
To appear in EPTCS.
© S. Fowler
This work is licensed under the
Creative Commons Attribution License.

An Erlang Implementation of Multiparty Session Actors

Simon Fowler
The University of Edinburgh

Edinburgh, UK
simon.fowler@ed.ac.uk

By requiring co-ordination to take place using explicit message passing instead of relying on shared
memory, actor-based programming languages have been shown to be effective tools for building
reliable and fault-tolerant distributed systems. Although naturally communication-centric, commu-
nication patterns in actor-based applications remain informally specified, meaning that errors in
communication are detected late, if at all.

Multiparty session types are a formalism to describe, at a global level, the interactions between
multiple communicating entities. This article describes the implementation of a prototype framework
for monitoring Erlang/OTP gen_server applications against multiparty session types, showing how
previous work on multiparty session actors can be adapted to a purely actor-based language, and how
monitor violations and termination of session participants can be reported in line with the Erlang
mantra of ‘let it fail’. Finally, the framework is used to implement two case studies: an adaptation of a
freely-available DNS server, and a chat server.

1 Introduction

Programming concurrent and distributed systems is a challenge—the introduction of concurrency and
distribution introduces issues such as deadlocks, race conditions, and node failures; issues which simply
do not arise when developing single-threaded applications.

The actor model is a model of concurrency introduced by Hewitt et al. [11] and discussed in the context
of distributed computing by Agha [1]. Actors—entities with a unique ID and a message queue called a
mailbox—react to incoming messages in three ways: by asynchronously sending a finite set of messages
to other actors; spawning a finite number of new actors; and changing how they react to future messages.

The actor model provides an ideal theoretical basis for programming languages designed for program-
ming robust and fault-tolerant distributed systems. Programming languages such as Erlang [2] and Elixir
take actors as primitive entities, implemented as lightweight processes which communicate only through
explicit message passing. By eschewing shared memory as a method of co-ordination, applications are
naturally built in a style fostering fault isolation, scalability, and modularity. Of particular note is Erlang’s
approach to failure handling—an approach succinctly described as ‘let it fail’, wherein processes should
terminate upon encountering a fault, and be restarted by a supervisor process.

Moving to a communication-centric programming paradigm has its own issues, however: in particular,
how do we document the communication patterns expected within an application, and how do we ensure
that the application conforms to these communication patterns? Multiparty Session Types [14] are a type
formalism in which a global type describing interactions between participants in a session—a series of
interactions between participants—can be projected into local types describing the interaction from the
point of view of an individual participant. It is then possible to check conformance either statically using
a type checker, or dynamically through runtime monitoring techniques.

We build upon the work of Neykova and Yoshida [17], who describe a conceptual framework in which
actors are treated as entities which are simultaneously involved in multiple possibly-interacting sessions.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 An Erlang Implementation of Multiparty Session Actors

Their conceptual framework is realised as a library building upon the Cell actor framework in Python.
While actors can be emulated, Python remains an imperative language with mutability and shared

memory concurrency. This article seeks to demonstrate the applicability of this conceptual framework in
Erlang, which as well as taking actors as primitive, is a functional language which forbids co-ordination
via shared memory. In addition, we investigate how dynamic monitoring of communication against
multiparty session types may be integrated with the ‘let it fail’ methodology of Erlang.

1.1 Contributions

The contributions of this article are:
• A tool, monitored-session-erlang1, for monitoring communication in Erlang applications, based on

the session actor framework of Neykova and Yoshida [17]. The implementation uses native actor
functionality as opposed to emulating actors using AMQP and Python Greenlets, and has a simpler
invitation workflow as a result. Additionally, we allow actors to take part in multiple instances of a
session, which is necessary to implement server applications.

• An extension of the Scribble protocol description language to use subsessions [9] for introducing
participants midway through a session, and for structuring possibly-failing sessions.

• A discussion of ways to detect and act upon failures, including a two-phase commit to ensure
messages are accepted in a multicast, and reachability analysis to ascertain whether a failed
participant is required in the remainder of a session.

• Two larger examples of session-based communication using the framework: a chat server, and an
adaptation of a freely-available DNS server.

2 An Overview of Multiparty Session Actors

Multiparty session types are a formalism to allow a protocol—a series of typed interactions between
multiple participants—to be described as a global type. As the name suggests, global types are a global
formalism, describing all of the interactions in that particular protocol. Global types can be projected into
local types, which describe the protocol from the point of view of a single participant.

In the traditional view of runtime monitoring of multiparty session types, each process is monitored
by a single monitor, which checks incoming and outgoing messages to see whether they conform to a
local type. The actor model, on the other hand, lends itself to a different model of monitoring. Actors
are naturally event-driven: upon processing a message from a mailbox, an actor can send a finite set of
messages; spawn a finite set of new actors; and change the way it behaves upon encountering the next
message. A more appropriate style of monitoring pioneered by Neykova and Yoshida [17] is to treat actors
as entities that can take part in multiple sessions. The core ideas behind multiparty session actors are that:

• Actors may be involved in multiple sessions simultaneously.
• Actors may play multiple roles in each session.
• A message received in the course of one session may trigger an interaction in another session.

In this setting, actors become containers for monitors and handlers for incoming session messages.
Actors may be involved in multiple roles in multiple sessions, with the ability to co-ordinate between
them, and with actor-wide state shared amongst the handlers for each session.

To describe protocols, we use Scribble [21], a human-readable protocol description language based

1monitored-session-erlang can be found online at http://www.github.com/SimonJF/monitored-session-erlang. Chat server:
http://www.github.com/SimonJF/mse-chat, DNS server: http://www.github.com/SimonJF/erlang-dns.

http://www.github.com/SimonJF/monitored-session-erlang
http://www.github.com/SimonJF/mse-chat
http://www.github.com/SimonJF/erlang-dns

S. Fowler 3

on the theory of multiparty session types. Scribble is realised as a Java-based toolchain2, including
components for parsing, validating well-formedness, and creating local projections of global types.

