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The asynchronous and unidirectional communication model supported by mailboxes is a key reason for the

success of actor languages like Erlang and Elixir for implementing reliable and scalable distributed systems.

While many actors may send messages to some actor, only the actor may (selectively) receive from its mailbox.

Although actors eliminate many of the issues stemming from shared memory concurrency, they remain

vulnerable to communication errors such as protocol violations and deadlocks.

Mailbox types are a novel behavioural type system for mailboxes first introduced for a process calculus by

de’Liguoro and Padovani in 2018, which capture the contents of a mailbox as a commutative regular expression.

Due to aliasing and nested evaluation contexts, moving from a process calculus to a programming language is

challenging. This paper presents Pat, the first programming language design incorporating mailbox types,

and describes an algorithmic type system. We make essential use of quasi-linear typing to tame some of

the complexity introduced by aliasing. Our algorithmic type system is necessarily co-contextual, achieved

through a novel use of backwards bidirectional typing, and we prove it sound and complete with respect to our

declarative type system. We implement a prototype type checker, and use it to demonstrate the expressiveness

of Pat on a factory automation case study and a series of examples from the Savina actor benchmark suite.
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1 INTRODUCTION
Software is increasingly concurrent and distributed, but coordinating concurrent computations

introduces a host of additional correctness issues like communication mismatches and deadlocks.

Communication-centric languages such as Go, Erlang, and Elixir make it possible to avoid many of

the issues stemming from shared memory concurrency by structuring applications as lightweight

processes that communicate through explicit message passing. There are two main classes of
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Fig. 1. Channel- and actor-based languages [Fowler et al. 2017]

communication-centric language. In channel-based languages like Go or Rust, processes communi-

cate over channels, where a send in one process is paired with a receive in the recipient process.

In actor languages like Erlang or Elixir, a message is sent to the mailbox of the recipient process,

which is an incoming message queue; in certain actor languages, the recipient can choose which

message from the mailbox to handle next.

Although communication-centric languages eliminate many coordination issues, some remain.

For example, a process may still receive a message that it is not equipped to handle, or wait for

a message that it will never receive. Such communication errors often occur sporadically and

unpredictably after deployment, making them difficult to locate and fix.

Behavioural type systems [Hüttel et al. 2016] encode correct communication behaviour to support

correct-by-construction concurrency. Behavioural type systems, in particular session types [Honda
1993; Honda et al. 1998; Takeuchi et al. 1994], have been extensively applied to specify communi-

cation protocols in channel-based languages [Ancona et al. 2016]. There has, however, been far

less application of behavioural typing to actor languages. Existing work either imposes restrictions

on the actor model to retrofit session types [Harvey et al. 2021; Mostrous and Vasconcelos 2011;

Tabone and Francalanza 2021, 2022] or relies on dynamic typing [Neykova and Yoshida 2017b]. We

discuss these systems further in §7.

Our approach is based onmailbox types, a behavioural type system for mailboxes first introduced

in the context of a process calculus [de’Liguoro and Padovani 2018]. We present the first program-

ming language design incorporating mailbox types and we detail an algorithmic type system, an

implementation, and a range of benchmarks and a factory case study. Due to aliasing and nested

evaluation contexts, the move from a process calculus to a programming language is challenging.

We make essential and novel use of quasi-linear typing [Ennals et al. 2004; Kobayashi 1999] to

tame some of the complexity introduced by aliasing, and our algorithmic type system is necessarily

co-contextual [Erdweg et al. 2015; Kuci et al. 2017], achieved through a novel use of backwards

bidirectional typing [Zeilberger 2015].

1.1 Channel-based vs Actor Communication
Channel-based languages comprise anonymous processes that communicate over named channels,

whereas actor-based languages comprise named processes each equipped with a mailbox. Figure 1

contrasts the approaches, and is taken from a detailed comparison [Fowler et al. 2017].

Actor languages have proven to be effective for implementing reliable and scalable distributed

systems [Trinder et al. 2017]. Communication in actor languages is asynchronous and unidirectional:

many actors may send messages to an actor 𝐴, whereas only 𝐴 may receive from its mailbox.

Mailboxes provide data locality as each message is stored with the process that will handle it. Since

channel-based languages allow channel names to be sent, they must either sacrifice locality and

reduce performance, or rely on complex distributed algorithms [Chaudhuri 2009; Hu et al. 2008].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 191. Publication date: August 2023.



Special Delivery 191:3

Although it is straightforward to add a type system to channel-based languages, adding a type

system to actor languages is less straightforward, as process names (process IDs or PIDs) must be

parameterised by a type that supports all messages that can be received. The type is therefore less

precise, requiring subtyping [He et al. 2014] or synchronisation [de Boer et al. 2007; Tasharofi et al.

2013] to avoid a total loss of modularity [Fowler et al. 2017].

The situation becomes even more pronounced when considering behavioural type systems:

communication errors might be prevented by giving one end of a channel the session type

!Int.!Int.?Bool.End (send two integers, and receive a Boolean), and the other end the dual type
?Int.?Int.!Bool.End. Behavioural type systems for actor languages are much less straightforward

due to the asymmetric communication model. In practice, designers of session type systems for

actor languages either emulate session-typed channels [Mostrous and Vasconcelos 2011], or use

multiparty session types to govern the communication actions performed by a process, requiring a

fixed communication topology [Neykova and Yoshida 2017b].

1.2 Mailbox types
de’Liguoro and Padovani [2018] observe that session types require a strict ordering of messages,

whereas most actor systems use selective receive to process messages out-of-order. Concentrating

on unordered interactions enables behavioural typing for mailboxes with many writers.

Mailbox typing by example: a future variable. Rather than reasoning about the behaviour of a
process, mailbox types reason about the contents of a mailbox. Consider a future variable, which
is a placeholder in a concurrent computation. A future can receive many get messages that are

only fulfilled after a put message initialises the future with a value. After the future is initialised, it

fulfils all get messages by sending its value; a second put message is explicitly disallowed. We can

implement a future straightforwardly in Erlang:

1 empty_future() ->
2 receive
3 { put, X } -> full_future(X)
4 end.
5 full_future(X) ->
6 receive
7 { get, Pid } ->
8 Pid ! { reply, X },
9 full_future(X);
10 { put, _ } ->
11 erlang:error("Multiple writes")
12 end.

13 client() ->
14 Future = spawn(future, empty_future, []),
15 Future ! { put, 5 },
16 Future ! { get, self() },
17 receive
18 { reply, Result } ->
19 io:fwrite("~w~n", [Result])
20 end.

The empty_future function awaits a put message to set the value of the future (lines 2–4), and

transitions to the full_future state. A full_future receives get messages (lines 6–12) containing

a process ID used to reply with the future’s value. The client function spawns a future (line 14),

sends a put message followed by a get message (lines 15–16), and awaits the result (lines 17–20).

The program prints the number 5.

Several communication errors can arise in this example:

• Protocol violation. Sending two put messages to the future will result in a runtime error.
• Unexpected message. Sending a message other than get or put to the future will silently

succeed, but the message will never be retrieved, resulting in a memory leak.

• Forgotten reply. If the future fails to send a reply message after receiving a get message

the client will be left waiting forever.

• Self-deadlock. If the client attempts to receive a replymessage before sending a getmessage

it will be left waiting forever.

All of the above issues can be solved by mailbox typing. We can write the following types:
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EmptyFuture ≜ ?(Put[Int] ⊙ ★Get[ClientSend])
FullFuture ≜ ?★Get[ClientSend]

ClientSend ≜ !Reply[Int]
ClientRecv ≜ ?Reply[Int]

A mailbox type combines a capability (either ! for an output capability, analogous to a PID in

Erlang; or ? for an input capability) with a pattern. A pattern is a commutative regular expression:
in the context of a send mailbox type, the pattern will describe the messages that must be sent; in

the context of a receive mailbox type, it describes the messages that the mailbox may contain.

A mailbox name (e.g., Future) may have different types at different points in the program.

EmptyFuture types an input capability of an empty future mailbox, and denotes that the mailbox

may contain a single Putmessage with an Int payload, and potentially many (★) Getmessages each

with a ClientSend payload. FullFuture types an input capability of the future after a Put message

has been received, and requires that the mailbox only contains Get messages. ClientSend is an

output mailbox type which requires that a Reply message must be sent; ClientRecv is an input

capability for receiving the Reply. For each mailbox name, sends and receives must “balance out”:

if a message is sent, it must eventually be received.

de’Liguoro and Padovani [2018] introduce a small extension of the asynchronous 𝜋-calculus [Ama-

dio et al. 1998], which they call themailbox calculus, and endow it with mailbox types. They express

the Future example in the mailbox calculus as follows, where the mailbox is denoted self.

emptyFuture(self) ≜ self?Put(𝑥 ) . fullFuture(self, x)
fullFuture(self, x) ≜ free self . done

+ self?Get(sender) . (sender ! Reply[𝑥] ∥ fullFuture(self, x) )
+ self ? Put(𝑥 ) . fail self

(𝜈future) (emptyFuture(future) ∥ future ! Put[5] ∥
(𝜈self) (future ! Get[self] ∥ (self ? Reply(𝑥 ) . free self . print(intToString(𝑥 ) ) )

A process calculus is useful for expressing the essence of concurrent computation, but there is a

large gap between a process calculus and a programming language design, the biggest being the

separation of static and dynamic terms. A programming language specifies the program that a user

writes, whereas a process calculus provides a snapshot of the system at a given time. A particular

difference comes with name generation: in a process calculus, we can write name restrictions

directly; in a programming language, we instead have a language construct (like new) which is

evaluated to create a fresh name at runtime. Further complexities come with nested evaluation

contexts, sequential evaluation, and aliasing. We explore these challenges in greater detail in §2.

We propose Pat1, a first-order programming language that supports mailbox types, in which we

express the future example as follows (self is again the mailbox).

def emptyFuture(self : EmptyFuture) : 1 {
guard self : Put ⊙ ★Get {
receive Put[𝑥] from self ↦→ fullFuture(self, x)
}
}
def fullFuture(self : FullFuture, value : Int) : 1 {

guard self :★Get {
free ↦→ ()
receive Get[user] from self ↦→
user ! Reply[value];
fullFuture(self, value)

}
}

def client( ) : 1 {
let future = new in
spawn emptyFuture(future) ;
let self = new in
future ! Put[5];
future ! Get[self];
guard self : Reply {

receive Reply[result] from self ↦→
free self;
print(intToString(result) )

}
}

1
https://en.wikipedia.org/wiki/Postman_Pat
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The Pat program has a similar structure to the Erlang example with client, emptyFuture and
fullFuture functions, and the mailbox types are similar to those in the mailbox calculus specification.

There are, however, some differences compared with the Erlang future. The first is that in Pat
mailboxes are first-class: we create a new mailbox with new, and receive from it using the guard
expression. A guard acts on a mailbox and may contain several guards: free ↦→ 𝑀 frees the mailbox

if there are no other references to it and evaluates𝑀 ; and receive m[−→𝑥 ] from y ↦→ 𝑀 retrieves a

message with tag m from the mailbox, binding its payloads to
−→𝑥 and re-binding the mailbox variable

(with an updated type) to y in continuation𝑀 . There is also fail denoting that a mailbox is in an

invalid state, but the type system ensures that this guard is never evaluated. In the above code,

free self is syntactic sugar (see §3).
Pat has all of the characteristics of a programming language, unlike the mailbox calculus. Static

and dynamic terms are distinguished, i.e., we do not need to write name restrictions with dynamic

names known a priori. Pat provides let-bindings, which enable full sequential composition along

with nested evaluation contexts; and we have data types and return types. Crucially all of the
concurrency errors described earlier result in a type error, i.e. protocol violations, unexpectedmessages,

forgotten replies, and self-deadlocks are all detected statically.

Contributions. Despite being a convincing proposal for behavioural typing for actor languages,

mailbox typing has received little attention since its introduction in 2018. The overarching contri-

bution of this paper, therefore, is the first design and implementation of a concurrent programming

language with support for mailbox types. Concretely, we make four main contributions:

(1) We introduce a declarative type system for Pat (§3), a first-order programming language with

support for mailbox types, making essential and novel use of quasi-linear types. We show

type preservation, mailbox conformance, and a progress result.

(2) We introduce a co-contextual algorithmic type system for Pat (§4), making use of backwards

bidirectional typing. We prove that the algorithmic type system is sound and complete with

respect to the declarative type system.

(3) We extend Pat with sum and product types; interfaces; and higher-order functions (§5).

(4) We detail our implementation (§6), and demonstrate the expressiveness of Pat by encoding

all of the examples from de’Liguoro and Padovani [2018], and 10 of the 11 Savina bench-

marks [Imam and Sarkar 2014] used by Neykova and Yoshida [2017b] in their evaluation of

multiparty session types for actor languages (§6.2).

Our tool is available as an artifact and on GitHub (https://www.github.com/SimonJF/mbcheck).

The extended version [Fowler et al. 2023] contains further details and full proofs of technical results.

