocol can be shown to have a finite behavioural
set, then typechecking for that protocol is decidable. This could be done manually
for each protocol; however, to further increase the practicality of our type system,
we present two strategies for restricting protocols into a subset of MPST! with
finite behavioural sets.



Decidability Strategies. The strategies we present for restricting protocols to
decidable subsets of MPST! all follow a similar blueprint. Essentially, we wish to
establish properties on Γ with decidable approximations that imply that beh(Γ )
is finite. Then, by Theorems 3 and 4 we obtain decidable typechecking.

The following defines, and gives examples, of each strategy; then, we show
these strategies are sound and discuss how they can be approximated.

Definition 9 prevents types like Γ in Example 14 using a näıve approach;
put simply, tf captures protocols where all clients of a replicated server are
intrinsically non-recursive and non-replicated.

Definition 9 (Trivially finite). A context Γ is trivially finite, tf(Γ ), iff:

1. no type in the body of a recursive binder sends to a replicated branch; and
2. continuations of replicated branches do not send to other replicated branches.

Example 15. The protocols modelling the dining philosophers problem in Exam-
ple 11 are trivially finite. Note how the chopstick services make the initial request
to the lock service before they offer their replicated branch.

For other protocols we need a more nuanced strategy. Definition 10 formalises
“loops” in a protocol which may result from replicated servers infinitely bouncing
messages amongst each other (such as Γ ′ in Example 14).

Definition 10 (Loop free). Given a protocol Ψ , and a context Γ derived from
Ψ (possibly after a number of reductions), a cycle in the LTS of Γ is defined as

the series of transitions s.t., for Γ = Γ ′ · s[p] : !ρ&i∈Imi(T̃i).Si

Γ
s:q,p:mk−−−−−→

(
s:p′

j ,q
′
j :m

′
j−−−−−−−→
)

j∈1..n

s:q,p:mk−−−−−→ Γ ′′

where k ∈ I, and for any p′, q′,m′, n, Γ ′′. A cyclic replicated communication path
(CRCP) is defined as a cycle with these added conditions:

1. Γ (s[q]) = Sq s.t. either Sq≡ !S& |U or Sq appears after a recursive binder
in Ψ(q), for any S&, U ; and

2. ∀x ∈ 1..n : Γ
s:q,p:mk−−−−−→

(
s:p′

l,q
′
l:m

′
l−−−−−−→
)

l∈1..x−1

Γ ′′′ s:p′
x,q

′
x:m

′
x−−−−−−−→ we have:

Γ ′′′(s[q′
x]) = Sq′

x
s.t. either Sq′

x
≡ !S& |U or Sq′

x
appears after a recursive

binder in Ψ(q′
x).

We say Γ is loop free, written lf(Γ ), iff the LTS of Γ does not contain a CRCP.

Essentially, a cycle in the LTS of a context Γ : (i) starts with an incoming
communication action into a replicated type; (ii) performs some intermediary
transitions; and (iii) ends with the transition that began the cycle. A CRCP is a
special case of a cycle, where all intermediary transitions must also be between
roles that have a replicated type; or form part of the body of a recursive type.
Finally, a context is loop free iff its LTS does not produce any CRCPs.



Example 16. Contexts Γ and Γ ′ from Example 14 contain CRCPs: Γ contains a
CRCP at q with 0 intermediary transitions; and Γ ′ contains two CRCPs, at q
and p, both with 1 intermediary transition forming part of a replicated type.

Example 17. The protocols in Examples 2, 8 and 9 are loop free: Example 2
because there are no cycles; Examples 8 and 9 because the cycle between the
pong branch on T (resp. M) and the ping branch on P (resp. p1,p2) includes
communication with the (non-replicated/-recursive) client; breaking the CRCP.

Proposition 1. If beh(Γ ) is infinite, then Γ contains a CRCP.

Proof. From the type semantics (Figure 7), we observe that the only reductions
that can yield larger types are communications with replicated branches. There-
fore, it follows that for beh(Γ ) to be infinite, there must be some reoccurring
transitions in the LTS of Γ that repeatedly communicates with a replicated
branch—i.e., there is a communication action on a replicated branch, followed
by any number of intermediary transitions which then end with the initial com-
munication action on the replicated branch; where all intermediary transitions
must be non-finite. This is the definition of a CRCP (Definition 10). ⊓⊔

Theorem 5 (Strategy soundness). Given a context Γ , Φ(Γ ) implies beh(Γ )
is finite, for Φ ∈ {tf, lf}

Proof. Case tf. By contradiction: assume beh(Γ ) is infinite, then, by Proposition 1,
Γ contains a CRCP; but, by Definition 10, a CRCP will violate at least one of
the conditions for tf in Definition 9—contradiction.
Case lf. By contradiction: assume beh(Γ ) is infinite, then, by Proposition 1, Γ
contains a CRCP—contradiction; therefore beh(Γ ) is finite. ⊓⊔

Approximations. Properties tf and lf are both decidable for all protocols without
first-class roles: tf can be determined via a linear traversal of a type context; and
lf can be checked by constructing a directed graph of visited replicated branches
in a context, then checking that the graph is acyclic (which is decidable). An
approximation is only required for protocols using role variables, since their
values can only be known at runtime. This approximation would treat any role
variable in a selection type to have the capability of reaching any other role.

Example 18 (Approximation false negative). Consider the following protocol:

p : !α&m.α⊕m′ q :p⊕m.p&m′.r⊕m′.r&m r : !β&m′.β⊕m

Although the above is trivially finite (p and r do not communicate), it would be
falsely flagged as not tf because α is over-approximated to include r.