2.1 A Chat Server

We illustrate the main concepts of the multiparty session actor method of designing actor-based applica-
tions in the context of our Erlang implementation, monitored-session-erlang.

mse_chat_sup

mse_client_sup mse_chat_room_sup

mse_client_registry mse_chat_client_sup

c1 cn

mse_chat_tcp_server

mse_chat_room_manager mse_chat_room_instance_sup

r1 rn... ...

Figure 1: Supervision Tree for Chat Server

Erlang/OTP applications are structured for
reliability using a design pattern known as su-
pervision hierarchies, where workers (actors
which perform computations) can be restarted
by supervisors if they terminate. Instead of
attempting to recover from an unexpected or
erroneous state, actors are designed to termi-
nate and be restarted. Figure 1 shows the su-
pervision tree for the chat system. The nodes
in boxes denote supervisor actors, which do

not participate in interactions themselves, but restart their child actors should the child actors terminate.
Of interest to the protocol are three actors: mse_chat_client (c1, . . . ,cn in the diagram), representing a chat
client actor; mse_chat_room_instance (r1, . . . ,rn in the diagram), representing an instance of a chat room;
and mse_chat_room_manager, which maintains a registry of chat rooms.

The mse_chat_tcp_server actor listens on a socket and accepts new clients, spawning a new mse_chat_client

to handle requests from the new client. A client can either create or join a room by sending a message to
mse_chat_room_manager, which checks whether the room exists. Once a client is registered with the room,
any chat messages sent should be distributed to all other participants in the room. The client can leave the
session at any time and should be deregistered from any rooms to which it is registered.

1 global protocol ChatServer(role ClientThread, role
RoomRegistry) {

2 rec ClientChoiceLoop {

3 choice at ClientThread {

4 lookupRoom(RoomName) from ClientThread to RoomRegistry;

5 choice at RoomRegistry {

6 roomPID(RoomName, PID) from RoomRegistry to ClientThread;
7 ClientThread initiates ChatSession(ClientThread, new

ChatRoom);

8 } or { roomNotFound(RoomName) from RoomRegistry to
ClientThread; }

9 } or {

10 createRoom(RoomName) from ClientThread to RoomRegistry;

11 choice at RoomRegistry {

12 createRoomSuccess(RoomName) from RoomRegistry to
ClientThread;

13 } or { roomExists(RoomName) from RoomRegistry to
ClientThread; }

14 } or {

15 listRooms() from ClientThread to RoomRegistry;

16 roomList(StringList) from RoomRegistry to ClientThread;

17 }

18 continue ClientChoiceLoop;

19 } }

20
21 global protocol ChatSession(role ClientThread,role ChatRoom){

22 par {

23 rec ClientLoop {

24 choice at ClientThread {

25 outgoingChatMessage(Msg) from ClientThread to ChatRoom;

26 continue ClientLoop;

27 } or { leaveRoom() from ClientThread to ChatRoom; }

28 }

29 } and {

30 rec ServerLoop {

31 incomingChatMessage(Msg) from ChatRoom to ClientThread;

32 continue ServerLoop;

33 }

34 }

35 }

Figure 2: Global Protocols for Chat Server

Figure 2 shows two Scribble protocols describing the chat server. The ChatServer protocol describes
the interactions between a client and the room registry before joining a room. Interactions are of the form

2http://www.github.com/scribble/scribble-java

http://www.github.com/scribble/scribble-java

4 An Erlang Implementation of Multiparty Session Actors

messageName(Payload)from FromRole to ToRole1, ..., ToRoleN, meaning that the role with name FromRole sends a message
with name messageName and payload type Payload to roles with names ToRole1 . . . ToRoleN.

A common pattern in Erlang involves sending process IDs. We make use of a small extension to
Scribble to implement the theory of nested protocols, or subsessions [9] which allow a child session to
be initiated with some participants invited from the current session, and some invited externally. This
is implemented using the initiates construct (Line 7), stating that ClientThread starts the ChatSession

protocol, externally inviting another actor to fulfil the ChatRoom role.

config() ->
[{mse_chat_client, [{"ChatServer", ["ClientThread"]},

{"ChatSession", ["ClientThread"]}]},
{mse_chat_room_manager, [{"ChatServer", ["RoomRegistry"]}]},
{mse_chat_room_instance, [{"ChatSession", ["ChatRoom"]}]}].

We begin by creating a configuration file as-
sociating roles with actors: mse_chat_client

can play ClientThread in both ChatServer

and ChatSession, mse_chat_room_manager plays
RoomRegistry in ChatServer, and mse_chat_room_instance

plays ChatRoom in ChatSession.
Instead of using send and receive primitives directly, Erlang developers make heavy use of OTP

behaviours, which provide boilerplate functionality and require a developer to implement a number of
callbacks in order to provide application logic. As an example, the gen_server behaviour abstracts over
Erlang’s communication primitives to provide an event loop, invoking callbacks such as handle_cast to
process incoming messages. To participate in sessions in monitored-session-erlang, actors must implement
the ssa_gen_server behaviour, described further in Section 3.6.

We begin by looking at the implementation of mse_chat_room_manager. When an actor is spawned, the
ssactor_init callback is invoked with the arguments and an initiation key for starting sessions, and should
return the initial actor state. When an actor is invited to join a session, the ssactor_join callback is invoked,
and the return value defines whether the invitation is accepted or declined. The ssactor_handle_message

callback is invoked when a session message has been received and accepted by the monitor.

1 ssactor_init(_Args, _InitKey) ->

2 #room_manager_state{rooms=orddict:new()}.

3 ssactor_join(_, _, _, State) ->

4 {accept, State}.

5 ssactor_conversation_established("ChatServer",

6 "RoomRegistry", _CID, ConvKey, State) ->
7 {ok, State}.

8 ssactor_handle_message("ChatServer", "RoomRegistry",

9 _, _, "lookupRoom", [RoomName], State, ConvKey) ->

10 handle_get_room(ConvKey, RoomName, State),

11 {ok, State}.

12
13 handle_get_room(ConvKey, RoomName, State) ->

14 RoomDict = State#room_manager_state.rooms,

15 case orddict:find(RoomName, RoomDict) of

16 {ok, RoomPID} ->

17 mse_chat_client:found_room_pid(ConvKey,

18 RoomName, RoomPID);

19 error ->

20 mse_chat_client:room_not_found(ConvKey, RoomName)

21 end.