2 MAILBOX TYPES IN A PROGRAMMING LANGUAGE: WHAT ARE THE ISSUES?

1 def client( ) : 1 {
2 let future = new in
3 spawn emptyFuture(future) ;
4 let self = new in
5 future ! Put[5];
6 future ! Get[self];
7 guard self : Reply {
8 receive Reply[result] from self ↦→
9 free self;
10 print(intToString(result) )
11 }
12 }

Fig. 2. Send and receive uses of future

Session typing was originally studied in the context of pro-

cess calculi (e.g., [Honda et al. 1998; Vasconcelos 2012]), but

later work [Fowler et al. 2021; Gay and Vasconcelos 2010;

Wadler 2014] introduced session types for languages based

on the linear 𝜆-calculus. The more relaxed view of linearity

in the mailbox calculus makes language integration far more

challenging. A mailbox name may be used several times to

send messages, but only once to receive a message. The intu-

ition is that while sends simply add messages to a mailbox, it

is a receive that determines the future behaviour of the actor.

To illustrate, Fig. 2 shows a fragment of the future example

from §1 with two sends to the future mailbox (lines 5 and

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 191. Publication date: August 2023.
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def useAfterFree1(𝑥 : ?★Msg[1]) : 1 {
guard𝑥 :★Msg {
receive Msg[𝑦] from 𝑧 ↦→
𝑥 ! Msg[];
useAfterFree1(𝑧 )

free ↦→ 𝑥 ! Msg[]
}
}

(a) Using old name

def useAfterFree2(𝑥 : ?★Msg[1]) : 1 {
let 𝑎 = 𝑥 in
guard𝑎 :★Msg {

receive Msg[𝑦] from 𝑧 ↦→
𝑥 ! Msg[];
useAfterFree2(𝑧 )

free ↦→ 𝑥 ! Msg[]
}
}

(b) Renaming

def useAfterFree3(𝑥 : ?★Msg[1]) : 1 {
let _ =
guard𝑥 :★Msg {
receive Msg[𝑦] from 𝑧 ↦→
𝑥 ! Msg[];
useAfterFree3(𝑧 )

free ↦→ 𝑥 ! Msg[]
} in 𝑥 ! Msg[]
}

(c) Evaluation contexts

Fig. 3. Use-after-free via aliasing

6), and a single receive (line 8). In the mailbox calculus, a name remains constant and cannot be

aliased; this is at odds with idiomatic programming where expressions are aliased with let bindings
or function application. Moreover functional languages provide nested evaluation contexts and

sequential evaluation.

2.1 Challenge: Mailbox Name Aliasing
Ensuring appropriate mailbox use is challenging in the presence of aliasing: for example, we can

write a function that attempts to use a mailbox after it has been freed (Fig. 3a). Unlike in our

situation, use-after-free errors are not an issue with a fully linear type system, since we cannot use
a resource after it has been consumed.

We could require that a name cannot be used after it has been guarded upon by insisting that the

subject and body of a guard expression are typable under disjoint type environments. Indeed, such

an approach correctly rules out the error in Fig. 3a, but the check can easily be circumvented. Fig. 3b

aliases the output capability for the mailbox, and the new name prevents the typechecker from

realising that it has been used in the body of the guard. Similarly, Fig. 3c uses nested evaluation

contexts, meaning that the next use of a mailbox variable is not necessarily contained within a

subexpression of the guard.

Much of the intricacy arises from using a mailbox name many times as an output capability. In

each process, we can avoid the problems above using three principles:

(1) No two distinct variables should represent the same underlying mailbox name.

(2) Once let-bound to a different name, a mailbox variable is considered out-of scope.

(3) A mailbox name cannot be used after it has been used in a guard expression.

These principles ensure syntactic hygiene: the first and second handle the disconnect between

static names and their dynamic counterparts, allowing us to reason that two syntactically distinct

variables indeed refer to different mailboxes. The third ensures that a mailbox name is correctly

‘consumed’ by a guard expression, allowing us to correctly update its type.

Aliasing through communication. Consider the following example, where mailbox 𝑎 receives the

message m[𝑏], where 𝑏 is already free in the continuation of the receive clause:

𝑎 ← m[𝑏] ∥

guard𝑎 : m {
receive m[𝑥] from y ↦→
𝑏 ! n[𝑥];
free 𝑦

}

−→ 𝑏 ! n[𝑏];
free 𝑎

Here, although the code suggests that 𝑥 and 𝑏 are distinct, aliasing is introduced through

communication (violating principle 1).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 191. Publication date: August 2023.
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2.2 Mailbox Calculus Solution: Dependency Graphs
The mailbox calculus uses a dependency graph (DG) both to avoid issues with aliasing and to

eliminate cyclic dependencies and hence deadlocks. As an example, the mailbox calculus pro-

cess (𝜈𝑎) (𝜈𝑏) (𝑎 ! m[𝑏] ∥ free b ∥ a?m[𝑥] . free a) would have DG (𝜈𝑎) (𝜈𝑏) ({𝑎, 𝑏}) due to the

dependency arising from sending 𝑏 over 𝑎.

let 𝑎 = new in
let 𝑏 = new in
𝑎 ! m[𝑏]; spawn (free 𝑏 ) ;
guard𝑎 : m {

receive m[𝑥] from a ↦→ free 𝑎
}

Alas, a language implementation cannot use this approach as it

relies on knowing runtime names directly. To see why, consider

the Pat program on the left, which evaluates to an analogous con-

figuration. The first issue is how to create a scoped DG from new:

one option is to introduce a scoped construct let mailbox 𝑥 in𝑀 ,

but this approach fails as soon as we rename 𝑥 using a let-binder.
A more robust approach is to follow Ahmed et al. [2007] and Padovani [2019] and endow mailbox

types with a type-level identity by giving new an existential type and introducing a scoped unpack
construct. However there still remain two issues: first, it is unclear how to extend DGs to capture

the more complex scoping and sequencing induced by nested contexts. Second, each mailbox type

would require an identity (e.g. !𝜄Msg) which becomes too restrictive, since we would need to include

identities in message payload types when communicating names. As an example, each client of the

Future example from §1 would require a separate message type.

2.3 The Pat Solution:Quasi-linear Typing
The many-sender, single-receiver pattern is closely linked to quasi-linear typing [Kobayashi 1999];

our formulation is closer to that of Ennals et al. [2004]. Quasi-linear types were originally designed

to overcome some limitations of full linear types in the context of memory management and

programming convenience and allow a value to be used once as a first-class (returnable) value, but
several times as a second-class value [Osvald et al. 2016]. A second-class value can be consumed
within an expression, for example as the subject of a send operation, but cannot escape the scope

in which it is defined.

This distinction maps directly onto the many-writer, single-reader communication model used

by the mailbox calculus. We augment mailbox types with a usage: either •, a returnable reference
that allows a type to appear in the return type of an expression; or ◦, a ‘second-class’ reference.
The subject of a guard must be returnable. With usage information we can ensure that:

(1) there is only one returnable reference for each mailbox name in a process

(2) only returnable references can be renamed, avoiding problems with aliasing

(3) the returnable reference is the final lexical use of a mailbox name in a process

Quasi-linear types rule out all three of the previous examples. In useAfterFree, 𝑥 is consumed

by the guard expression and cannot be used thereafter. In useAfterFree2, since 𝑥 is the subject of

a let binding, it must be returnable and therefore cannot be used in the body of the binding. In

useAfterFree3, since 𝑥 is used as the subject of a guard expression, that use must be first-class and

therefore the last lexical occurrence of 𝑥 , ruling out the use of 𝑥 in the outer evaluation context.

Quasi-linear typing cannot account for inter-process deadlocks, but can still rule out self-deadlocks.

Ruling out aliasing through communication. Quasi-linear types alone do not safeguard against

introducing aliasing through communication, and we cannot use DGs for the reasons stated

above. However, treating all received names as second-class, coupled with some simple syntactic

restrictions (e.g. by ensuring that either all message payloads or all variables free in the body of the

receive clause have base types) eliminates unsafe aliasing.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 191. Publication date: August 2023.



191:8 Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

Mailbox types 𝐽 , 𝐾 ::= !𝐸 | ?𝐸
Mailbox patterns 𝐸, 𝐹 ::= 0 | 1 | m | 𝐸 ⊕ 𝐹

| 𝐸 ⊙ 𝐹 | ★𝐸

Base types 𝐶 ::= 1 | Int | String | · · ·
Types 𝑇,𝑈 ::= 𝐶 | 𝐽
Usage annotations 𝜂 ::= ◦ | •
Usage-annotated types 𝐴, 𝐵 ::= 𝐶 | 𝐽 𝜂

Variables 𝑥, 𝑦, 𝑧

Definition names 𝑓

Definitions 𝐷 ::= def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 }
Values 𝑉 ,𝑊 ::= 𝑥 | 𝑐
Terms 𝐿,𝑀, 𝑁 ::= 𝑉 | let 𝑥 : 𝑇 = 𝑀 in 𝑁 | 𝑓 (−→𝑉 )

| spawn 𝑀 | new | 𝑉 ! m[
−→
𝑊 ] | guard𝑉 :𝐸 {−→𝐺 }

Guards 𝐺 ::= fail | free ↦→ 𝑀 | receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀

Type environments Γ ::= · | Γ, 𝑥 : 𝐴

Fig. 4. The syntax of Pat, a core language with mailbox types

Summary. Quasi-linear types and the lightweight syntactic checks outlined above ensure that

mailboxes are used safely in a concurrent language that allows aliasing, and obviate the need for

the static global dependency graph used in the mailbox calculus. We show that the checks are not

excessively restrictive by expressing all of the examples shown by de’Liguoro and Padovani [2018],

and 10 of the 11 Savina benchmarks [Imam and Sarkar 2014] used by Neykova and Yoshida [2017b]

to demonstrate expressiveness of behavioural type systems for actor languages (§6.2).

3 PAT: A CORE LANGUAGEWITH MAILBOX TYPES
This section introduces Pat, a core first-order programming language with mailbox types, along

with a declarative type system and an operational semantics.

3.1 Syntax
Figure 4 shows the syntax for Pat. We defer discussion of types to §3.2.

Programs and Definitions. A program (S,−→𝐷,𝑀) consists of a signature S which maps message

tags to payload types; a set of definitions 𝐷 ; and an initial term𝑀 . Each definition def 𝑓 (−−−→𝑥 : 𝐴):𝐵 {𝑀}
is a function with name 𝑓 , annotated arguments

−−−→
𝑥 : 𝐴, return type 𝐵, and body𝑀 . We write P(𝑓 )

to retrieve the definition for function 𝑓 , and P(m) to retrieve the payload types for message m.

Values. It is convenient for typing to introduce a syntactic distinction between values and

computations, inspired by fine-grain call-by-value [Levy et al. 2003]. Values 𝑉 ,𝑊 include variables

𝑥 and constants 𝑐; we assume that the set of constants includes at least the unit value () of type 1.

Terms. The functional fragment of the language is largely standard. Every value is a term. The

only evaluation context is let 𝑥 : 𝑇 = 𝑀 in 𝑁 , which evaluates term𝑀 of type 𝑇 , binding its result

to 𝑥 in continuation 𝑁 . The type annotation is a technical convenience and is not necessary in our

implementation (§3). Function application 𝑓 (−→𝑉 ) applies function 𝑓 to arguments

−→
𝑉 . As usual, we

use𝑀 ;𝑁 as sugar for let 𝑥 : 1 = 𝑀 in 𝑁 , where 𝑥 does not occur in 𝑁 .

In the concurrent fragment of the language, spawn 𝑀 spawns term𝑀 as a separate process, and

new creates a fresh mailbox name. Term𝑉 ! m[
−→
𝑊 ] sends message m with payloads

−→
𝑊 to mailbox𝑉 .

The guard𝑉 :𝐸 {−→𝐺 } expression asserts that mailbox 𝑉 contains pattern 𝐸, and invokes a

guard in

−→
𝐺 . The fail guard is triggered when an unexpected message has arrived; free ↦→ 𝑀
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is triggered when a mailbox is empty and there are no more references to it in the system; and

receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀 is triggered when the mailbox contains a message with tag m, binding
its payloads to

−→𝑥 and continuation mailbox with updated mailbox type to 𝑦 in continuation term

𝑀 . We write free 𝑉 as syntactic sugar for guard𝑉 : 1 {free ↦→ ()}, and fail 𝑉 as syntactic sugar

for guard𝑉 :0 {fail}. We require that each clause within a guard expression is unique.

3.2 Type system
This section describes a declarative type system for Pat. We begin by discussing mailbox types in

more depth, in particular showing how to define subtyping and equivalence.

3.2.1 Types. A mailbox type consists of a capability, either output ! or input ?, and a pattern. A
system can contain multiple references to a mailbox as an output capability, but only one as an

input capability. A pattern is a commutative regular expression, i.e., a regular expression where

composition is unordered. The 1 pattern is the unit of pattern composition ⊙, denoting the empty

mailbox. The 0 pattern denotes the unreliable mailbox, which has received an unexpected message.