It is key to note that false negatives of the approximation are avoidable by
requiring unique branching labels on replicated types. Furthermore, even with the
approximation, all examples presented in this paper (except Example 12) are
captured by either lf or tf. With respect to Example 12, the presented protocol
still yields a finite behavioural set, and thus by Theorem 4 and Theorem 3,
typechecking it is decidable. We aim to continue exploring further strategies
(especially ones which can capture protocols such as Example 12) in future work.



4 Related Work

The MAGπ calculus [19] makes use of generalised MPST theory in order to type
failure-prone communications (i.e., message loss, reordering, and delays). Key
to their approach is the use of timeouts to detect and handle message loss; as
with related approaches (e.g., Barwell et al. [2]), this often means that session
types are made more complex in order to handle each potential failure point. Our
approach is most closely related to that of Le Brun & Dardha [4], who introduce
MAGπ! as a modification of MAGπ to incorporate type-level replication: this has
the advantage of simplifying client-server interactions by only requiring clients
to handle potential failures. However, the aims of our work and that of Le Brun
& Dardha [4] are significantly different: while their aim is specifically to use
replication as a methodology to simplify failure handling, our work is a more
fundamental study of the consequences of type-level replication on expressiveness
and decidability. In particular we make use of a more standard base MPST
calculus (i.e., a calculus that does not include undirected receives, nor rules
that model failures and message reordering), and we make use of synchronous
communication semantics. Nevertheless our calculus allows for more interesting
use of replication: unlike MAGπ! we allow nested replication and recursion,
whereas MAGπ! only allows replication at the top-level and processes must be
finite. Furthermore, as a result of our inclusion of first-class roles, as well as using
replication in tandem with recursion, we can type protocols that make non-trivial
use of mutual exclusion and races, all of which would be inexpressible in MAGπ!.

Toninho & Yoshida [30] assess the relative expressiveness of a multiparty
session calculus and a process calculus inspired by classical linear logic, showing
that MPST calculi allow strictly more expressive process networks (i.e., those
that can include cycles). As part of this investigation they explore a limited form
of type-level replication that permits a liveness property. However, their system
does not consider first-class roles and pre-dates generalised MPST so is guided
primarily by global types, and is therefore less expressive than MPST!.

Replicated session types have been used to a limited extent in a wide variety
of works on binary session types (e.g., [6,8,5,32]), primarily in works pertaining
to Curry-Howard interpretations of propositions as session types, where the
exponential modality from linear logic !A is typically linked to replication from the
π-calculus. Several further lines of work investigate client-server communication
following this correspondence. Kokke et al. [18] investigate an extension of the
logically-inspired HCP calculus [17] with two dual modalities !nA and ?nA to
type a pool of n clients and a replicated server that can service n requests
respectively, and show that their calculus allows nondeterministic behaviour
while still preventing deadlocks and ensuring termination. Qian et al. [23] develop
CSLL (client-server linear logic) that uses the dual coexponential modalities ¡A
and ¿A to type servers and client pools respectively, along with rules to merge
client pools. The subtle difference between the ¡A modality and the exponential !A
being that the former (informally) serves type A only as many times as required
according to client requests. This is similar to how our type system operates, given
that replicated receives only pull out copies of continuations upon communication.



Multiple requests induce non-determinism into further reductions; in our work
this is observed through parallel types, which in the work of Qian et al. [23] is
observed through hyperenvironments [17,12]. Unlike all these works, we focus on
multiparty session types, where interacting with a replicated channel spawns a
process that remains in the same session. This results in our key novelty, i.e.,
our account of replication in the type semantics with the use of parallel types.

Marshall & Orchard [21] investigate the effects of adding a semiring graded
necessity modality (a generalisation of the ! modality) to a session-typed λ-
calculus, showing interesting consequences such as replicated servers and multicast
communication. We posit that the two systems can type different protocols: while
MPST! cannot straightforwardly encode multicast communication, it is difficult
to see how their approach would scale to the examples we describe in Section 3.

Rocha & Caires [24] introduce CLASS, a process calculus with a corre-
spondence to Differential Linear Logic [11]. CLASS integrates session-typed
communication, reference cells with mutual exclusion, and replication. Their
calculus guarantees preservation and progress, the proof of the latter property
requiring a logical relation. CLASS can encode the dining philosophers problem,
making essential use of shared state; in contrast our implementation relies on
the interplay between replication and recursion.

Deniélou et al. [10] introduce parameterised MPST as a means of designing
protocols for parallel algorithms. Their formalism allows for parameterisation
of participants in the form of client[i], representing the ith client from some
group of n clients, for a bound n. The key difference between this formalism
and MPST! is that our approach preserves, and allows for the fair handling of,
races. Parameterised MPST enforce a predetermined prioritisation on the order
of communication (thus, Example 12 cannot be expressed in that system).

5 Conclusion

We presented MPST!, a conservative extension of the standard multiparty session
π-calculus which introduces for the first time replication and first-class roles, and
proved its metatheory. We have shown that the interplay between replication and
recursion allows us to describe interesting and previously inexpressible MPST
protocols such as those that rely on races and mutual exclusion, as well as giving
a method by which we can express context-free protocols. Although replication
can have implications for decidability of typechecking, we have identified sufficient
conditions that can determine decidability and provided syntactic approximations
for decidability. For future work, it would be interesting to investigate an extension
of MPST! with polymorphism, as this would improve on the modular design of
protocols already promoted by the type system. Furthermore, we wish to continue
exploring the decidability of typechecking to find more general approximations.
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