Figure 3: Excerpt from mse_chat_room_manager implementation

Figure 3 shows an excerpt from the implementation of mse_chat_room_manager. The actor creates a
new map structure in the ssactor_init callback to hold rooms that will be created later; always accepts
invitations to join sessions; and does nothing when the session is established. The ssactor_handle_message

callback details how the lookupRoom message in the ChatServer protocol is handled: the actor queries
the map between room names and PIDs, sending the PID to the requesting actor if it is found, and
sending a “room not found” message if not. In line with Erlang development practices, message passing
is abstracted as an API call: as an example, the mse_chat_client:room_not_found function is defined as
room_not_found(ConvKey, RoomName)->conversation:send(ConvKey, ["ClientThread"], "roomNotFound", [RoomName]).

The conversation:send function sends a session message roomNotFound with payload RoomName to ClientThread;
ConvKey (provided by ssactor_handle_message) is used to identify the correct monitor. The implementation
of the client follows a similar pattern. We show an excerpt of the implementation of the client in Figure 4;
note that a ChatServer session is initiated in ssactor_init.

S. Fowler 5

1 ssactor_init([ClientID, ClientSocket], InitKey) ->

2 State =

3 #client_state{client_id=ClientID,

4 client_name=undefined, client_socket=ClientSocket,

5 init_key=InitKey},

6 conversation:start_conversation(InitKey,
7 "ChatServer", "ClientThread"),

8 inet:setopts(ClientSocket, [{active, true}]),

9 State.

10
11 ssactor_conversation_established("ChatServer",

12 "ClientThread", _CID, ConvKey, State) ->

13 conversation:register_conversation(main_thread, ConvKey),

14 {ok, State};

15
16
17 handle_message(Message, State) ->

18 InitKey = State#client_state.init_key,

19 SplitMessage = string:tokens(Message, ":"),

20 [Command|PacketRemainder] = SplitMessage,

21 NewState =

22 if Command == "JOIN" ->

23 [RoomName|_Rest] = PacketRemainder,

24 conversation:become(InitKey, main_thread,

25 "ClientThread", join_room, [RoomName]),

26 State;

27 [...]

28 end,

29 {noreply, NewState}

30
31 ssactor_become("ChatSession", "ClientThread", chat,

32 [Message], ConvKey, State) ->

33 handle_chat(ConvKey, Message, State),

34 {ok, State};

Figure 4: Excerpt from the mse_chat_client implementation

Recall that the mse_chat_client participates in both the ChatServer and ChatSession protocols. Upon
receiving messages from a chat client program, the process must ensure that a message is sent in the
correct session. For example, a ‘create room’ packet from the client application must be handled by
ChatServer, whereas a ‘send chat message’ packet must be handled by ChatSession.

To accomplish this, we make essential use of the ability to switch between roles. In our implementation
(shown in Figure 4), we can register a session to a key (Line 13), and can use this key to switch to the
session (Line 24). As an example, the ClientThread session is registered with main_thread key, and switches
to this session in order to send a lookupRoom packet to the room registry. The mse_chat_room_instance actor
uses a similar approach to broadcast messages to the chat room.

3 Design and Implementation of monitored-session-erlang

3.1 System Overview

The monitored-session-erlang system is implemented as an Erlang library. The supervision tree for the
system is shown in Figure 5a: conversation_runtime_sup is the root supervisor of the system, which restarts
top-level processes should they fail. The protocol_registry process associates protocols and roles with
FSMs used for monitoring, and the actor_registry process maintains a list of active actors which are
registered to take part in sessions.

Each session is associated with a coordinating process (depicted as CID 1 . . . CID n in Figure 5a);
coordinating processes are used to coordinate actions such as setting up a session and failure handling.
Coordinating processes are arranged as children of the conversation_instance_sup process, but are not
restarted should they fail. As a high-level overview, the system works as follows:

• Local projections of protocols are used to generate monitors based on communicating finite-state
machines (CFSMs). A configuration file defines which roles, in which protocols, actors may fulfil.

• When an actor is spawned, it is added to the actor_registry, allowing it to participate in sessions.
• A session initiator begins a session. At this point, eligible actors are invited to fulfil each role in the

protocol. When all roles are fulfilled, the participants of the session are notified that the session has
been initiated successfully and are provided with the monitor FSM to use. Conversely, if it is not
possible to fulfil all of the roles then all actors registered in the session are notified of the failure.

• Session messages are sent using a session API, and processed by session actors. All communication
using the session API is mediated by monitors, and messages which do not conform to the protocol

6 An Erlang Implementation of Multiparty Session Actors

conversation_runtime_sup

conversation_instance_sup protocol_registry actor_registry

CID 1 ... CID n

(a) monitored-session-erlang supervision tree

User Logic Process

Monitor:

Session 1, Role Buyer

Monitor:

Session 2, Role Warehouse

User Logic Process Monitor Process

Message(Buyer , SID 1, buy)

Message
(Buyer , SID 1, buy)

.

.

.

(b) Erlang Session Actors
Figure 5: Components of monitored-session-erlang

are rejected, with an exception thrown in the sender.
• Due to the supervision tree structure within the Erlang applications, we cannot assume that

participants are alive for the duration of the session. Consequently, we provide failure detection
mechanisms, which detect when the session can no longer safely proceed.

• When the session is over (or an actor ends it prematurely due to an error), a participant calls a
function which notifies other participants in the session that the session has ended.

3.2 Erlang Session Actors

A considerable insight due to Neykova and Yoshida is that instead of having a single monitor, session
actors can fulfil multiple roles in multiple protocols. At an abstract level, we can think of an Erlang
session actor as containing seven components: a process ID, a term currently being evaluated, a mailbox,
an actor state, a monitor lookup table, a routing table mapping session / role pairs to actor PIDs, and a
message handler function. Each monitor can be uniquely identified using a pair of a session ID and a role.
Role Registration Neykova and Yoshida [17] associate actors with roles using Python decorators, which
is an appealing and intuitive method of associating message handlers, protocols, and roles together. It is
unclear how it would be possible to allow multiple instances of sessions, which is an important requirement
when writing server applications. For example, in the chat server, a single mse_chat_room_registry actor
can take part in multiple instances of the ChatServer protocol to connect multiple different clients to chat
rooms. Instead, in monitored-session-erlang, actors are associated with roles using a configuration file.
Process Structure When working in the setting of a functional, actor-based language with immutable
variables, it is convenient to have separate processes for monitoring and user logic (Figure 5b).