It is not possible to send to, or receive from, an unreliable mailbox, but we will show that reduction

does not cause a mailbox to become unreliable. The pattern m denotes a mailbox containing a single

message m2. Pattern choice 𝐸 ⊕ 𝐹 denotes that the mailbox contains either messages conforming to

pattern 𝐸 or 𝐹 . Pattern composition 𝐸 ⊙ 𝐹 denotes that the mailbox contains messages pertaining

to 𝐸 and 𝐹 (in either order). Finally,★𝐸 denotes replication of 𝐸, so★m denotes that the mailbox can

contain zero or more instances of message m. Mailbox patterns obey the usual laws of commutative

regular expressions: 1 is the unit for ⊙, while 0 is the unit for ⊕ and is cancelling for ⊙. Composition

⊙ is associative, commutative, and distributes over ⊕; and ⊕ is associative and commutative.

Pattern semantics. It follows that different syntactic representations of patterns may have the

same meaning, e.g. patterns 1 ⊕ 0 ⊕ (m ⊙ n) and 1 ⊕ (n ⊙ m). Following [de’Liguoro and Padovani

2018], we define a set-of-multisets semantics for mailbox patterns; the intuition is that each multiset

defines a configuration of messages that could be present in the mailbox. For example the semantic

representation of both of the patterns above is {⟨⟩, ⟨m, n⟩}. We let A,B range over multisets.

J0K = ∅ J1K = {⟨⟩} J𝐸 ⊕ 𝐹K = J𝐸K ∪ J𝐹K J𝐸 ⊙ 𝐹K = {A ⊎ B | A ∈ J𝐸K,B ∈ J𝐹K} JmK = {⟨m⟩}

J★𝐸K = J1K ∪ J𝐸K ∪ J𝐸 ⊙ 𝐸K ∪ · · ·

The pattern 0 is interpreted as an empty set; 1 as the empty multiset; ⊕ as set union; ⊙ as

pointwise multiset union; m as the singleton multiset; and ★𝐸 as the infinite set containing any

number of concatenations of interpretations of 𝐸.

Usage annotations. A type 𝑇 can be a base type 𝐶 , or a mailbox type 𝐽 . As discussed in §2, quasi-
linearity is used to avoid aliasing issues. Usage-annotated types 𝐴, 𝐵 annotate mailbox types with a

usage: either second class (◦), or returnable (•). There are no restrictions on the use of a base type.

Only values with a returnable type can be returned from an evaluation frame.

3.2.2 Operations on types. We say that a type is returnable, written returnable(𝐴), if 𝐴 is a base

type 𝐶 or a returnable mailbox type 𝐽 •. The ⌊−⌋ operator ensures that a type is returnable, while
the ⌈−⌉ operator ensures that a mailbox type is second-class:

⌊𝐶 ⌋ = 𝐶 ⌊𝑇 ⌋ = 𝑇 • ⌈𝐶 ⌉ = 𝐶 ⌈𝑇 ⌉ = 𝑇 ◦

We also extend the operators to usage-annotated types (e.g. ⌈𝐽 •⌉ = 𝐽 ◦) and type environments.

2
Unlike in §1, our formalism does not pair a message tag with its payload; instead, tags are associated with payload types

via the program signature. This design choice allows us to more easily compare the declarative system with the algorithmic

system in §4, and unlike [de’Liguoro and Padovani 2018] means we need not define types and subtyping coinductively.
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Subtyping. With a semantics defined, we can consider subtyping. A pattern 𝐸 is included in a

pattern 𝐹 , written 𝐸 ⊑ 𝐹 , if every multiset in the semantics of 𝐸 also occurs in the semantics of

pattern 𝐹 , i.e., 𝐸 ⊑ 𝐹 ≜ J𝐸K ⊆ J𝐹K.

Definition 3.1 (Subtyping). The subtyping relation is defined by the following rules:

𝐶 ≤ 𝐶
𝐸 ⊑ 𝐹 𝜂1 ≤ 𝜂2

?𝐸𝜂1 ≤ ?𝐹𝜂2

𝐹 ⊑ 𝐸 𝜂1 ≤ 𝜂2
!𝐸𝜂1 ≤ !𝐹𝜂2

Usage subtyping is defined as the smallest reflexive operator defined by axioms 𝜂 ≤ 𝜂 and • ≤ ◦.
We write 𝐴 ≃ 𝐵 if both 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, i.e. either 𝐴, 𝐵 are the same base type, or are mailbox

types with the same capability and pattern semantics.

Base types are subtypes of themselves. As with previous accounts of subtyping in actor lan-

guages [He et al. 2014], subtyping is covariant for mailbox types with a receive capability: a mailbox

can safely be replaced with another that can receive more messages. Likewise subtyping is con-
travariant for mailboxes with a send capability: a mailbox can safely be replaced with another

that can send a smaller set of messages. Intuitively, as returnable usages are more powerful than

second-class usages, returnable types can be used when only a second-class type is required.

Following de’Liguoro and Padovani [2018] we introduce names for particular classes of mailbox

types. Intuitively, relevant mailbox names must be used, whereas irrelevant names need not be.

Likewise reliable and usable names can be used, whereas unreliable and unusable names cannot.

Definition 3.2 (Relevant, Reliable, Usable). A mailbox type 𝐽 is relevant if 𝐽 ̸≤ !1, and irrelevant
otherwise; reliable if 𝐽 ̸≤ ?0 and unreliable otherwise; and usable if 𝐽 ̸≤ !0 and unusable otherwise.

Definition 3.3 (Unrestricted and Linear Types). We say that a type 𝐴 is unrestricted, written un(𝐴),
if 𝐴 = 𝐶 , or 𝐴 = !1◦. Otherwise, we say that 𝑇 is linear.

Our type system ensures that variables with a linear type must be used, whereas variables with an

unrestricted type can be discarded. We extend subtyping to type environments, making it possible

to combine type environments, as in [Crafa and Padovani 2017; de’Liguoro and Padovani 2018].

Definition 3.4 (Environment subtyping). Environment subtyping Γ1 ≤ Γ2 is defined as follows:

· ≤ ·
un(𝐴) 𝑥 ∉ dom(Γ′ ) Γ ≤ Γ′

Γ, 𝑥 : 𝐴 ≤ Γ′
𝐴 ≤ 𝐵 Γ ≤ Γ′

Γ, 𝑥 : 𝐴 ≤ Γ′, 𝑥 : 𝐵

We include a notion of weakening into the subtyping relation, so an environment Γ can be a

subtype environment of Γ′ if it contains additional entries of unrestricted type.

Type combination. Mailbox types ensure that sends and receives “balance out”, meaning that

every send is matched with a receive. For example, using a mailbox at type !Put and ?(Put⊙★Get)
results in a mailbox type ?(★Get). The key technical device used to achieve this goal is type
combination: combining a mailbox type !𝐸 and a mailbox type !𝐹 results in an output mailbox

type which must send both 𝐸 and 𝐹 ; combining an input and an output capability results in an

input capability that no longer needs to receive the output pattern. We can also combine identical

base types. Note that it is not possible to combine two input capabilities as this would permit

simultaneous reads of the same mailbox.

Definition 3.5 (Type combination). Type combination 𝑇 ⊞𝑈 is the commutative partial binary

operator defined by the following axioms:

𝐶 ⊞𝐶 = 𝐶 !𝐸 ⊞ !𝐹 = !(𝐸 ⊙ 𝐹 ) !𝐸 ⊞ ?(𝐸 ⊙ 𝐹 ) = ?𝐹 ?(𝐸 ⊙ 𝐹 ) ⊞ !𝐸 = ?𝐹
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Following Crafa and Padovani [2017], it is convenient to identify types up to commutativity and

associativity, e.g. we do not distinguish between ?(A ⊙ B)• and ?(B ⊙ A)•. We may however need to

use subtyping to rewrite a type into a form that allows two mailbox types to be combined (e.g. to
combine !A and ?(★A), we would need to use subtyping to rewrite the latter type to ?(A ⊙ ★A)).
The following usage combination is not commutative as a ◦ variable use must occur before a •

use (ensuring that the returnable use is the variable’s last lexical occurrence). Furthermore, note

that • ⊲ • is undefined (ensuring that there is only one returnable instance of a variable per thread).

Definition 3.6 (Usage combination). The usage combination operator is the partial binary operator

defined by the axioms ◦ ⊲ ◦ = ◦ and ◦ ⊲ • = •.

We can now define usage-annotated type and environment combination.

Definition 3.7 (Usage-annotated type combination). The usage-annotated type combination operator
𝐴 ⊲ 𝐵 is the binary operator defined by the axioms 𝐶 ⊲𝐶 = 𝐶 and 𝐽𝜂1 ⊲ 𝐾𝜂2 = (𝐽 ⊞𝐾)𝜂1⊲𝜂2 .

Definition 3.8 (Environment combination (Γ)). Usage-annotated environment combination Γ1 ⊲ Γ2
is the smallest partial operator on type environments closed under the following rules:

· ⊲ · = ·
𝑥 ∉ dom(Γ2 ) Γ1 ⊲ Γ2 = Γ

(Γ1, 𝑥 : 𝐴) ⊲ Γ2 = Γ, 𝑥 : 𝐴

𝑥 ∉ dom(Γ1 ) Γ1 ⊲ Γ2 = Γ

Γ1 ⊲ (Γ2, 𝑥 : 𝐴) = Γ, 𝑥 : 𝐴

Γ1 ⊲ Γ2 = Γ

(Γ1, 𝑥 : 𝐴) ⊲ (Γ2, 𝑥 : 𝐵) = Γ, 𝑥 : (𝐴 ⊲ 𝐵)

We use usage-annotated type combination when combining the types of two variables used in

subsequent evaluation frames (i.e. in the subject and body of a let expression). We also require

disjoint combination, where two environments are only able to share variables of base type:

Definition 3.9 (Disjoint environment combination). Disjoint environment combination Γ1 + Γ2 is
the smallest partial operator on type environments closed under the following rules:

· + · = ·
𝑥 ∉ dom(Γ2 ) Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐴 + Γ2 = Γ, 𝑥 : 𝐴

𝑥 ∉ dom(Γ1 ) Γ1 + Γ2 = Γ

Γ1 + Γ2, 𝑥 : 𝐴 = Γ, 𝑥 : 𝐴

Γ1 + Γ2 = Γ

Γ1, 𝑥 : 𝐶 + Γ2, 𝑥 : 𝐶 = Γ, 𝑥 : 𝐶

3.2.3 Typing rules. Fig. 5 shows the declarative typing rules for Pat. As the system is declarative it

helps to read the rules top-down.

Programs and definitions. A program is typable if all of its definitions are typable, and its body

has unit type. A definition def 𝑓 (−−−→𝑥 : 𝐴): 𝐵 {𝑀} is typable if𝑀 has type 𝐵 under environment

−−−→
𝑥 : 𝐴.

Terms. Term typing has the judgement Γ ⊢P 𝑀 :𝐴, which states that when defined in the context

of program P, under environment Γ, term 𝑀 has type 𝐴. We omit the P parameter in the rules

for readability. Rule T-Var types a variable in a singleton environment; we account for weakening

in T-Sub. Rule T-Const types a constant under an empty environment; we assume an implicit

schema mapping constants to types, and assume at least the unit value () of type 1. Rule T-App
types function application according to the definition in P. Each argument must be typable under

a disjoint type environment to avoid aliasing mailbox names in the body of the function.

Rule T-Let types sequential composition. The subject of the let expression must be returnable;

since Γ1 ⊲ Γ2 is defined, we know that if the subject (typable using Γ1) contains a returnable variable,
then it cannot appear in Γ2. This avoids aliasing and use-after-free errors.