The solution used in monitored-session-erlang is to provide a session key or ConvKey to the user. A
session key is a 3-tuple (M,R,S) where M is the process ID of the monitor process, R is the name of
the role that the participant is playing in the current message handler, and S is the process ID of the
coordinating process for the current session. To the user, the session key is an opaque, abstract value.
Passing the session key as a parameter to the send operation allows the correct monitor to be identified in
order to check the outgoing message and update the monitor state. The monitor state will be updated in
the monitoring process, and consequently there is no requirement for linearity tracking.

3.3 Session Initiation

A strength of the multiparty session actor framework is that messages can be sent to a role name instead
of requiring a concrete actor address, but this introduces the issue of associating roles with endpoints
at the beginning of the protocol. The work of Neykova and Yoshida [17] makes essential use of the

S. Fowler 7

1: Start

conversation_instance

process

2: Retrieve monitors and

candidate actors
3: Invite actors to fulfil roles 4: Notify of success or failure

Initiator

Co-

ordinator

Process

Spawn(Chat
Session,
PID,

ClientThread)

Co-

ordinator

Process

Protocol Registry

Actor Registry

[(ClientThread: M1),
RoomRegistry: M2)]

[(ClientThread:
[PID1, PID3]),
(RoomRegistry:

[PID2])]

Co-

ordinator

Process

PID1

PID2

accept(ClientThread)

invite(RoomRegistry)

Co-

ordinator

Process

PID1

PID2

Success(
[(ClientThread, PID1),
(RoomRegistry, PID2)],

M2)

Success(
[(ClientThread, PID1),
(RoomRegistry, PID2)],

M1)

Figure 6: Actor Invitation Workflow

Advanced Message Queueing Protocol (AMQP), which provides abstractions known as exchanges to
distribute messages to other AMQP entities. Session initiation requires four exchanges, and all session
communication is routed through a single exchange per session instance.
As Erlang is an actor-based language, we do not use AMQP, resulting in a simpler invitation workflow.
We require two centralised registries: a protocol_registry, which contains precomputed monitor FSMs
for each role in a protocol, and an actor_registry, which associates active session actors with the roles
they may fulfil. More concretely, the actor_registry is a map Protocol Name 7→ (Role 7→ Actor PID).
The procedure for initiating a session (shown in Figure 6) is as follows:

1. A session actor—the session initiator—requests that a session is initiated, specifying a protocol
name, and the role it wishes to take in the protocol.

2. A conversation_instance process is spawned to co-ordinate session actions.
3. The conversation_instance process contacts the protocol_registry process to retrieve the list of

roles and monitors used in the process, and contacts the actor_registry process to retrieve the list
of actor process IDs which may fulfil the roles in the session.

4. The conversation_instance process invites eligible actors to fulfil each role. Once all roles have
been fulfilled, each actor is notified, invoking the ssactor_conversation_established callback. If it is
not possible to fulfil a role, for example because all active session actors have declined the invitation
to fulfil the role, then the invitation process is aborted. All actors already invited to fulfil roles in
the protocol are notified, resulting in the invocation of the ssactor_conversation_error callback.

3.4 Monitoring

Messages are checked against monitors based on communicating finite-state machines [4]. Firstly,
global types are projected into local types, and the local types are used to construct monitors based on
communicating finite state machines using an algorithm based on that of Deniélou and Yoshida [10].

Transitions between states are predicated on send and receive operations. The monitor generated for
the ChatServer protocol from Section 2.1 projected at the RoomRegistry role is shown in Figure 7.

The monitor generation algorithm also makes use of the nested FSM optimisation described by Hu et al.
[15] to ensure that generated monitors are polynomial in the size of the global type in the presence of
parallel composition. Instead of generating states for all possible interleavings, the algorithm generates
a separate monitor for each block of interactions composed in parallel, and the outer monitor can only
progress when all nested monitors are in a terminal state.

A notable difference to standard CFSMs is that, following the design of Scribble, we allow transitions
to be predicated on sending a message to a set of recipients, in a multicast fashion. The failure detection
mechanisms in Section 4.1 ensure all recipients accept the message.

8 An Erlang Implementation of Multiparty Session Actors

Invitation
Session

Established

Session

Communication

Session

Terminated

ssactor_join ssactor_conversation_
established

ssactor_handle_message
ssactor_handle_call

ssactor_conversation_ended
ssactor_conversation_error

Figure 8: Session Lifecycle

0

1

 ClientThread?lookupRoom

3 ClientThread?listRooms

2

 ClientThread?createRoom

 ClientThread!roomPid

 ClientThread!roomNotFound

 ClientThread!roomList

 ClientThread!roomExists

 ClientThread!createRoomSuccess

Figure 7: Monitor for ClientThread
role of ChatServer protocol

Monitor generation takes place when the actor system is started,
and the generated monitors are stored in the protocol_registry

actor. The second aspect of monitoring is the monitoring runtime:
once a monitor has been generated, it may be used to check
incoming and outgoing messages against the local specification
for a type. The monitor process for an actor contains a hashtable
mapping session ID / role pairs to monitors. Checking a message
against a monitor involves checking whether any transitions can
be made from the current monitor state. If not, then an exception
is raised.

3.5 Sending Messages

A user may send a monitored session message by calling the
conversation:send function. In order to send a message, four

pieces of information are required: a session key ConvKey; a list of recipients; a message name; and a list
of values. Recall that the monitoring process is external to the logic process, and the session key contains
the role name and the session ID, which uniquely identify a monitor.