Rule T-Spawn types spawning a term𝑀 of unit type as a new process. The type environment

used to type𝑀 can contain any number of returnable, but the conclusion of the rule ‘masks’ any

returnable types as second-class. Intuitively, this is because there is no need to impose an ordering

on how a variable is used in a separate process: while within a single process a guard on some name

𝑥 should not precede a send on 𝑥 , there is no such restriction if the two expressions are executing
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Typing rules for programs and definitions ⊢ P ⊢ 𝐷

P = (S, −→𝐷,𝑀 ) (⊢P 𝐷𝑖 )𝑖 · ⊢P 𝑀 : 1

⊢ P

−−−→
𝑥 : 𝐴 ⊢P 𝑀 :𝐵

⊢P def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 }

Typing rules for terms Γ ⊢P 𝑀 :𝐴

T-Var

𝑥 :𝐴 ⊢ 𝑥 :𝐴

T-Const

𝑐 has base type𝐶

· ⊢ 𝑐 :𝐶

T-App

P(𝑓 ) = def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 } (Γ𝑖 ⊢ 𝑉𝑖 :𝐴𝑖 )𝑖∈1..𝑛
Γ1 + · · · + Γ𝑛 ⊢ 𝑓 (𝑉1, . . . ,𝑉𝑛 ) :𝐵

T-Let

Γ1 ⊢ 𝑀 : ⌊𝑇 ⌋ Γ2, 𝑥 : ⌊𝑇 ⌋ ⊢ 𝑁 :𝐵

Γ1 ⊲ Γ2 ⊢ let 𝑥 : 𝑇 = 𝑀 in 𝑁 :𝐵

T-Spawn

Γ ⊢ 𝑀 : 1

⌈Γ⌉ ⊢ spawn 𝑀 : 1

T-New

· ⊢ new : ?1•

T-Send

P(m) = −→𝑇 Γ ⊢ 𝑉 : !m◦

(Γ′𝑖 ⊢𝑊𝑖 : ⌈𝑇𝑖 ⌉ )𝑖∈1..𝑛
Γ + Γ′

1
+ . . . + Γ′𝑛 ⊢ 𝑉 ! m[

−→
𝑊 ] : 1

T-Guard

Γ1 ⊢ 𝑉 : ?𝐹 • Γ2 ⊢
−→
𝐺 :𝐴 :: 𝐹 𝐸 ⊑ 𝐹 ⊨ 𝐹

Γ1 + Γ2 ⊢ guard𝑉 :𝐸 {−→𝐺 } :𝐴

T-Sub

Γ ≤ Γ′ 𝐴 ≤ 𝐵 Γ′ ⊢ 𝑀 :𝐴

Γ ⊢ 𝑀 :𝐵

Typing rules for guards Γ ⊢P
−→
𝐺 :𝐴 :: 𝐸 Γ ⊢P 𝐺 :𝐴 :: 𝐸

TG-GuardSeq

(Γ ⊢ 𝐺𝑖 :𝐴 :: 𝐸𝑖 )𝑖
Γ ⊢ −→𝐺 :𝐴 :: 𝐸1 ⊕ . . . ⊕ 𝐸𝑛

TG-Fail

Γ ⊢ fail :𝐴 :: 0

TG-Free

Γ ⊢ 𝑀 :𝐴

Γ ⊢ free ↦→ 𝑀 :𝐴 :: 1

TG-Recv

P(m) = −→𝑇 base(−→𝑇 ) ∨ base(Γ)
Γ, 𝑦 : ?𝐸•, −→𝑥 :

−−→
⌈𝑇 ⌉ ⊢ 𝑀 :𝐵

Γ ⊢ receive m[−→𝑥] from𝑦 ↦→ 𝑀 :𝐵 :: m⊙𝐸

Pattern residual 𝐸 / m

0 / m ≜ 0 1 / m ≜ 0 m / m ≜ 1
m ≠ n

m / n ≜ 0
(𝐸 ⊕ 𝐹 ) / m ≜ (𝐸 / m) ⊕ (𝐹 / m)

(𝐸 ⊙ 𝐹 ) / m ≜ ( (𝐸 / m) ⊙ 𝐹 ) ⊕ (𝐸 ⊙ (𝐹 / m) )

Pattern normal form (PNF) 𝐸 ⊨lit 𝐹 𝐸 ⊨ 𝐹

𝐸 ⊨lit 0 𝐸 ⊨lit 1
𝐹 ≃ 𝐸 / m
𝐸 ⊨lit m ⊙ 𝐹

𝐸 ⊨lit 𝐹1 𝐸 ⊨lit 𝐹2

𝐸 ⊨ 𝐹1 ⊕ 𝐹2

𝐸 ⊨lit 𝐹

𝐸 ⊨ 𝐹

Fig. 5. Pat declarative term typing

in concurrent processes. Rule T-New creates a fresh mailbox with type ?1•, since subsequent sends
and receives must “balance out” to an empty mailbox.

Rule T-Send types a send expression 𝑉 ! m[
−→
𝑊 ], where a message m with payloads

−→
𝑊 is sent to a

mailbox𝑉 . Value𝑉 must be a reference with type !m◦, meaning that it can be used to send message

m. The mailbox only needs to be second-class, but subtyping means that we can also send to a

first-class name. All payloads

−→
𝑉 must be subtypes of the types defined by the signature for message

m, and payloads must be typable under separate environments to avoid aliasing when receiving a

message. Unlike in session-typed functional programming languages, sending is a side-effecting

operation of type 1, and the behavioural typing is accounted for in environment composition.

Rule T-Guard types the expression guard𝑉 :𝐸 {−→𝐺 }, that retrieves from mailbox 𝑉 with some

pattern 𝐸 using guards

−→
𝐺 . The first premise ensures that under a type environment Γ1, mailbox 𝑉

has type ?𝐹 •: the mailbox should have a receive capability with pattern 𝐹 , and must be returnable.
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Demanding that the mailbox is returnable rules out use-after-free errors since we cannot use the

mailbox name in the continuation. The second premise states that under type environment Γ2,

guards

−→
𝐺 all return a value of type 𝐴 and correspond to pattern 𝐹 . The third premise requires that

the pattern assertion 𝐸 is contained within 𝐹 . The final premise, ⊨ 𝐹 , ensures that 𝐹 is in pattern
normal form: the pattern should be a disjunction of pattern literals. That is 0, 1, or m ⊙ 𝐹 , where 𝐹
is equivalent to 𝐸 without message m.

Finally, rule T-Sub allows the use of subtyping. Subtyping on type environments is crucial when

constructing derivations, e.g. two patterns may have the same semantics but differ syntactically.

Applying T-Submakes it possible to rewrite mailbox types so that they can be combined by the type

combination operators. We also allow the usual use of subsumption on return types, e.g. allowing a
value with a subtype of a function argument to be used.

Guards. Rule TG-GuardSeq types a sequence of guards, ensuring that each guard is typable

under the same type environment and with the same return type. Rule TG-Fail types a failure

guard: since the type system will ensure that such a guard is never evaluated, it can have any type

environment and any type, and is typable under pattern literal 0. Rule TG-Free types a guard

of the form free ↦→ 𝑀 , where 𝑀 has type 𝐴. Finally, rule TG-Recv types a guard of the form

receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀 , that retrieves a message with tag m from the mailbox, binding its

payloads (whose types are retrieved from the signature for message m) to −→𝑥 , and re-binding the

mailbox to 𝑦 with an updated type in continuation𝑀 . The payloads are made usable rather than
returnable, as otherwise the payloads could interfere with the names in the enclosing context.

Pattern residual. The pattern residual 𝐸 / m calculates the pattern 𝐸 after m is consumed, and

corresponds to the Brzozowski derivative [Brzozowski 1964] over a commutative regular expression.

The residual of 0, 1, or n (where n ≠ m) with respect to a message tag m is the unreliable type 0. The
derivative of m with respect to m is 1. The derivative operator distributes over ⊕, and the derivative

of concatenation is the disjunction of the derivative of each subpattern.

Example. We end this section by showing the derivation for the client definition from the future

example in §1, which creates a future and self mailbox, initialises the future with a number, and

then requests and prints the result. In the following, we abbreviate future to f, self to 𝑠 , and result
to 𝑟 . We assume that the program includes a signature S = [Put ↦→ Int, Get ↦→ !Reply, Reply ↦→
Int], and the emptyFuture and fullFuture definitions from §1. We split the derivation into three

subderivations. Since it is easier to read derivations top-down, we start by typing the guard
expression. In the following, we refer to the receive guard as𝐺 , and name the first derivation D1:

s : ?(Reply ⊙ 1)• ⊢ s : ?(Reply ⊙ 1)•

s : ?1• ⊢ s : ?1•

s : ?1• ⊢ free s : 1
r : Int ⊢ print(intToString(r) ) : 1

s : ?1•, r : Int ⊢ free s; print(intToString(r) ) : 1

· ⊢ receive Reply[r] from s ↦→
free s; print(intToString(r) ) : 1 :: Reply ⊙ 1

Reply ⊑ Reply ⊙ 1
⊨ Reply ⊙ 1

s : ?(Reply ⊙ 1)• ⊢ guard s : Reply {𝐺 } : 1

The type of the s mailbox in the subject of the guard expression is ?(Reply ⊙ 1)• denoting that

the mailbox can contain a Reply message and will then be empty. The receive guard binds 𝑠 at

type ?1• and 𝑟 at Int, freeing 𝑠 and using 𝑟 in the print expression. The Reply annotation on the

guard is a subpattern of the pattern of 𝑠 . The above derivation is used within derivation D2:
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f : !Put◦ ⊢ f : !Put◦ · ⊢ 5 : Int
f : !Put◦ ⊢ f ! Put[5] : 1

f : !Get◦ ⊢ f : !Get◦

f : !Get• ⊢ f : !Get◦ s : !Reply◦ ⊢ s : !Reply◦

f : !Get•, s : !Reply◦ ⊢ f ! Get[s] : 1 D1

f : !Get•, s : ?1• ⊢ f ! Get[s];
guard s : Reply {𝐺 } : 1

f : !(Put ⊙ Get)•, s : ?1• ⊢ f ! Put[5]; f ! Get[s];
guard s : Reply { · · ·} : 1

Here f is used to send a Put and then a Get with s of type !Reply◦ as payload. As the two

sends to the f message are sequentially composed, the type of f at the root of the subderivation is

!(Put ⊙ Get)•. Since s is used at type ?(Reply ⊙ 1)• in D1, the send and receive patterns balance

out to the empty mailbox type ?1•. Finally, we can construct the derivation for the entire term:

· ⊢ new : ?1•

f : ?(Put ⊙ ★Get)• ⊢ emptyFuture(f) : 1
f : ?(Put ⊙ ★Get)◦ ⊢ spawn emptyFuture(f) : 1

f : ?( (Put ⊙ Get) ⊙ 1)◦ ⊢ spawn emptyFuture(f) : 1

· ⊢ new : ?1• D2

f : !(Put ⊙ Get)• ⊢ let s = new in
f ! Put[5]; · · · : 1

f : ?1• ⊢
spawn emptyFuture(f) ;
let s = new in
f ! Put[5]; · · ·

: 1

· ⊢

let f = new in
spawn emptyFuture(f) ;
let s = new in
f ! Put[5]; f ! Get[s];
guard s : Reply {
receive Reply[r] from s ↦→
free s;
print(intToString(r) )

}

: 1

Since we let-bind f to new, f must have type ?1•. Definition emptyFuture requires an argument

of type ?(Put ⊙ ★Get)•; since the function application appears in the body of the spawn we

can mask the usage annotation to ◦, and use environment subtyping to rewrite the type of f to

?((Put ⊙ Get) ⊙ 1)•. This then balances out with the use of f in D2, completing the derivation.

3.3 Operational Semantics
Figure 6 shows the runtime syntax and reduction rules for Pat. We extend values 𝑉 with runtime

names 𝑎. The concurrent semantics of the language is described as a nondeterministic reduction

relation on a language of configurations, which resemble terms in the 𝜋-calculus. A thread L𝑀, Σ M
evaluates term𝑀 with frame stack Σ (discussed shortly). Configuration 𝑎 ← m[

−→
𝑉 ] is a message

m[
−→
𝑉 ] in mailbox 𝑎; name restriction (𝜈𝑎)C binds name 𝑎 in C; and C ∥ D denotes the parallel

composition of C and D. Structural congruence ≡ (omitted) is standard, capturing scope extrusion

and the associativity and commutativity of parallel composition. The semantics envisages a single

static term𝑀 (i.e., program text) to be evaluated in the context of an empty frame stack: L𝑀, 𝜖 M.

Frame stacks. We use frame stacks [Ennals et al. 2004; Pitts 1998] rather than evaluation contexts

for technical convenience. A frame ⟨𝑥,𝑀⟩ is a pair of a variable 𝑥 and a continuation𝑀 , where 𝑥 is

free in𝑀 . A frame stack is an ordered sequence of frames, where 𝜖 denotes the empty stack.

Reduction rules. Frame stacks are best demonstrated by the E-Let and E-Return rules: intuitively,

let 𝑥 : 𝑇 = 𝑀 in 𝑁 evaluates𝑀 , binding the result to 𝑥 in 𝑁 . The rule adds a fresh frame ⟨𝑥, 𝑁 ⟩ to
the top of a frame stack, and evaluates𝑀 . Conversely, E-Return returns 𝑉 into the parent frame:

if the top frame is ⟨𝑥,𝑀⟩, then we can evaluate the continuation𝑀 with 𝑉 substituted for 𝑥 . Rule

E-App evaluates the body of function 𝑓 with arguments

−→
𝑉 substituted for the parameters

−→𝑥 .
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Runtime syntax

Runtime names 𝑎

Names 𝑢, 𝑣, 𝑤 ::= 𝑥 | 𝑎
Frames 𝜎 ::= ⟨𝑥,𝑀 ⟩
Frame stacks Σ ::= 𝜖 | 𝜎 · Σ

Guard contexts G ::=
−→
𝐺1 · [ ] ·

−→
𝐺2

Configurations C,D ::= L𝑀, Σ M | 𝑎 ← m[
−→
𝑉 ]

| C ∥ D | (𝜈𝑎) C
Runtime type environments Δ ::= · | Δ,𝑢 : 𝑇

Reduction rules C −→P D

E-Let L let 𝑥 : 𝑇 = 𝑀 in 𝑁, Σ M −→ L𝑀, ⟨𝑥, 𝑁 ⟩ · Σ M
E-Return L𝑉 , ⟨𝑥,𝑀 ⟩ · Σ M −→ L𝑀 {𝑉 /𝑥 }, Σ M
E-App L 𝑓 (−→𝑉 ), Σ M −→ L𝑀 {−→𝑉 /−→𝑥 }, Σ M

(if P(𝑓 ) = def 𝑓 (−−−→𝑥 : 𝐴) : 𝐵 {𝑀 })
E-New Lnew, Σ M −→ (𝜈𝑎) (L𝑎, Σ M) (𝑎 is fresh)
E-Send L𝑎 ! m[

−→
𝑉 ], Σ M −→ L ( ), Σ M ∥ 𝑎 ← m[

−→
𝑉 ]

E-Spawn L spawn 𝑀, Σ M −→ L ( ), Σ M ∥ L𝑀,𝜖 M
E-Free (𝜈𝑎) (Lguard𝑎 :𝐸 {G[free ↦→ 𝑀 ] }, Σ M) −→ L𝑀, Σ M

E-Recv Lguard𝑎 :𝐸 {G[receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀 ] }, Σ M ∥ 𝑎 ← m[
−→
𝑉 ] −→ L𝑀 {−→𝑉 /−→𝑥 , 𝑎/𝑦}, Σ M

E-Nu

C −→ D
(𝜈𝑎) C −→ (𝜈𝑎)D E-Par

C −→ C′

C ∥ D −→ C′ ∥ D E-Struct

C ≡ C′ C′ −→ D′ D′ ≡ D
C −→ D

Fig. 6. Pat operational semantics

Rule E-New creates a fresh mailbox name restriction and returns it into the calling context. Rule

E-Send sends a message with tag m and payloads

−→
𝑉 to a mailbox 𝑎, returning () to the calling

context and creating a sent message configuration 𝑎 ← m[
−→
𝑉 ]. Rule E-Spawn spawns a computation

as a fresh process, with an empty frame stack. Rule E-Free allows a name 𝑎 to be garbage collected

if it is not contained in any other thread, evaluating the continuation𝑀 of the free guard. Finally,

rule E-Recv handles receiving a message from a mailbox, binding the payload values to
−→𝑥 and

updated mailbox name to 𝑦 in continuation𝑀 . The remaining rules are administrative.

3.4 Metatheory
3.4.1 Runtime typing. To prove metatheoretical properties about Pat we introduce a type system
on configurations; this type system is used only for reasoning and is not required for typechecking.

Runtime type environments. The runtime typing rules make use of a type environment Δ that

maps variables to types that do not contain usage information. Usage information is inherently only

useful in constraining sequential uses of a mailbox variable, where guards are blocking, whereas

it makes little sense to constrain concurrent usages of a variable. Runtime type environment

combination on Δ1 ⊲⊳ Δ2 is similar to usage-annotated type environment combination but with

two differences: it is commutative to account for the unordered nature of parallel threads, and type

combination does not include usage information.

Definition 3.10 (Environment combination (Δ)). Environment combination Δ1 ⊲⊳ Δ2 is the smallest

partial commutative binary operator on type environments closed under the following rules:

· ⊲⊳ · = ·

𝑥 ∉ dom(Δ2 )
Δ1 ⊲⊳ Δ2 = Δ

(Δ1, 𝑥 :𝑇 ) ⊲⊳ Δ2 = Δ, 𝑥 :𝑇

𝑥 ∉ dom(Δ1 )
Δ1 ⊲⊳ Δ2 = Δ

Δ1 ⊲⊳ (Δ2, 𝑥 :𝑇 ) = Δ, 𝑥 :𝑇

Δ1 ⊲⊳ Δ2 = Δ

(Δ1, 𝑥 :𝑇 ) ⊲⊳ (Δ2, 𝑥 :𝑈 ) = Δ, 𝑥 :(𝑇 ⊞𝑈 )

Disjoint combination on runtime type environments Δ1 + Δ2 (omitted) is defined analogously to

disjoint combination on Γ.
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Configuration Typing Δ ⊢ C

TC-Nu

Δ, 𝑎 : ?1 ⊢ C
Δ ⊢ (𝜈𝑎) C

TC-Par

Δ1 ⊢ C Δ2 ⊢ D
Δ1 ⊲⊳ Δ2 ⊢ C ∥ D

TC-Message

( ⌈Δ𝑖 ⌉ ⊢ 𝑉𝑖 :𝐴𝑖 )𝑖∈1..𝑛
−→
𝐴 ≤ ⌈P (m) ⌉

Δ1 + . . . + Δ𝑛, 𝑎 : !m ⊢ 𝑎 ← m[
−→
𝑉 ]

TC-Thread

⌊Δ⌋ = Γ1 ⊲ Γ2 Γ1 ⊢ 𝑀 :𝐴 Γ2 ⊢ 𝐴 ▶ Σ

Δ ⊢ L𝑀, Σ M

TC-Subs

Δ ≤ Δ′ Δ′ ⊢ C
Δ ⊢ C

Frame Stack Typing Γ ⊢ 𝐴 ▶ Σ

· ⊢ 𝐴 ▶ 𝜖
Γ1, 𝑥 : 𝐴 ⊢ 𝑀 :𝐵 returnable(𝐵) Γ2 ⊢ 𝐵 ▶ Σ

Γ1 ⊲ Γ2 ⊢ 𝐴 ▶ ⟨𝑥,𝑀 ⟩ · Σ

Fig. 7. Pat runtime typing

Runtime typing rules. Figure 7 shows the runtime typing rules. Rule TC-Nu types a name restric-

tion if the name is of type ?1; in turn this ensures that sends and receives on the mailbox “balance

out” across threads. Rule TC-Par allows configurations C and D to be composed in parallel if

they are typable under combinable runtime type environments. Rule TC-Message types a message

configuration 𝑎 ← m[
−→
𝑉 ]. Name 𝑎 of type !m cannot appear in any of the values sent as a payload.

Each payload value 𝑉 must be a subtype of the type defined by the message signature, under the

second-class lifting of a disjoint runtime type environment. Rule TC-Subs allows subtyping on

runtime type environments; the subtyping relation Δ ≤ Δ′ is analogous to subtyping on Γ.

Thread and frame stack typing. Rule TC-Thread types a thread, which is a pair of a currently-

evaluating term, typable under an environment Γ1, and a stack frame, typable under an environment

Γ2. The combination Γ1 ⊲ Γ2 should result in the returnable lifting of Δ: intuitively, we should be able
to use every mailbox variable in Δ as returnable in the thread. TC-Thread makes use of the frame

stack typing judgement Γ ⊢ 𝐴 ▶ Σ (inspired by [Ennals et al. 2004]), which can be read “under

type environment Γ, given a value of type 𝐴, frame stack Σ is well-typed”. The empty frame stack

is typable under the empty environment given any type. A non-empty frame stack ⟨𝑥,𝑀⟩ · Σ is

well-typed if 𝑀 has some returnable type 𝐵, given a variable 𝑥 of type 𝐴. The remainder of the

stack must then be well-typed given 𝐵. We combine the environments used for typing the head

term and the remainder of the stack using ⊲ as we wish to account for sequential uses of a mailbox;

for example, in the term 𝑥 ! m[𝑉];𝑥 ! n[𝑊 ], 𝑥 would have type !(m ⊙ n)◦.

3.4.2 Properties. We can now state some metatheoretical results. Proofs can be found in the

extended version [Fowler et al. 2023]. Typability is preserved by reduction; the proof is nontrivial

since we must do extensive reasoning about environment combination.

Theorem 3.11 (Preservation). If ⊢ P, and Γ ⊢P C with Γ reliable, and C −→P D, then Γ ⊢P D.

Preservation implies mailbox conformance: the property that a configuration will never evaluate

to a singleton failure guard. To state mailbox conformance, it is useful to define the notion of a

configuration context H ::= (𝜈𝑎)H | H ∥ C | L [ ], Σ M, that allows us to focus on a single thread.

Corollary 3.12 (Mailbox Conformance).

If ⊢ P and Γ ⊢P C with Γ reliable, then C ̸−→∗H[fail 𝑉 ].
Progress. To prove a progress result for Pat, we begin with some auxiliary definitions.

Definition 3.13 (Message set). Amessage setM is a configuration of the form: 𝑎1 ← m1[
−→
𝑉1] ∥ · · · ∥

𝑎𝑛 ← m𝑛[
−→
𝑉𝑛]. We say that a message setM contains a message m for 𝑎 ifM ≡ 𝑎 ← m[

−→
𝑉 ] ∥ M′.
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Pattern variables 𝛼, 𝛽

Mailbox patterns 𝛾, 𝛿 ::= 0 | 1 | m | 𝛾 ⊕ 𝛿
| 𝛾 ⊙ 𝛿 | ★𝛾 | 𝛼

Mailbox types 𝜍 ::= !𝛾 | ?𝛾
Types 𝜋, 𝜌 ::= 𝐶 | 𝜍
Usage-ann. types 𝜏, 𝜎 ::= 𝐶 | 𝜍𝜂

Augmented type envs. Θ ::= · | Θ, 𝑥 : 𝜏

Nullable type envs. Ψ ::= Θ | ⊤
Augmented definitions 𝐷 ::= def 𝑓 (−−→𝑥 : 𝜏 ) : 𝜎 {𝑀 }
Constraints 𝜙 ::= 𝛾 <:𝛿

Constraint sets Φ

Fig. 8. Pat syntax extended for algorithmic typing

Next, we classify canonical forms, which give us a global view of a configuration. Every well

typed process is structurally congruent to a canonical form.

Definition 3.14 (Canonical form). A configuration C is in canonical form if it is of the form:

(𝜈𝑎1) · · · (𝜈𝑎𝑙 ) (L𝑀1, Σ1 M ∥ · · · ∥ L𝑀𝑚, Σ𝑚 M ∥ M)

Definition 3.15 (Waiting). We say that a term𝑀 is waiting on mailbox 𝑎 for a message with tag m,
written waiting(𝑀,𝑎, m), if𝑀 can be written guard𝑎 :𝐸 {G[receive m[𝑥] from 𝑦 ↦→ 𝑁 ]}.

Let fv(−) denote the set of free variables in a term𝑀 or frame stack Σ. We can then use canonical

forms to characterise a progress result: either each thread can reduce, has reduced to a value, or is

waiting for a message which has not yet been sent by a different thread.

Theorem 3.16 (Partial Progress). Suppose ⊢ P and · ⊢P C where C is in canonical form:

C = (𝜈𝑎1) · · · (𝜈𝑎𝑙 ) (L𝑀1, Σ1 M ∥ · · · L𝑀𝑚, Σ𝑚 M ∥ M)

Then for each𝑀𝑖 , either:
• there exist𝑀 ′𝑖 , Σ

′
𝑖 such that L𝑀𝑖 , Σ𝑖 M −→ L𝑀 ′𝑖 , Σ

′
𝑖 M; or

• 𝑀𝑖 is a value and Σ𝑖 = 𝜖 ; or
• waiting(𝑀𝑖 , 𝑎 𝑗 , m𝑗 ) whereM does not contain a message m𝑗 for 𝑎 𝑗 and 𝑎 𝑗 ∉ fv(−→𝐺𝑖 ) ∪ fv(Σ𝑖 ),
where

−→
𝐺𝑖 are the guard clauses of𝑀𝑖 .

A key consequence of Theorem 3.16 is the absence of self-deadlocks: since we can only guard on

a returnable mailbox, and a returnable name must be the last occurrence in the thread, it cannot be

that the guard expression is blocking a send to the same mailbox in the same thread. As we cannot

use dependency graphs (§2.2), our progress result does not rule out inter-process deadlocks.

4 ALGORITHMIC TYPING
Writing a typechecker based on Pat’s declarative typing rules is challenging due to nondeterministic

context splits, environment subtyping, and pattern inclusion.MC2
[Padovani 2018b] is a typechecker

for the mailbox calculus, based on a typechecker for concurrent object usage protocols [Padovani

2018c]. The MC2
type system has, however, not been formalised. We adopt several ideas from MC2

,

especially algorithmic type combination, and adapt the approach for a programming language.

Type system overview. Our algorithmic type system takes a co-contextual [Erdweg et al. 2015]
approach: rather than taking a type environment as an input to the type-checking algorithm,

we produce a type environment as an output. The intuition is that (read bottom-up), splitting an

environment into two sub-environments is more difficult than merging two environments inferred

from subexpressions. We also generate inclusion constraints on patterns to be solved later.