When conversation:send is called, a message is sent to the actor monitor process, which retrieves the
appropriate monitor using the role name and session ID. Should the message be accepted by the monitor,
the role will be resolved to the PID of the monitor of the receiving process by the routing table. At
this point, a synchronous call will be made to the remote monitor to ascertain whether the message can
be accepted: if so, both monitors are advanced, and the actor will proceed. The monitoring process is
synchronous, in order to allow errors to be reported to the user.

If a monitor rejects a message, an exception is thrown. Such behaviour is consistent with the Erlang
design ideology of letting a process fail if its behaviour deviates from a specification. As a result,
monitored-session-erlang extends the let-it-fail ideology to communication patterns.

3.6 The ssa_gen_server Behaviour

In keeping with the Erlang/OTP method of designing applications, monitored-session-erlang provides a
behaviour, ssa_gen_server, which contains callbacks that should be implemented by Erlang session actors.
Figure 8 describes the session lifecycle, and the expected callbacks.

During session initiation, actors eligible to fulfil a role will be invited to participate in the session,
triggering the ssactor_join callback. The expected return value consists of a pair of either the atom
accept or decline, and an updated actor state. Once all roles in the protocol have been fulfilled, the
ssactor_conversation_established callback is invoked. At this point, the actor can begin to communicate
using session messages. When a message is received, ssactor_handle_message is invoked.

S. Fowler 9

1: Monitor

participants

A

B

C

D

monitor

monitor

monitor

A

B

C

D

2: Session

Communication

A

B

C

D

3: Failure

Detected

... A

B

C

D

check(D)

check(D)

4: Involvement

Check

A

B

C

D

continue

continue

5: Notification

Figure 9: Push-Based Failure Detection

Once all communication has finished an actor may end the session, which invokes ssactor_conversation_ended
in all participant sessions. Alternatively, ssactor_conversation_error is invoked if an error occurs and the
session cannot continue (for example, an actor that is required in the session terminates).

4 Failure Detection and Handling

A common assumption for implementations of either session-typed languages, or monitoring frameworks
for applications using session types, is that processes persist throughout the course of the session.

Unfortunately, this assumption does not hold true in Erlang applications. An important design pattern
in Erlang applications is to arrange processes in supervision hierarchies, allowing processes to fail and be
restarted by their supervisors when they encounter an unrecoverable fault. Consequently, it is not possible
to assume that a process is running throughout the entirety of the session. In this section, we detail how
failures within a session can be detected, the circumstances in which a session can continue in spite of the
termination of a participant, and a modular method based on subsessions to facilitate error handling.

To do so, we rely on two tools provided by Erlang: firstly, Erlang provides the possibility to emulate
synchronous calls, with a call returning an error or timing out if a remote actor has terminated or is
unreachable; and secondly, Erlang provides the possibility to register for reliable notifications should a
process terminate, known as monitoring processes. The latter method, not to be confused with monitoring
the communication between actors, is reliable both in the case of a single node, and in the case that a
remote node becomes unreachable.

4.1 Failure Detection

Should a process in the session fail, the failure should be detected, as it may be the case that the process
which has failed is playing a role which is involved in the remainder of the session.

To this end, we describe two methods of failure detection: push-based, which involves using the Erlang
monitor functionality to detect when a participant is no longer available, and pull-based, which uses
reliable sends and a two-phase commit protocol.
Push-Based Push-based failure detection uses Erlang’s reliable termination detection functionality to
notify other participants in the session that an unrecoverable failure has occurred. Figure 9 shows the
main stages of the push-based failure detection system: firstly, the co-ordinator process for a session
monitors each participant in the session to be notified if any of the processes terminate. Should a failure in
any of the processes be detected, then the co-ordinator process sends a request to each other participant
of the session to determine whether, from the point of view of each participant, the terminated actor is
involved in the remainder of the session. More specifically, a role r is involved in a session if there exists a
transition reachable from the current monitor state where r is the sender or receiver in a communication.

10 An Erlang Implementation of Multiparty Session Actors

After the involvement check is complete, then participants are notified of the result. Should all actors
respond that the terminated participant is not involved in the remainder of the session, then the session
may continue as before; if the terminated participant is involved in the remainder of the session or any
of the other actors in the session are unreachable, however, then it is not possible to continue, and the
remaining participants are notified of the session’s termination.

0 1C?Msg1 2A?Msg2

A,C!Msg5
3A,C!Msg3

4A,C!Msg6

C?Msg4

(a) Example Monitor

State Reachable Roles
0 [A, C]
1 [A, C]
2 [A, C]
3 [C]
4 []

(b) Reachability table
Figure 10: Monitor Reachability Analysis

Push-based failure detection includes a check to see whether a given role is involved in the remainder
of the session. Figure 10a shows a monitor and a table detailing the roles reachable at each state3; the
reachability algorithm only needs to be run once, upon monitor generation, and also records the IDs of
any nested FSMs used in order to detect roles inside par blocks. Checking whether a role is involved at
the current point in the session is achieved by a lookup of the current state ID.

A

B

C

D

queue_msg(Msg1())

queue_msg(Msg1())

queue_msg(Msg1())

(a) Queue Messages: Successful

A

B

C

D

drop_msg(Msg1())

drop_msg(Msg1())

(b) Queue Messages: Failure

Figure 11: Pull-based failure
detection

Pull-Based As Scribble protocols allow messages to be sent to multiple
participants, it is desirable to ensure that messages are only delivered if all
processes receiving the message are active. To do so, pull-based failure
detection uses a two-phase commit to ensure that all recipient processes
are available, and that all recipient monitors accept the message.

The first stage of pull-based failure detection is to send a synchronous
message, queue_msg, to each recipient monitor process (Figure 11a). Ei-
ther the call will succeed, returning ok, indicating that the call was suc-
cessful and the message was accepted by the remote monitor; the call
will succeed, but returning error, indicating that the remote process was
available but the remote monitor rejected the incoming message; or the
call will fail. When a message is queued, it is assigned a unique identifier.
Should a message be accepted, it is stored in a table; should all messages
be delivered successfully, a second, asynchronous message will be sent
to commit the message.