Bidirectional type systems [Dunfield and Krishnaswami 2022; Pierce and Turner 2000] split

typing rules into two classes: those that synthesise a type 𝐴 for a term𝑀 (Γ ⊢ 𝑀⇒𝐴), and those
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Unrestrictedness unr(𝜏 ) ▶ Φ

unr(𝐶 ) ▶ ∅ unr(!𝛾◦ ) ▶ {1<:𝛾 }

Subtyping 𝜂1 ≤ 𝜂2 𝜏 ≤ 𝜎 ▶ Φ

𝜂 ≤ 𝜂 • ≤ ◦ 𝐶 ≤ 𝐶 ▶ ∅
𝜂1 ≤ 𝜂2

!𝛾𝜂1 ≤ !𝛿𝜂2 ▶ 𝛿 <:𝛾

𝜂1 ≤ 𝜂2
?𝛾𝜂1 ≤ ?𝛿𝜂2 ▶ 𝛾 <:𝛿

Type join 𝜍1 # 𝜍2 ▶ 𝜍 ;Φ 𝜏1 # 𝜏2 ▶ 𝜎 ;Φ

!𝛾 # !𝛿 ▶ !(𝛾 ⊙ 𝛿 ) ; ∅
𝛼 fresh

!𝛾 # ?𝛿 ▶ ?𝛼 ; { (𝛾 ⊙ 𝛼 ) <:𝛿 }
𝛼 fresh

?𝛾 # !𝛿 ▶ ?𝛼 ; { (𝛿 ⊙ 𝛼 ) <:𝛾 }

𝜍1 # 𝜍2 ▶ 𝜍 ;Φ

𝜍
𝜂1
1

# 𝜍𝜂2
2
▶ 𝜍𝜂1⊲𝜂2 ;Φ 𝐶 #𝐶 ▶ 𝐶 ; ∅

Type merge 𝜍1 ⊓ 𝜍2 ▶ 𝜍 ;Φ 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ

!𝛾 ⊓ !𝛿 ▶ !(𝛾 ⊕ 𝛿 ) ; ∅
𝛼 fresh

?𝛾 ⊓ ?𝛿 ▶ ?𝛼 ; {𝛼 <:𝛾, 𝛼 <:𝛿 }
𝜍1 ⊓ 𝜍2 ▶ 𝜍 ;Φ

𝜍
𝜂1
1
⊓ 𝜍𝜂2

2
▶ 𝜍max(𝜂1,𝜂2 )

;Φ 𝐶 ⊓𝐶 ▶ 𝐶 ; ∅

Fig. 9. Pat algorithmic type operations

that check that a term𝑀 has type 𝐴 (Γ ⊢ 𝑀⇐𝐴). Bidirectional type systems are syntax-directed

and amenable to implementation.

We use a co-contextual variant of bidirectional typing first introduced by Zeilberger [2015]. The

main twist is the variable rule, which becomes a checking rule and records the given variable-type

mapping in the inferred environment.

4.1 Algorithmic Type System
Extended syntax and annotation. A key difference in comparison to the declarative type system is

the addition of pattern variables 𝛼 , that act as a placeholder for part of a pattern and are generated

during typechecking. We can then generate and solve inclusion constraints 𝜙 on patterns. Figure 8

shows the extended syntax used in the algorithmic system.

Constraints. An important challenge for the algorithmic type system is determining whether one

pattern is included within another: e.g. m ⊑ ★m. Given that patterns may contain pattern variables,

we may need to defer inclusion checking until more pattern variables are known, so we introduce

inclusion constraints 𝛾 <:𝛿 which require that pattern 𝛾 is included in pattern 𝛿 .

4.1.1 Algorithmic type operations. Fig. 9 shows the algorithmic type combination operators.

Unrestrictedness and subtyping. The algorithmic unrestrictedness operation unr(𝜏) ▶ Φ states

that 𝜏 is unrestricted subject to constraints Φ, and the definition reflects the fact that a type is

unrestricted in the declarative system if it is a base type or a subtype of !1◦. Algorithmic subtyping

is similar: a base type is a subtype of itself, and we check that two mailbox types with the same

capability are subtypes of each other by generating a contravariant constraint for a send type, and

a covariant constraint for a receive type.

Algorithmic type join. Declarative mailbox typing relies on the subtyping rule to manipulate types

into a form where they can be combined with the type combination operators, e.g., !𝐸 ⊞ ?(𝐸 ⊙ 𝐹 ) =
?𝐹 . The algorithmic type system cannot apply the same technique as it does not know, a priori,
the form of each pattern. Instead, the algorithmic type join operation allows the combination of
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two mailbox types irrespective of their syntactic form. Combining two send types is the same

as in the declarative system, but combining a send type with a receive type (and vice versa) is

more interesting: say we wish to combine !𝛾 and ?𝛿 . In this case, we generate a fresh pattern

variable 𝛼 ; the result is ?𝛼 along with the constraint that (𝛾 ⊙ 𝛼) <:𝛿 : namely, that the send pattern

concatenated with the fresh pattern variable is included in the pattern 𝛿 .

As an example, joining !m and ?(n ⊙ m) produces a receive mailbox type ?𝛼 and a constraint

(m ⊙ 𝛼) <:(n ⊙ m), for which a valid solution is 𝛼 ↦→ n, and hence the expected combined type ?n.

Algorithmic type merge. In the declarative type system branching control flow requires that

each branch is typable under the same type environment (using the T-Subs rule). The algorithmic

type system instead generates constraints that ensure that each type is used consistently across

branches using the algorithmic type merge operation 𝜏1 ⊓ 𝜏2 ▶ 𝜎 ;Φ. Two base types are merged if

they are identical. In the case of mailbox types, the function takes the maximum usage annotation,

so max(•, ◦) = •. It ensures that when merging two output capabilities the patterns are combined

using pattern disjunction. Conversely merging two input capabilities generates a new pattern

variable that must be included in both merged patterns.

Algorithmic environment combination. We can extend the algorithmic type operations to type

environments; the (omitted) rules are adaptations of the corresponding declarative operations.

Notably, when combining two environments used in branching control flow such as conditionals

where an output mailbox !𝛾 is used in one environment but not the other, the resulting type is

!(𝛾 ⊕ 1) to signify the choice of not sending on the mailbox name.

Nullable type environments. Checking a fail guard produces a null environment ⊤ which can be

composed with any other type environment, as shown by the following definition:

Definition 4.1 (Nullable environment combination). For each combination operator ★ ∈ {#,⊓, +}
we extend environment combination to nullable type environments, Ψ1★Ψ2 ▶ Ψ;Φ by extending

each environment combination operation with the following rules:

⊤★⊤ ▶ ⊤; ∅ ⊤★Θ ▶ Θ; ∅ Θ★⊤ ▶ Θ; ∅

Nullable type environments are a supertype of every defined type environment: Θ ≤ ⊤.
Figure 10 shows the Pat algorithmic typing of programs, definitions and terms. The key idea is

to remain in checking mode for as long as possible, in order to propagate type information to the

variable rule and construct a type environment. We write Θ−−→𝑥 for {𝑦 : 𝜏 |𝑦 : 𝜏 ∈ Θ ∧ 𝑦 ∉
−→𝑥 }.

Synthesis. Our synthesis judgement has the form𝑀 ⇒P 𝜏 ▶ Θ; Φ, which can be read “synthesise
type 𝜏 for term𝑀 under program P, producing type environment Θ and constraints Φ”. Here,𝑀
and P are inputs of the judgement, whereas 𝜏 , Θ, and Φ are outputs. The checking judgement

𝑀 ⇐P 𝜏 ▶ Θ; Φ can be read “check that term 𝑀 has type 𝜏 under program P, producing type

environment Θ and constraints Φ”. Here,𝑀 , P, and 𝜏 are inputs of the judgement, whereas Θ and

Φ are outputs. As in the declarative system we omit the P annotation in the rules for readability.

Rule TS-Const assigns a known base type to a constant, and rule TS-New synthesises a type

?1• (analogous to T-New); both rules produce an empty environment and constraint set.

Rule TS-Spawn checks that the given computation𝑀 has the unit type, synthesises type 1, and
infers a type environment Θ and constraint set Φ. Like T-Spawn in the declarative system, the

usability annotations are masked as usable since usability restrictions are process-local.

Message sending 𝑉 ! m[
−→
𝑊 ] is a side-effecting operation, and so we synthesise type 1. Rule TS-

Send first looks up the payload types
−→𝜋 in the signature, and checks that message target 𝑉 has

mailbox type !m◦. In performing this check, the type system will produce environment Θ′ that
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Constraint generation for programs and definitions ⊢ P ⊲ Φ ⊢P def 𝑓 (−−→𝑥 : 𝜏 ) : 𝜎 {𝑀 } ⊲ Φ

P = (S, −→𝐷,𝑀 ) (⊢P 𝐷𝑖 ⊲ Φ𝑖 )𝑖 𝑀 ⇐ 1 ▶ ·; Φ
⊢ P ⊲ Φ ∪ Φ1 ∪ · · · ∪ Φ𝑛

𝑀 ⇐ 𝜎 ▶ Θ; Φ1 check(−→𝑥 , −→𝜏 ,Θ) = Φ2 Θ − −→𝑥 = ·
⊢P def 𝑓 (−−→𝑥 : 𝜏 ) : 𝜎 {𝑀 } ⊲ Φ1 ∪ Φ2

Constraint generation (synthesis) 𝑀 ⇒P 𝜏 ▶ Θ; Φ

TS-Const

𝑐 has base type𝐶

𝑐 ⇒ 𝐶 ▶ ·; ∅

TS-New

new⇒ ?1• ▶ ·; ∅

TS-Spawn

𝑀 ⇐ 1 ▶ Θ; Φ

spawn 𝑀 ⇒ 1 ▶ ⌈Θ⌉; Φ

TS-Send

P(m) = −→𝜋 𝑉 ⇐ !m◦ ▶ Θ′; Φ
(𝑊𝑖 ⇐ ⌈𝜋𝑖 ⌉ ▶ Θ′𝑖 ; Φ

′
𝑖 )𝑖∈1..𝑛 Θ′ + Θ′

1
+ . . . + Θ′𝑛 ▶ Θ;Φ′′

𝑉 ! m[
−→
𝑊 ]⇒ 1 ▶ Θ; Φ ∪ Φ′

1
∪ . . . ∪ Φ′𝑛 ∪ Φ′′

TS-App

P(𝑓 ) = −→𝜏 −→ 𝜎

(𝑉𝑖 ⇐ 𝜏𝑖 ▶ Θ𝑖 ; Φ𝑖 )𝑖∈1..𝑛 Θ1 + . . . + Θ𝑛 ▶ Θ;Φ

𝑓 (𝑉1, . . . ,𝑉𝑛 ) ⇒ 𝜎 ▶ Θ; Φ ∪ Φ1 ∪ . . . ∪ Φ𝑛

Constraint generation (checking) 𝑀 ⇐P 𝜏 ▶ Θ; Φ

TC-Var

𝑥 ⇐ 𝜏 ▶ 𝑥 : 𝜏 ; ∅

TC-Let

𝑀 ⇐ ⌊𝑇 ⌋ ▶ Θ1; Φ1 𝑁 ⇐ 𝜏 ▶ Θ2; Φ2

check(Θ2, 𝑥, ⌊𝑇 ⌋ ) = Φ3 Θ1 − 𝑥 # Θ2 ▶ Θ;Φ4

let 𝑥 : 𝑇 = 𝑀 in 𝑁 ⇐ 𝜏 ▶ Θ; Φ1 ∪ · · · ∪ Φ4

TC-Guard

{𝐸} −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ1; 𝐹 𝑉 ⇐ ?𝐹 • ▶ Θ′; Φ2 Ψ + Θ′ ▶ Θ;Φ3

guard𝑉 :𝐸 {−→𝐺 } ⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3 ∪ {𝐸 <: 𝐹 }

TC-Sub

𝑀 ⇒ 𝜏 ▶ Θ; Φ1 𝜏 ≤ 𝜎 ▶ Φ2

𝑀 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2

Environment lookup check(Θ, 𝑥, 𝜏 ) = Φ check(Θ, −→𝑥 , −→𝜏 ) = Φ

𝑥 ∉ dom(Θ) unr(𝜏 ) ▶ Φ

check(Θ, 𝑥, 𝜏 ) = Φ

𝜎 ≤ 𝜏 ▶ Φ

check( (Θ, 𝑥 : 𝜏 ), 𝑥, 𝜎 ) = Φ

(check(Θ, 𝑥𝑖 , 𝜏𝑖 ) = Φ𝑖 )𝑖
check(Θ, −→𝑥 , −→𝜏 ) = Φ1 ∪ · · · ∪ Φ𝑛

Fig. 10. Pat algorithmic typing (programs, definitions, and terms)

contains an entry mapping the variable in 𝑉 to the desired mailbox type !m◦. Next, the algorithm
checks each payload value against the payload type described by the signature. The resulting

environment is the algorithmic disjoint combination of the environments produced by checking

each payload, and the resulting constraint set is the union of all generated constraints.

Function application is similar: rule TS-App looks up the type signature for function 𝑓 and

checks that all arguments have the expected types. The resulting environment is again the disjoint

combination of the environments, and the constraint set is the union of all generated constraints.

Checking. Rule TC-Var checks that a variable 𝑥 has type 𝜏 , producing a type environment 𝑥 : 𝜏 .

The TC-Let rule checks that a let-binding let 𝑥 : 𝑇 = 𝑀 in 𝑁 has type 𝜏 : first, we check that𝑀 has

type ⌊𝑇 ⌋ noting that only values of returnable type may be returned, producing environment Θ1

and constraints Φ1. Next we check that the body 𝑁 has type 𝜏 , producing environment Θ2 and Φ2.

The next step is to check whether the types of the variable inferred in Θ2 corresponds with the

annotation. The check meta-function ensures that if 𝑥 is not contained within Θ2, then the type of

𝑥 is unrestricted; and conversely if 𝑥 is contained within Θ2, then the annotation is a subtype of

the inferred type as the annotation is a lower bound on what the body can expect of 𝑥 .