If the a queue message fails for any participant however (Figure 11b),
then the message cannot be delivered successfully. If the failure is due
to a message rejection, then it is possible for the session to continue: a
drop message is sent to all participants, the messages are discarded from
the queue, and the failure is synchronously reported to the sender. The
session cannot continue if a process is unreachable.

Discussion Push-based approaches allow failures to be detected as soon as they occur, and allow the
sessions to continue should the failed role not be involved in the remainder of the session. Pull-based
approaches only report failures when a failed role is needed, but do not require co-ordination amongst
processes to detect whether it is safe to continue. On the other hand, however, pull-based detection

3Some readers may recognise this monitor as that of buyer 2 in the two-buyer protocol [14].

S. Fowler 11

approaches fall short when an actor terminates while processing a message; consider a protocol X()from A to

B, C; Y()from B to A, C;.
Suppose X is delivered successfully, but B terminates prior to sending Y to A: in this case, there would be

no way of detecting the failure. Such a situation can be detected using push-based detection. Pull-based
detection also falls short if a process terminates between queueing and committing a message. Push-based
failure detection falls short should a message handler involving the failed role be executed while the safety
check is in progress. Suppose A terminates while B processes message X. Without pull-based detection,
there no guarantee that the failure will be detected before Y is sent to A and C, with only C receiving the
message. Consequently, it is useful to use both methods of failure detection together to ensure that failures
are eventually detected (using push-based detection) and that they are detected should the process fail
before the safety check is complete (using pull-based detection).

4.2 Subsessions for Exception Handling

In unpublished work4, Neykova and Yoshida apply subsessions to dynamically introduce actors into roles,
in particular demonstrating the technique using a Fibonacci benchmark. The session actor framework
requires all roles in a protocol to be fufilled upon session initiation, but due to the common Erlang practice
of storing process IDs in registries and passing them in messages, it is often the case that it is not known
which actor should fulfil which role until later in the protocol. As an example, consider again the chat
server: a user sends a room name to the room registry which, if the room exists, responds with the room’s
process ID. It is only at this point that we know which actor should fulfil the ChatRoom role!

Subsessions are a modular abstraction which allow such a pattern to be encapsulated. Interestingly, at
the end of their paper on nested protocols, Demangeon and Honda [9] state:

Yet exceptions are absolutely necessary when specifying real-world protocols. We believe that nested
protocols give a simple way to handle exceptions, by making explicit blocks of computation.

This is especially poignant given a setting where actors can terminate in the middle of a session: by
splitting protocols into subprotocols, it is possible to repeat parts of a session with possibly-different
participants should a participant in a subsession terminate.

Demangeon and Honda also describe a method by which subsessions may return results, which we
can adapt to implement a simple failure handling mechanism. We allow participants in a subsession to
state that the subsession has failed through the conversation:subsession_failed function, which takes an
argument stating the failure. We can then introduce the initiates construct:

InitiatorRole initiates ProtocolName(Roles) { SuccessBlock } handle(FailureName) { FailureBlock }

This construct states that role InitiatorRole initiates an instance of the ProtocolName protocol as
a subsession. If the subsession completes successfully (that is, if the session finishes and an actor
calls conversation:subsession_complete), then the protocol proceeds as SuccessBlock. If the process calls
conversation:subsession_failed with the argument FailureName however, then the protocol proceeds as
FailureBlock. A process can have an unlimited number of handle clauses. If no failures are expected, then
initiates can be used without an explicit SuccessBlock.

The initiates construct indicates that the session initiator initiates the session, and makes a choice
based on the result. To every role other than the initiator, the construct is simply projected as a choice
directed by the initiator role: safety follows from enforcing the same restrictions on SuccessBlock

4http://www.doc.ic.ac.uk/~rn710/sactor/main.pdf

http://www.doc.ic.ac.uk/~rn710/sactor/main.pdf

12 An Erlang Implementation of Multiparty Session Actors

ed_sup

ed_udp_handler_sup ed_zone_sup ed_extension_sup

simple_stats_
server

ed_zone_
registry_server

ed_zone_data_sup

ed_udp_server

.com .net...

Req1 Reqn...

(a) Supervision hierarchy for erlang-dns (b) Messages sent to fulfil a DNS lookup request
Figure 12: DNS Server Case Study

and each FailureBlock as in Scribble choice blocks. We provide a distinguished reason for failure,
ParticipantOffline, which is returned should a session be aborted due to failure detection.

ClientThread initiates ChatSession(ClientThread,
new ChatRoom) {

clientLeftRoom() from ClientThread to Logger;
continue ClientChoiceLoop;

} handle(Kicked) {
clientKicked() from ClientThread to Logger;
continue ClientChoiceLoop;

} handle(ParticipantOffline) {
roomTerminated() from ClientThread to Logger;
continue ClientChoiceLoop;

}

As an example, let us introduce a Logger process to the
ChatServer protocol, and state that a client thread should send a
message to the logger with the reason for leaving. We introduce
two handle clauses: if the subsession ends with Kicked, then a
moderator has expelled the client from the room, whereas if
the subsession ends with ParticipantOffline is called, then the
actor playing the ChatRoom role has terminated. In both cases,
the appropriate messages are sent to the logger, and the client
is free to join another room.

5 Evaluation

5.1 DNS Server Case Study

The erlang-dns project5 is an Erlang/OTP server for the Domain Name System (DNS). Figure 12a shows
the supervision hierarchy of the server: of interest to protocol are zone data servers (shown as ‘.com’ and
‘.net’), which map domain names to IP addresses; ed_zone_data_server, which maps domain names to
zone data servers; and UDP handler servers (shown in the diagram as Reqi), which handle requests.

Upon system initiation, the ed_udp_server process opens a UDP acceptor socket and listens for incoming
requests. When a query is received, an ed_udp_handler_server process is spawned to handle the request,
and it is at this point that the session is started. Figure 12b shows the messages sent when fulfilling a DNS
request: the UDP handler server contacts the zone registry to ascertain whether or not the zone exists. If
not, the server returns InvalidZone, at which point a DNS response packet to this effect is generated and
sent back to the client. If the zone is found, the zone registry returns the PID of the zone server, which is
queried for information about the zone. At this point, if the IP address can be resolved from the request,
then it is returned to the user, but it may also be necessary to perform a recursive lookup.
Protocol Figure 13 shows the Scribble protocols for erlang-dns. There are three roles: UDPHandlerServer,
fulfilled by the ed_udp_handler_server instance initiating the session; DNSZoneRegServer, fulfilled by
ed_zone_registry_server; and DNSZoneDataServer, fulfilled by a zone data server able to handle the request.
It is not possible to fulfil the DNSZoneDataServer role upon session initiation as the actor to invite depends
on the result of the request to the zone registry; consequently, we have a main protocol HandleDNSRequest,

5https://www.github.com/hcvst/erlang-dns

https://www.github.com/hcvst/erlang-dns

S. Fowler 13

1 global protocol HandleDNSRequest(role UDPHandlerServer, role
DNSZoneRegServer) {

2 rec QueryResolution {

3 FindNearestZone(DomainName)

4 from UDPHandlerServer to DNSZoneRegServer;

5 choice at DNSZoneRegServer {

6 ZoneResponse(ZonePID) from DNSZoneRegServer to
UDPHandlerServer;

7 UDPHandlerServer initiates GetZoneData(

8 UDPHandlerServer, new DNSZoneDataServer);

9 continue QueryResolution;

10 } or { InvalidZone() from DNSZoneRegServer to
UDPHandlerServer; }

11 }

12 }

13
14 global protocol GetZoneData(role UDPHandlerServer, role

DNSZoneDataServer) {

15 ZoneDataRequest() from UDPHandlerServer to
DNSZoneDataServer;

16 ZoneDataResponse(RRTree) from DNSZoneDataServer to
UDPHandlerServer;

17 }

config() ->

[{ed_zone_data_server, [{"GetZoneData", ["DNSZoneDataServer"]}]},

{ed_zone_registry_server, [{"HandleDNSRequest", ["DNSZoneRegServer"]}]},

{ed_udp_handler_server, [{"HandleDNSRequest", ["UDPHandlerServer"]}, {"GetZoneData", ["UDPHandlerServer"]}]}].

Figure 13: Scribble Protocol and Configuration File for erlang-dns

and a subprotocol GetZoneData which is initiated should ed_zone_registry_server respond with a PID.

Implementation To adapt erlang-dns to use monitored-session-erlang, we firstly define a configuration
file to associate each actor with the role that it plays in each protocol. Next, we adapt each of the actors
which were formerly instances of gen_server to be instances of ssa_gen_server. Vitally, no changes are
made to the supervision structure, as it is orthogonal to the monitoring of messages.

0

500

1000

1500

2000

0 2500 5000 7500 10000
Number of Pings

T
im

e
ta

ke
n

/ m
s

Condition
Monitored Session Erlang (MSE) MSE: No synchronous error reporting

MSE: No monitoring Erlang gen_server2

Results of PingPong Benchmark for Monitored Session Erlang

(a) PingPong experimental results

Figure 14: Experimental evaluation of overheads

There are two main ways that the session imple-
mentation diverges from the original implementa-
tion. Firstly, once the zone data server PID has been
returned, we start a new subsession to invite the zone
data server and retrieve the zone data. Secondly, we
emulate a synchronous call with two asynchronous
messages. As DNS is most commonly implemented
over UDP, there is no guarantee that a response will
ever be received. Should a failure occur within the
DNS server, there is little point in trying to fulfil the
remainder of a request. Instead, it is better to allow
the supervisor to restart the component and let the
request time out.

5.2 Overheads

We measure the overheads of monitored-session-erlang
using the PingPong benchmark: an actor A sends a
message ping to an actor B, which responds with a

message pong. We measure several scenarios: “Erlang gen_server2” refers to an implementation not using
monitored-session-erlang, where actors communicate using the gen_server:cast function. The remaining
three scenarios use monitored-session-erlang: “MSE” refers to an implementation using the full system;
“MSE: No synchronous error reporting” refers to an implementation without synchronous reporting of
monitoring errors, and “MSE: No monitoring” refers to an implementation without monitoring.

The different scenarios demonstrate different aspects of the system: in contrast to the original work on
session actors, sending a message involves synchronous calls to both the source and destination monitors
to immediately report failures.

14 An Erlang Implementation of Multiparty Session Actors

Should either of the checks fail, an exception is raised, allowing the computation to be aborted as
soon as a message is rejected by a monitor. Employing an asynchronous approach results in two fewer
messages, but errors have to be reported as separate messages, meaning that the remainder of the handler
must run before an error report can be processed. The final variation uses monitored-session-erlang with
monitoring disabled: the overheads incurred in this scenario are as a result of the external monitor process
and the resolution of role names to actors.

Figure 14a shows the experimental results of the four basic experimental scenarios6. The gen_server2

implementation is fastest at 0.111ms per iteration, whereas the full monitored-session-erlang system has
a mean time per iteration of 0.23ms, giving a final overhead per iteration of 0.12ms (or 0.06ms per
messsage). The overheads can be explained by the additional messages sent between the monitors in order
to detect and report monitoring errors.

6 Related Work

Session types were originally introduced by Honda [12] and later expanded upon by Honda et al. [13]
to model interactions between two communicating parties. Honda et al. [14] propose multiparty session
types to model interactions with more than two participants. A global type is projected to a local type for
each participant. Conformance to local types can be checked statically, or monitored at runtime.

Deniélou and Yoshida [10] discuss the connections between multiparty session types and communicat-
ing finite state machines [4]: we use a variant of this algorithm in the monitor generation phase. Chen et al.
[6] and Bocchi et al. [3] formalise the theory of runtime monitoring, with monitors and routing tables
as first class entities, and reductions of monitored processes predicated on labels emitted by a labelled
transition system on local types. The SPY framework [18] can monitor communication against multiparty
session types in Python, and runtime monitoring can also be used to enforce timing constraints [19].