Rule TC-Guard checks that a guard expression guard𝑉 :𝐸 {−→𝐺 } has return type 𝜏 . First, the

rule checks that the guard sequence

−→
𝐺 has type 𝜏 , producing nullable environment Ψ, constraint
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Constraint generation for guards {𝐸} −→𝐺 ⇐P 𝜏 ▶ Ψ; Φ; 𝐹 {𝐸} 𝐺⇐P 𝜏 ▶ Ψ; Φ; 𝐹

TCG-Guards

({𝐸} 𝐺𝑖⇐ 𝜏 ▶ Ψ𝑖 ; Φ𝑖 ; 𝐹𝑖 )𝑖∈1..𝑛
𝐹 = 𝐹1 ⊕ · · · ⊕ 𝐹𝑛 Ψ1 ⊓ . . . ⊓ Ψ𝑛 ▶ Ψ;Φ

{𝐸} −→𝐺 ⇐ 𝜏 ▶ Ψ; Φ ∪ Φ1 ∪ · · · ∪ Φ𝑛 ; 𝐹

TCG-Fail

{𝐸} fail⇐ 𝜏 ▶ ⊤; ∅; 0

TCG-Free

𝑀 ⇐ 𝜏 ▶ Θ; Φ

{𝐸} free ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ; 1

TCG-Recv

𝑀 ⇐ 𝜏 ▶ Θ′, 𝑦 : ?𝛾•; Φ1 P(m) = −→𝜋 Θ = Θ′ − −→𝑥 base(−→𝜋 ) ∨ base(Θ) check(Θ′, −→𝑥 ,
−−→
⌈𝜋 ⌉ ) = Φ2

{𝐸} receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀⇐ 𝜏 ▶ Θ; Φ1 ∪ Φ2 ∪ {𝐸 / m<:𝛾 }; m ⊙ (𝐸 / m)

Fig. 11. Pat algorithmic typing (guards)

set Φ1, and pattern 𝐹 in pattern normal form. Next, the rule checks that the mailbox name 𝑉 has

type ?𝐹 •, producing environment Θ′ and constraint set Φ2. Finally, the rule calculates the disjoint

combination of Ψ and Θ′, producing final environment Θ and constraints Φ3.

Finally, rule TC-Sub states that if a term𝑀 is synthesisable with type 𝜏 , where 𝜏 is a subtype of

𝜎 , then𝑀 is checkable with type 𝜎 . The resulting environment is that produced by synthesising the

type for𝑀 , and the resulting constraint set is the union of the synthesis and subtyping constraints.

Un-annotated let expressions. Although our core calculus assumes an annotation on let expres-
sions, this is unnecessary if the let-bound variable is used in the continuation 𝑁 , or 𝑀 has a

synthesisable type. Specifically, TC-LetNoAnn1 allows us to check the type of the continuation

and inspect the produced environment for the type of 𝑥 , which can be used to check𝑀 . Similarly,

TC-LetNoAnn2 allows us to type a let-binding where 𝑥 is not used in the continuation, as long as

the type of𝑀 is synthesisable and unrestricted.

TC-LetNoAnn1

𝑁 ⇐ 𝜎 ▶ Θ1, 𝑥 : 𝜏 ; Φ1 returnable(𝜏 )
𝑀 ⇐ 𝜏 ▶ Θ2; Φ2 Θ2 # Θ1 ▶ Θ;Φ3

let 𝑥 = 𝑀 in 𝑁 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

TC-LetNoAnn2

𝑁 ⇐ 𝜎 ▶ Θ1; Φ1 𝑥 ∉ dom(Θ1 )
𝑀 ⇒ 𝜏 ▶ Θ2; Φ2 returnable(𝜏 ) Θ2 # Θ1 ▶ Θ;Φ3

let 𝑥 = 𝑀 in 𝑁 ⇐ 𝜎 ▶ Θ; Φ1 ∪ Φ2 ∪ Φ3

We use the explicitly-typed representation in the core calculus for simplicity and uniformity,

however the implementation follows the above approach to avoid needless annotations.

Guards. Figure 11 shows the typing rules for guards; the judgement {𝐸} 𝐺⇐ 𝜏 ▶ Ψ; Φ; 𝐹 can

be read “Check that guard 𝐺 has type 𝜏 , producing environment Ψ, constraints Φ, and closed

pattern literal 𝐹 in pattern normal form with respect to 𝐸”. Rule TCG-Guards types a guard

sequence, producing the algorithmic merge of all environments and the sum of all produced

patterns. Rule TCG-Fail types the fail guard with any type and produces a null type environment,

empty constraint set, and pattern 0. Rule TCG-Free checks that guard free ↦→ 𝑀 has type 𝜏 by

checking that𝑀 has type 𝜏 ; the guard produces pattern 1.
Finally, rule TCG-Recv checks that a receive guard receive m[−→𝑥 ] from 𝑦 ↦→ 𝑀 has type 𝜏 .

First, the rule checks that𝑀 has type 𝜏 , producing environment Θ′, 𝑦 : ?𝛾• and constraint set Φ1;

since a mailbox type with input capability is linear, it must be present in the inferred environment.

Next, the rule checks that the inferred types for
−→𝑥 in Θ′ are compatible with the payloads for m

declared in the signature, producing constraint set Φ2. As with the declarative rule, to rule out

unsafe aliasing either the payloads or inferred environment must consist only of base types. The

resulting environment is Θ (i.e., the inferred environment without the mailbox variable or any

payloads). The resulting constraint set is the union of Φ1 and Φ2 along with an additional constraint

which ensures that 𝐸 / m is included in 𝛾 , allowing us to produce the closed PNF literal m ⊙ (𝐸 / m).
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4.2 Metatheory
We can now establish that the algorithmic type system is sound and complete with respect to the

declarative type system. We begin by introducing the notion of pattern substitutions and solutions.

A pattern substitution Ξ is a mapping from type variables 𝛼 to (fully-defined) patterns 𝐸; applying

Ξ to a pattern 𝛾 substitutes all occurrences of a type variable 𝛼 for Ξ(𝛼). We extend application of

pattern substitutions to types and environments. We write pv(𝐸) for the set of pattern variables in

a pattern and extend it to types and environments.

Definition 4.2 (Pattern solution). A pattern substitution Ξ is a pattern solution for a constraint set

Φ (or solves Φ) if pv(Φ) ⊆ dom(Ξ) and for each 𝛾 <:𝛿 ∈ Ξ, we have that Ξ(𝛾) ⊑ Ξ(𝛿). A solution Ξ
is a usable solution if its range does not contain any pattern equivalent to 0.

4.2.1 Algorithmic soundness.

Definition 4.3 (Covering solution). We say that a pattern substitution Ξ is a covering solution for a

derivation 𝑀 ⇒P 𝜏 ▶ Θ; Φ or 𝑀 ⇐P 𝜏 ▶ Θ; Φ if given ⊢ P ⊲ Φ′, it is the case that Ξ is a usable

solution for Φ ∪ Φ′ such that pv(𝜏) ∪ pv(P) ⊆ dom(Ξ).
If a term is well typed in the algorithmic system then, given a covering solution, the term is also

well typed in the declarative system.

Theorem 4.4 (Algorithmic Soundness).

• If Ξ is a covering solution for𝑀 ⇒P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).
• If Ξ is a covering solution for𝑀 ⇐P 𝜏 ▶ Θ; Φ, then Ξ(Θ) ⊢Ξ(P) 𝑀 :Ξ(𝜏).

4.2.2 Algorithmic completeness. We also obtain a completeness result, but only for the checking

direction. This is because the type system requires type information to construct a type environment.

In practice the lack of a completeness result for synthesis is unproblematic since all functions

have return type annotations, and therefore the only terms typable in the declarative system but

unsynthesisable are top-level terms containing free variables. In the following we assume that

program P is closed, i.e. no definitions or message payloads contain type variables.

Theorem 4.5 (Algorithmic Completeness). If ⊢ P where P is closed, and Γ ⊢P 𝑀 :𝐴, then there
exist some Θ,Φ and usable solution Ξ of Φ such that𝑀 ⇐P 𝐴 ▶ Θ; Φ where Γ ≤ Ξ(Θ).
An unannotated let binding let 𝑥 = 𝑀 in 𝑁 is also typable by the algorithmic type system if

either 𝑥 occurs free in 𝑁 , or the type of𝑀 is synthesisable; in practice this encompasses both base

types and linear usages of mailbox types, i.e. the vast majority of use cases.

4.3 Constraint solving
Constraint solving is covered in depth by Padovani [2018c], so we provide an informal overview:

Identify and group bounds A pattern bound is of the form 𝛾 <:𝛼 i.e. a constraint whose right-
hand-side is a pattern variable. We firstly group all pattern bounds using pattern disjunction,

e.g. a constraint set {𝛾 <:𝛼, 𝛿 <:𝛼, 1<:1} would result in the constraint 𝛾 ⊕ 𝛿 <:𝛼 .
Calculate closed-form solutions Hopkins and Kozen [1999] define a closed-form solution for a

set of pattern bounds (𝛾𝑖 <:𝛼𝑖 )𝑖 : there exists a solution 𝛿𝑖 for each 𝛾𝑖 such that 𝛼𝑖 ∉ pv(𝛿𝑖 ). We

can then substitute each closed pattern through the system to eliminate all pattern variables

in the remaining constraints and obtain a system of closed inclusion constraints.

Translate to Presburger formulae and check satisfiability Finally, we translate the closed

constraints into Presburger formulae. Commutative regular expressions, and therefore pat-

terns, can be expressed as semilinear sets [Parikh 1966] that describe Presburger formu-

lae [Ginsburg and Spanier 1966]. Since checking the satisfiability of a Presburger formula is
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guardmb : Arg ⊙ Arg {
receive Arg[𝑥] from mb′ ↦→
guardmb′ : Arg {

receive Arg[𝑦] from mb′′ ↦→
free mb′′;
𝑥+𝑦

}
}

(a) Nested guards

let (𝑥,mb′ ) =
guardmb : Arg ⊙ Arg {
receive Arg[𝑥] from mb′ ↦→
(𝑥,mb′ )

} in
guardmb′ : Arg {
receive Arg[𝑦] from mb′′ ↦→

free𝑚𝑏′′; 𝑥+𝑦
}

(b) Unnesting using products

guard self : M1 ⊙ M2 {
receive M1[x] from mb′ ↦→

guardmb′ : M2 {
receive M2[y] from mb′′ ↦→

x ! Go[];
y ! Go[];
free mb′′

}
}

(c) Term requiring interfaces

Fig. 12. Examples motivating extensions

decidable, an external solver like Z3 [de Moura and Bjørner 2008] can be used to determine

whether each constraint holds. In our case, we use Z3’s quantifier elimination pass and its

quantifier-free linear integer arithmetic solver.

5 EXTENSIONS
It is straightforward to extend Pat with product and sum types, and by using contextual typing

information prior to constraint generation, we can add higher-order functions and interfaces that
allow finer-grained alias analysis. The formalisation can be found in the extended version.

5.1 Product and Sum Types
Product and sum constructors are checking cases, and must contain only returnable components

since we must be able to safely substitute their contents in any context. As with let expressions we
can omit annotations on elimination forms, i.e. let (𝑥,𝑦) = 𝑀 in𝑁 or case 𝑉 of {𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 },
provided that 𝑥 and 𝑦 are used in their continuations, or the sum or product consists of base types.

An advantage of adding product types is that we can avoid nested guard clauses, as we can

return both a received value and an updated mailbox name. Figure 12a receives two integers and

returns their sum using nested guard expressions, whereas Figure 12b uses products instead.

Since product types can only contain returnable components, they cannot be used to replace

𝑛-ary argument sequences in function definitions and receive clauses.

5.2 Using Contextual Type Information
A co-contextual approach is required to generate the pattern inclusion constraints. Sometimes,

however, it is useful to have contextual type information before the constraint generation pass.

Consider applying a first-class function: (𝜆(𝑥 : Int): Int . 𝑥) (5). Although the annotated 𝜆 expression
allows us to synthesise a type and use a rule similar to TS-App, the lack of contextual type

information means that the approach fails as soon as we stray from applying function literals as

in let 𝑓 = (𝜆(𝑥 : Int): Int . 𝑥) in 𝑓 (5)). A typical backwards bidirectional typing approach requires

synthesising function argument types, but this is too inflexible in our setting as each mailbox name

argument would need a type annotation.

In the base system a global signature maps message tags to payload types. While technically

convenient, this is inflexible. First, distinct entities may wish to use the same mailbox tags with

different payload types. For example, a client may send a Login message containing credentials

to a server, which may then send a Login message containing the credentials and a timestamp

to a session management server. Second, we need a syntactic check on a receive guard to avoid

aliasing, as outlined in §2: either the received payloads or free variables in the guard body must be

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 191. Publication date: August 2023.



191:24 Simon Fowler, Duncan Paul Attard, Franciszek Sowul, Simon J. Gay, and Phil Trinder

# Name Description Strict Time (ms)

Original mailbox calculus models taken from de’Liguoro and Padovani [2018]

1 Lock Concurrent lock modelling mutual exclusion • 28.5

2 Future Future variable that is written to once and read multiple times • 22.5

3 Account Concurrent accounts exchanging debit and credit instructions • 19.5

4 AccountF Concurrent accounts where debit instructions are effected via futures • 33.5

5 Master-Worker Master-worker parallel network • 29.0

6 Session Types Session-typed communicating actors using one arbiter ◦ 75.5

Selected micro-benchmarks adapted from Imam and Sarkar [2014], based on Neykova and Yoshida [2017b]

7 Ping Pong Process pair exchanging 𝑘 ping and pong messages • 24.6

8 Thread Ring Ring network where actors cyclically relay one token with counter 𝑘 ◦ 37.2

9 Counter One actor sending messages to a second that sums the count, 𝑘 ◦ 29.8

10 K-Fork Fork-join pattern where a central actor delegates 𝑘 requests to workers • 7.1

11 Fibonacci Fibonacci server delegating terms (𝑘 − 1) and (𝑘 − 2) to parallel actors • 27.1

12 Big Peer-to-peer network where actors exchange 𝑘 messages randomly ◦ 62.8

13 Philosopher Dining philosophers problem ◦ 57.1

14 Smokers Centralised network where one arbiter allocates 𝑘 messages to actors ◦ 31.3

15 Log Map Computes the term 𝑥𝑘+1 = 𝑟 ·𝑥𝑘 (1 − 𝑥𝑘 ) by delegating to parallel actors ◦ 57.9

16 Transaction Request-reply actor communication initiated by a central teller actor ◦ 46.7

Tbl. 1. Typechecking concurrent actor examples in Pat

base types. This conservative check rules out innocuous cases such as in Figure 12c, which waits

for messages from two actors before signalling them to continue.

With contextual information we can associate each mailbox name with an interface 𝐼 , which
maps tags to payload types, and allows us to syntactically distinguish different kinds of mailboxes

(e.g. a future and its client). Since a name cannot have two interfaces at once, we can loosen our

syntactic check on receive guards to require only that the interfaces of mailbox names in the

payloads and free variables differ, as typing guarantees that they will refer to different mailboxes.

We implement the above extensions via a contextual type-directed translation: we annotate

function applications with the type of the function (i.e. 𝑉
−→
𝜏 −→𝜎 (−→𝑊 )) which allows us to synthesise

the function type. Users specify an interface when creating a mailbox (new[𝐼]); our pass then
annotates sends and guards with interface information (i.e. 𝑉 !

𝐼 m[
−→
𝑊 ] and guard𝐼 𝑉 :𝐸 {−→𝐺 }) for

use in constraint generation.

6 IMPLEMENTATION AND EXPRESSIVENESS
We outline the implementation of a prototype type checker written in OCaml, and evidence the

expressiveness of Pat via a selection of example programs taken from the literature. We first show

that using quasi-linear typing in place of dependency graphs (cf. §2.3) does not prevent Pat from
expressing all of the examples in [de’Liguoro and Padovani 2018]. The Savina benchmarks [Imam

and Sarkar 2014] capture typical concurrent communication patterns and are used both to compare

actor languages and to demonstrate expressiveness; we show that Pat can express 10 of the 11

Savina expressiveness benchmarks used by Neykova and Yoshida [2017b]. Finally, we encode a

case study provided by an industrial partner that develops control software for factories.

6.1 Implementation Overview
Pat programs are type checked in a six-phase pipeline: lexing and parsing; desugaring, which

expands the sugared form of guards (i.e. rewrites free 𝑉 as guard𝑉 : 1 {free ↦→ ()} and fail 𝑉 as

guard𝑉 : 0 {fail}) and adds omitted pattern variables; IR conversion, which transforms the surface
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language (supporting nested expressions) to our explicitly-sequenced intermediate representa-

tion; contextual type-checking, which supports the contextual extensions from §5.2; constraint

generation; and constraint solving.

The Pat typechecker operates in two modes that determine how receive guards are type checked.

Strict mode uses the lightweight syntactic checks outlined in §3 and §4, whereas interface mode

uses interface type information (§5.2) to relax these checks. This means that every Pat program
accepted in strict mode is also accepted in interface mode.

6.2 Expressiveness and Typechecking Time
Tbl. 1 lists the examples implemented in Pat. Examples 1-6 are the mailbox calculus examples

from [de’Liguoro and Padovani 2018, Ex. 1–3, and Sec. 4.1–4.3]. Examples 7-16 are the selection of

Savina benchmarks [Imam and Sarkar 2014, Table 1, No. 1–4, 6, 7, 12, 14–16] used in [Neykova and

Yoshida 2017b]. The table indicates whether a Pat program can be checked in strict (denoted by •),
in addition to interface mode (denoted by ◦). We report the mean typechecking time, excluding

phases 1–3 of the pipeline. Measurements are made on a MacBook M1 Pro with 16GB of memory,

running macOS 13.2 and OCaml 5.0, and averaging over 1000 repetitions.

Robot Door Warehouse

Want(PartNum)

Busy()

Open door

GoIn()

Prepare(PartNum)

Drive in

Inside()

Close door

Prepared()

Deliver()

Lock table

Delivered()

Take part

PartTaken()

WantLeave()

Open door

GoOut()

Drive out

Outside()

Close door

TableIdle()

alt [Door is already in use]

[Door is not in use]

Fig. 13. Factory use case

6.2.1 Benchmarks. Tbl. 1 shows that all but one of themailbox

calculus examples from [de’Liguoro and Padovani 2018] can be

checked in strict mode. The Savina examples capture typical

concurrent programming patterns, namely, master-worker (K-

Fork, Fibonacci, Log Map), client-server (Ping Pong, Counter),

and peer-to-peer (Big), and common network topologies such

as star (Philosopher, Smokers, Transaction) and ring (Thread

Ring). Most of these programs require contextual type infor-

mation (8, 9, and 12–16) to type check. As Pat does not yet
support recursive types, we instead emulate fixed collections

using definition parameters in examples 8, 10, 12–16. We could

not encode the Sleeping Barber [Neykova and Yoshida 2017b,

Ex. 8] example since the number of collection elements varies

throughout execution.

The examples reveal the benefits of mailbox typing. Run-

time checks, such as manual error handling (§1.2) are unnec-

essary since errors (e.g. unexpected messages) are statically
ruled out by the type system. Mailbox types also have an edge

over session typing tools for actor systems, e.g. [Neykova and
Yoshida 2017b; Tabone and Francalanza 2022] where develop-

ers typically specify protocols in external tools and write code

to accommodate the session typing framework. In contrast,

mailbox typing naturally fits idiomatic actor programming.

This flexibility does not incur high typechecking runtime

(see Tbl. 1). The aim of benchmarking typechecking time is to

show that mailbox typechecking is not prohibitively expensive, rather than to claim comparative

results. Comparisons with other implementations of (non-mailbox-typed versions of) the bench-

marks written in other languages are unlikely to strengthen our results as the benchmark source

code would be different, and we would be measuring e.g. Java’s entire type system implementation

rather than the essence of the typechecking algorithm.
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6.2.2 Case Study. Finally we describe a real-world use case written by Actyx AG3
, who develop

control software for factories. The use case captures a scenario where multiple robots on a factory

floor acquire parts from a warehouse that provides access through a single door. Robots negotiate

with the door to gain entry into the warehouse and obtain the part they require. The behaviour

of our three entities, Robot, Door, andWarehouse is shown in Fig. 13. Our concrete syntax closely

follows the core calculus of §3, without requiring that pattern variables in mailbox types are

specified explicitly. Type checking our case study relies on contextual type information (see §5),

and takes ≈89.6 ms.

We give an excerpt of our Warehouse process (below) that maps the interactions of its lifeline in

Fig. 13. In its initial state, empty, the Warehouse expects a Prepare message (if there are Robots in

the system), or none (if no Robot requests access), expressed as the guard Prepare + 1 on line 2.

When a part is requested, the Warehouse transitions to the state engaged, where it awaits a Deliver

message from the Door and notifies the Robot via a Delivered message (lines 9–15). Subsequent

interactions that the Warehouse undertakes with the Door and Robot are detailed in the extended

version. Note that our type system enables us to be precise with respect to the messages mailboxes

receive. Specifically, the guard on line 2 expects at most one Prepare message, capturing the mutual

exclusion requirement between Robots, whereas the guard on line 10 expects exactly Deliver.

1 def empty(self: wh?): Unit {
2 guard self: Prepare + 1 {
3 free � ()
4 receive Prepare(partNum, door) from self �
5 door ! Prepared(self);
6 engaged(self)
7 }
8 }

9 def engaged(self: wh?): Unit {
10 guard self: Deliver {
11 receive Deliver(robot, door) from self �
12 robot ! Delivered(self, door);
13 given(self, door)
14 }
15 }

7 RELATEDWORK
Behaviourally-typed actors. The asymmetric nature of mailboxes makes developing behavioural

type systems for actor languages challenging. Mostrous and Vasconcelos [2011] investigate session

typing for Core Erlang, using selective message reception and unique references to encode session-

typed channels. Tabone and Francalanza [2021, 2022] develop a tool that statically checks Elixir [Jurić

2019] actors against binary session types to prove session fidelity. Neykova and Yoshida [2017b]

propose a programming model for dynamically checking actor communication against multiparty

session types [Honda et al. 2016], later implemented in Erlang by Fowler [2016]. Neykova and

Yoshida [2017a] show how causality information in global types can support efficient recovery

strategies. Harvey et al. [2021] use multiparty session types with explicit connection actions [Hu

and Yoshida 2017] to give strong guarantees about actors that support runtime adaptation, but an

actor can only participate in one session at a time. Using session types to structure communication

requires specifying point-to-point interactions, typically using different libraries and formalisms.

In contrast, our mailbox typing approach naturally fits idiomatic actor programming paradigms.

Bagherzadeh and Rajan [2017] define a type system for active objects [de Boer et al. 2007]

which can rule out data races; this work targets an imperative calculus and is not validated via

an implementation. Kamburjan et al. [2016] apply session-based reasoning to a core active object

calculus where types encode remote calls and future resolutions; communication correctness is

ensured by static checks against session automata [Bollig et al. 2013].

Mailbox types are inspired by behavioural type systems [Crafa and Padovani 2017] for the

objective join calculus [Fournet and Gonthier 1996]. The technique can be implemented in Java

using code generation via matching automata [Gerbo and Padovani 2019], and dependency graphs

3
https://www.actyx.com
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can rule out deadlocks [Padovani 2018a], but the authors do not consider a programming language

design. Scalas et al. [2019] define a behavioural type system for Scala actors. Types are written in a

domain-specific language, and type-level model checking determines safety and liveness properties.

Their system focuses on the behaviour of a process, rather than the state of the mailbox.

Session-typed functional languages. Session types [Honda 1993; Honda et al. 1998] were originally

considered in the setting of process calculi; Gay and Vasconcelos [2010] were first to integrate

session types in a functional language by building on the linear 𝜆-calculus, and their approach has

been adopted by several other works (e.g. [Almeida et al. 2022; Lindley and Morris 2015]). Linear

types are insufficient for mailbox typing since we require multiple uses of a mailbox name as a

sender; we believe our use of quasi-linearity for behavioural typing is novel, and we conjecture that

it could be used to support other paradigms (e.g. broadcast) that require non-linear variable use.

Co-contextual typing. Co-contextual typing [Erdweg et al. 2015] was originally introduced to

support efficient incremental type-checking, and has also been used to support intrinsically-typed

compilation [Rouvoet et al. 2021]. Padovani [2014] uses a co-contextual type algorithm for the

linear 𝜋-calculus with sums, products, and recursive types; and Ciccone and Padovani [2022] use

it when analysing fair termination properties. Backwards bidirectional typing [Zeilberger 2015]

is a co-contextual formulation of bidirectional typing, and we are first to use it in a language

implementation. Co-contextual typing has parallels with the co-de Bruijn nameless variable repre-

sentation [McBride 2018], where subterms are annotated with the variables they contain.

Safety via static analysis. Christakis and Sagonas [2011] implement a static analyser for Erlang

that detects errors such as receiving from an empty mailbox, payload mismatches, redundant

patterns, and orphan messages. All of these issues can be detected with mailbox types, which also

allow us to specify the mailbox state. Harrison [2018] implements an approach incorporating both

typechecking and static analysis to detect errors such as orphan messages and redundant patterns.

8 CONCLUSION AND FUTUREWORK
Concurrent and distributed applications can harbour subtle and insidious bugs, including protocol

violations and deadlocks. Behavioural types ensure correct-by-construction communication-centric

software, but are difficult to apply to actor languages. We have proposed the first language design
incorporating mailbox types which characterise mailbox communication. The multiple-writer,

single-reader nature of mailbox-oriented messaging makes the integration of mailbox types in

programming languages highly challenging. We have addressed these challenges through a novel

use of quasi-linear types and have formalised and implemented an algorithmic type system based

on backwards bidirectional typing (§4), proving it to be sound and complete with respect to the

declarative type system (§3). Our approach can flexibly express common communication patterns

(e.g. master-worker) and a real-world case study based on factory automation.

Future work. We are investigating implementing mailbox types in a tool for mainstream actor

languages, e.g. Erlang; in parallel, we are investigating how languages with first-class mailboxes can

be compiled to standard actor languages in order to leverage mature runtimes. We plan to consider

finer-grained inter-process alias control, and co-contextual typing with type constraints (as well as
pattern constraints), enabling us to study more advanced language features, e.g. polymorphism.
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