Capecchi et al. [5] describe a process calculus with multiparty session types containing try..catch and
throw constructs, where a set of roles move to a compensation process should an exception be thrown.
Chen et al. [7] describe a formal system of protocol types based on multiparty session types, where each
interaction is annotated with the exceptions that may occur as a result of the interaction, and continuations
which are invoked upon a failure occurring. The system is realised by a transformation stage which
combines projection with an analysis of participants which need to be notified should an exception occur.
The formalism is elegant and a particular strength is its decentralised nature. In our setting, the requirement
to satisfy the protocol well-formedness conditions for choice blocks means that such notifications must be
encoded explicitly in the protocol. In contrast, our approach of using subsessions to structure protocols
allows parts of the protocol to be retried with different participants if one terminates or goes offline.

Mostrous and Vasconcelos [16] consider a core session calculus based on Erlang, using Erlang’s
ability to generate fresh references to design a static type discipline relying on correlation sets [20] to
associate messages with sessions. The type system has not yet been implemented. Crafa [8] defines a
behaviourally-typed actor caclulus, AC, based on Scala’s actor primitives, guaranteeing that each input is
eventually matched with exactly one output in the system. We expand upon the work of Neykova and
Yoshida [17] in monitoring actors according to multiparty session types by investigating how the session
actor framework can be applied in the setting of an actor-based functional language without relying on
AMQP, and propose methods of handling the case where an actor terminates during a session.

6Experimental conditions: Two cluster nodes with 4 16-core AMD Opteron 6376 processors at 2300MHz; 264GB RAM;
RTT 0.101ms using ping. Scientific Linux 7, Erlang 7.0. Value plotted: arithmetic mean over 100 repetitions, measured after
session establishment.

S. Fowler 15

7 Conclusion

Communication is central to software written in actor-based languages. We have described the design
and implementation of monitored-session-erlang, a framework that allows communication in Erlang
applications to be monitored against multiparty session types. Our tool demonstrates the applicability
of the conceptual framework of multiparty session actors to actor-based functional languages, motivates
subsessions as a fundamental abstraction, and introduces features such as synchronous error reporting and
allowing actors to take part in multiple instances of a protocol.

Future work will centre around a formal semantics, and an investigation into how ideas from the
dynamic view of session-typed actors can be used in a session-typed concurrent λ -calculus.
Acknowledgements Thanks to Sam Lindley, Garrett Morris, and Philip Wadler for useful discussions, and
to the anonymous reviewers for detailed and insightful comments. This work was supported by EPSRC grant
EP/L01503X/1 (University of Edinburgh CDT in Pervasive Parallelism).

References
[1] G. A. Agha. Actors: A model of concurrent computation in distributed systems. Technical report, DTIC Document, 1985.
[2] J. Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010. doi: 10.1145/1810891.1810910.
[3] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring networks through multiparty session types.

In FORTE, pages 50–65. Springer, 2013. doi: 10.1007/978-3-642-38592-6_5.
[4] D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323–342, 1983. doi: 10.1145/322374.

322380.
[5] S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty sessions. MSCS, 26(02):156–205, 2016. doi:

10.1017/S0960129514000164.
[6] T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asynchronous distributed monitoring for multiparty

session enforcement. In TGC, pages 25–45. Springer, 2011. doi: 10.1007/978-3-642-30065-3_2.
[7] T.-C. Chen, M. Viering, A. Bejleri, L. Ziarek, and P. Eugster. A Type Theory for Robust Failure Handling in Distributed

Systems. In FORTE, pages 96–113. Springer, 2016. doi: 10.1007/978-3-319-39570-8_7.
[8] S. Crafa. Behavioural Types for Actor Systems. CoRR, abs/1206.1687, 2012. URL http://arxiv.org/abs/1206.1687.
[9] R. Demangeon and K. Honda. Nested protocols in session types. In CONCUR, pages 272–286. Springer, 2012. doi:

10.1007/978-3-642-32940-1_20.
[10] P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In ESOP, pages 194–213.

Springer, 2012. doi: 10.1007/978-3-642-28869-2_10.
[11] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR Formalism for Artificial Intelligence. In IJCAI, pages

235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.
[12] K. Honda. Types for dyadic interaction. In CONCUR, pages 509–523. Springer, 1993. doi: 10.1007/3-540-57208-2_35.
[13] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured communication-based

programming. In ESOP, pages 122–138. Springer, 1998. doi: 10.1007/BFb0053567.
[14] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL, pages 273–284, New York,

NY, USA, 2008. ACM. doi: 10.1145/1328438.1328472.
[15] R. Hu, R. Neykova, N. Yoshida, R. Demangeon, and K. Honda. Practical interruptible conversations. In RV, pages 130–148.

Springer, 2013. doi: 10.1007/978-3-642-40787-1_8.
[16] D. Mostrous and V. T. Vasconcelos. Session typing for a featherweight Erlang. In COORDINATION, pages 95–109.

Springer, 2011. doi: 10.1007/978-3-642-21464-6_7.
[17] R. Neykova and N. Yoshida. Multiparty session actors. In COORDINATION, pages 131–146. Springer, 2014. doi:

10.1007/978-3-662-43376-8_9.
[18] R. Neykova, N. Yoshida, and R. Hu. SPY: Local verification of global protocols. In RV, pages 358–363. Springer, 2013.

doi: 10.1007/978-3-642-40787-1_25.
[19] R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for multiparty conversations. In BEAT. Open Publishing

Association, 2014. doi: 10.4204/EPTCS.162.3.
[20] M. Viroli. Towards a formal foundation to orchestration languages. ENTCS, 105:51–71, 2004. doi: 10.1016/j.entcs.2004.

05.008.
[21] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol language. In TGC, pages 22–41. Springer, 2013. doi:

10.1007/978-3-319-05119-2_3.

http://arxiv.org/abs/1206.1687

	Introduction
	Contributions

	An Overview of Multiparty Session Actors
	A Chat Server

	Design and Implementation of monitored-session-erlang
	System Overview
	Erlang Session Actors
	Session Initiation
	Monitoring
	Sending Messages
	The ssa_gen_server Behaviour

	Failure Detection and Handling
	Failure Detection
	Subsessions for Exception Handling

	Evaluation
	DNS Server Case Study
	Overheads

	Related Work
	Conclusion

